
PCR,28 Nuclease-Assisted Mutation Enrichment29). 
The last decades have witnessed significant progress in

elucidating the origin, characteristics and potential appli-
cations for the analysis of ccfDNA. Given its ability to
assess dynamic and comprehensive tumor processes,
ccfDNA, as a source for ctDNA, holds great promise for
the implementation of personalized and dynamic cancer
therapies. In addition, the low detection limit and ease of
sampling may critically improve post-treatment monitor-
ing compared to surveillance imaging. Resolving the
remaining technical and practical challenges will allow
ccfDNA to prove its clinical utility and revise cancer
patient care.
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Hematopoietic stem cells (HSCs), the source of the
entire blood cells repertoire, represent the first
stem cells identified in an adult tissue, the bone

marrow, and the first stem cells used as a therapy in
humans, through bone marrow transplantation.1 Although
this therapeutic approach is well established and used to
treat a variety of hematological conditions, including
leukemia, several aspects limit its application. A lack of
matched donors poses a serious barrier, especially for

patients from ethnic minority backgrounds. Finding the
perfect match between donor and recipient, and obtaining
a large number of HSCs, represent two of the unmet
major clinical challenges.
Development in a parallel area of stem cells research,

induced pluripotent stem cells (iPS) technology, might pro-
vide new avenues to circumvent the limitations posed by
the scarce number of HSCs available for transplantation. A
decade ago the team led by Nobel prize winner Shinya



Yamanaka authored a breakthrough study describing the
generation of pluripotent stem cells from adult cells.2,3

Since then, many scientists have tried to develop
hematopoietic stem cells and blood cells from adult cells
via iPS.

Szabo et al. showed that expression of the reprogram-
ming gene and transcription factor OCT4 could induce the
generation of HSCs from adult fibroblasts.4 With an anal-
ogous approach, Pereira et al. reprogrammed mouse
fibroblasts into HSCs by introducing a set of transcription
factors, including Gata2, Gfi 1b, Fos and Etv6.5 One of the
major obstacles to the reprogramming is the epigenetic
code that sets a strong barrier between the differentiation
potential of an adult cell and a stem cell. Based on this con-
sideration, Doulatov et al. decided to attempt the repro-
gramming of human committed myeloid cells into HSCs,
identifying 13 essential transcription factors.6 Although
these studies showed that the reprogramming of a variety
of cells into HSCs is achievable, none of them were able
to achieve long-term peripheral blood reconstitution in
vivo and to establish the full repertoire of HSCs through
serial transplantations. These are hallmarks of the ability
of the cells to differentiate and self-renew and represent
the gold standards for stem cells. In a more recent study,
Riddell and colleagues reprogrammed differentiated
somatic blood cells, pro-B cells, by using a cocktail of tran-
scription factors, namely  Hlf, Lmo2, Pbx1, Prdm5, Runx1t1,
and Zfp37.7

Of course the cocktail used by Riddell and colleagues
includes potent leukemic oncogenes that limit the imme-
diate clinical use of HSCs generated by this application.
Non-integrating methods and controllable expression sys-
tems of the transcription factors are currently under inves-
tigation for the clinical translation of these products.

The first clinical trial with iPS derived cells started over
two years ago in Japan, where a patient affected by mac-
ular degeneration of the retina was injected with iPS
derived cells.8 Although the treatment proved safe and
effective, last September the trial was halted because of
mutations found in the cells prepared for a second patient,
and due to new laws regulating regenerative medicine
products in Japan.9

However the scientific community strongly believes
that the iPS technology holds better promise than embry-
onic stem cells (ESC) for clinical translation. Currently
there is no open source of human ESC (hESC) in the UK10

and hESC products are not patentable in Europe;11,12 more-
over, hESC research has been restricted due to ethical con-
sideration regarding the use of human embryos.13

Furthermore, no good manufacturing practices (GMPs)
grade hESC lines of O Rh negative blood type are avail-
able, a critical aspect in order to develop widely transfus-
able red blood cells. Novosang is a project born from a
consortium between British academic groups and blood
services planning to launch the first human clinical trial
using red blood cells produced by iPS in 2017.14

Stem cell research is a very hot topic that has led to hope
and hype, with exaggerated predictions and claims regard-
ing a potential clinical translation of these products.
Considering the steep progress made in iPS technology in
less than ten years we can optimistically expect progress
for clinically proofed induced hematopoietic stem cells
(iHSCs). Moreover, iHSCs hold the promise of becoming
potent tools for modelling diseases in vitro and for drug dis-
covery (Figure 1). These are two particularly important
aspects in the hematology field, where the lack of appro-
priate humanized models and ethical concerns over the
use of xenotransplantation and in vivo toxicity studies limit
both the understanding of the biology of the disease and
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Figure 1. Schematic representation of Red Blood Cells (RBCs) gen-
eration from induced pluripotent stem cells (iPS). Fibroblasts are
isolated from the skin of the patient and reprogrammed in vitro into
iPS. iPS can be differentiated in vitro in RBCs and be used for blood
transfusion. Patient-specific iPS can be powerful tools