LETTERS TO THE EDITOR

MicroRNA expression-based outcome prediction in
acute myeloid leukemia: novel insights through
cross-platform integrative analyses

In the last decade, the non-coding transcriptome in
normal and pathological conditions has been a focus of
intensive research.! The most well-studied non-coding
RNAs, microRNAs, are of critical importance in the post-
transcriptional regulation in the cell and were shown to
play a role in biologically and clinically heterogeneous
diseases such as acute myeloid leukemia (AML).” Along
with the insights into AML pathogenesis, microRNA
expression profiling proved to be of clinical relevance as
specific microRNA expression signatures were shown to
be associated with distinct AML subtypes and with
patients’ prognosis.”* However, so far most studies have
focused mainly on individual microRNAs and only a few
have developed prognostic scores, which were limited to
cytogenetically normal AML (CN-AML) or intermediate
risk AML.* In accordance with a recent study,” we aimed
to develop and validate a microRNA expression-based
prognostic score in adult AML applicable not only to a
specific AML subtype but rather to any AML subtype. For
this purpose, we used a microarray-based training
expression dataset from 91 AML patients (Ulm dataset;
Online Supplementary Appendix),® and validated findings
using the RNA sequencing (RNA-Seq) data from 177
patients available through The Cancer Genome Atlas
(TCGA) project.” The analysis used the expression data
for 168 microRNAs common for both datasets (Online
Supplementary Appendix).
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The microRNAs to be included in the model were
determined using the Robust Likelihood-Based Survival
Modeling with Microarray Data method. This technique
utilizes the partial likelihood of the Cox model and func-
tions through the generation of multiple gene
(microRNAs in this case) models (Online Supplementary
Appendix). The optimal model included 7 microRNAs
(miR-100, miR-132, miR-185, miR-186, miR-302a, miR-
330, and miR-422a) (Online Supplementary Appendix). A
total continuous score was calculated for each patient
sample using the Cox regression coefficients obtained for
the Ulm dataset. The total score was calculated for each
patient sample in the training and the validation dataset.
To build a binary score classifying the sample to either a
high or low score group, we defined a cut-off value spe-
cific for each dataset. This was achieved through Receiver
Operating Characteristics (ROC) analysis and optimal
cut-off selection based on the log-rank test (Omnline
Supplementary Appendix). Notably, the microRNAs includ-
ed in our prognostic score did not overlap with those
used by Chuang et al.” a phenomenon also frequently
seen for mRNA-based outcome prediction signatures.
Depending on the approach, different surrogates for out-
come are chosen by the model. This can be explained by
two main differences between the studies. First, our
approach used a direct selection via a multivariate
microRNA expression model, while Chuang et al. focused
only on microRNAs significantly associated with overall
survival (OS) in univariate analysis. Second, the Chuang
et al. dataset included more patients aged over 60 years
(41%) and, therefore, many had not undergone intensive
treatment.”
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Figure 1. Overall survival (OS) in the training and validation sets based on the discrete microRNA expression-based score. (A, C, E, G) training dataset; (B, D,
F, H) validation dataset; (A, B, C, D) included all patients from both datasets; (E, F, G, H) included only cytogenetically normal acute myeloid leukemia (CN-AML)
patients aged 60 years or under from both datasets. P-values are from Cox regression, unless stated otherwise in the plot. Horizontal axes represent the time

in days and the vertical axes represent the probability for OS.
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Univariate and multivariate analyses were performed
for the training and validation datasets with either the
continuous or discrete scores to determine their prognos-
tic power on OS. For the training set, both continuous
and discrete scores were significant prognostic factors in
the univariate analyses (Figure 1A, B, E and F and Ounline
Supplementary Appendix). In multivariate models for the
training set, the discrete score was a significant prognos-
tic factor and appeared to modify the FLT3-ITD associat-
ed risk (Figure 1C, D, G and H and Ounline Supplementary
Appendix). In accordance with this, we focused on the
discrete score, which performed almost identically in the
univariate analysis when applied to all validation dataset
cases (P=0.0024), and it was a significant factor in multi-
variate analysis (P=0.047; including FLT3-ITD and NPM1
mutational status, cytogenetic risk group, age and sex)
(Figure 1C, D, G and H and Ounline Supplementary
Appendix).

In intermediate risk cytogenetic cases, the discrete
score also was shown to be a significant prognostic factor
in the univariate analysis in the training dataset
(P=0.032), and showed a trend in multivariate models
(P=0.12) (Online Supplementary Appendix). In accordance
with this, in the validation dataset the discrete score was
a significant prognostic factor and retained significance
also in multivariate models (P=0.017 and P=0.022,
respectively) (Online Supplementary Appendix). Finally,
analysis restricted to cytogenetically normal (CN) AML
also showed a trend to significance for the discrete score
(Online Supplementary Appendix) and the log-rank test
showed a significant adverse prognostic impact for the
miRNA score (Figure 1E). In the TCGA validation subset
of younger CN-AML patients, the discrete scores were
significant in the univariate analysis, and appeared as
independent prognostic factors in multivariate models
(P=0.0022 and P=0.0014, respectively) (Figure 1D and H
and Online Supplementary Appendix).

The microRNAs of our prognostic score had so far not
been frequently reported to be associated with AML sub-
types.” Thus, we used a systems biology approach to see
whether this set of microRNAs might account for
leukemia-relevant mechanisms further supporting the
model. A computational network including the seven

microRNAs and their predicted or validated targets
(mirTarBase, TargetScan and MicroCosm) showed a sig-
nificant enrichment for nucleic acids binding proteins,
thereby pointing to a general impact on transcriptional
deregulation (Ounline Supplementary Appendix). The 479
target genes included in the network were enriched for
several cancer-related pathways (Online Supplementary
Appendix). Using the TCGA gene expression data, we
identified 850 probe sets (corresponding to 624 genes)
that were differentially expressed between Low and High
Score patients at the level of P<0.01 (Figure 2A). GO
analysis on the list of the top 200 differentially expressed
probe sets (corresponding to 148 genes) notably also
revealed “General transcription regulation” to be the
most significantly over-represented pathway (Omnline
Supplementary Appendix). Twenty genes were common
with the target genes included in the network analysis
(Online Supplementary Appendix). Within CN-AML, the
respective analysis identified a total of 171 differentially
expressed probe sets corresponding to 137 genes. The
unsupervised clustering based on these probe sets
showed three different groups that correlated with the
discrete score subgrouping (Figure 2A). In accordance to
the findings above, GO analysis revealed over-represent-
ed GO classes related to RNA metabolism, as well as the
cell cycle pathway (Online Supplementary Appendix).

To further investigate the biological relevance of the
difference in gene expression pattern between the Low
and High Score subgroups, we performed a Gene Set
Enrichment Analysis (GSEA) using the Broad Institute
GSEA bioinformatics platform. The GSEA of the entire
validation set cohort showed a positive enrichment in the
Low Score group for genes deregulated after beta-catenin
overexpression (e.g. “BCAT.100_UP.V1_DN” gene signa-
ture; P=0.009) (Online Supplementary Appendix). This is in
accordance with the subgroup of Low Score patients
being enriched for t(15;17) cases (Ounline Supplementary
Appendix), in which the Wnt/beta-catenin signaling path-
way was reported hyperactive. The GSEA within the
subset of CN-AML aged 60 years or under showed the
seven top scoring gene signatures to be associated with
RNA metabolism and processing (Online Supplementary
Appendix). The top scoring gene set was the “RNA SPLIC-
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Figure 2. Gene expression and epigenetic profiles discriminating Low and High Score validation dataset cytogenetically normal acute myeloid leukemia (CN-
AML) cases (<60 years). (A) Hierarchical clustering of differentially expressed probe sets discriminating Low and High Score CN-AML patients. (B) Enrichment
plot for the “RNA_SPLICING” signature identified in GSEA of CN-AML patients aged 60 years or under. (C) Unsupervised clustering of differentially methylated
CpG sites in CN-AML patients. Samples’ annotation in (A) and (C): blue: Low Score patients; red: High Score patients. ES: enrichment score; FWER: familywise
error rate.
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ING” signature (Figure 2B). This observation suggests
that deregulated miRNA expression might affect RNA
splicing patterns and contribute to the pathogenesis of
myeloid malignancies. For example, two of the genes that
we found over-expressed in Low versus High Score cases,
SRSF2 and U2AF1, are also found recurrently mutated in
the myeloid malignancies, thereby further highlighting
the importance of altered splicing in leukemogenesis." In
AML, mutations were also found in other splicing factors
(SFPQ), but also in other non-canonical RNA metabolism
regulators such as CTCF and RAD21,"” and recently vari-
able expression of U2AF1 was shown to influence alter-
native splicing events.” Our findings further support the
idea that the level of expression of splicing factors genes
is associated with leukemia pathogenesis.

Thus, the observation of the over-representation and
enrichment of RNA splicing-related gene signatures
prompted us to investigate differential exon usage (DEU)
between Low and High Score patients. To do this we
used the level 3 RNA-Seq data from the TCGA server. We
filtered out tags (exons) with low expression, analyzed
45264 tags, and identified 7500 differentially expressed
tags (P<0.05), with 151 tags showing a log fold change
greater than 2. Furthermore, DEU reliably classified Low
versus High Score patients (Online Supplementary
Appendix), thereby further supporting the hypothesis that
there is a significant difference in the RNA splicing
between the two groups.

Finally, we questioned whether the observed differ-
ences between the Low and High Score CN-AML cases
would also be reflected on the epigenetic level. We
obtained the TCGA DNA methylation data (Infinium II
platform) and found a total of 1218 CpG sites (corre-
sponding to 574 genes) differentially methylated
between the Low and High Score patients, and hierarchi-
cal clustering showed a very good correlation with the
miRNA score, with only 5 cases being discordantly
grouped (Figure 2C). This finding is consistent with the
previous reports of AML subtypes being associated with
differential DNA methylation profiles of prognostic rele-
vance.”"*?

In conclusion, our data show a rational and feasible
approach to combine microarray and RNA-Seq data to
derive prognostic scores in AML (or other cancers) and to
integrate additional omics data levels to explore the
potential underlying biological features. Together with
the recent report by Chuang et al./ our report further
demonstrates that meaningful microRNA expression-
based prognostic scores can be developed on heteroge-
neous training and validation datasets across a heteroge-
neous disease such as AML. The respective signatures
warrant further clinical testing, especially the newly iden-
tified miRNAs that have not been previously reported.
Most importantly, this work provides further evidence of
the role of the RNA splicing machinery deregulation in
the pathogenesis of AML. This warrants further studies
to understand the aberrant mechanisms and to translate
findings into clinical practice.
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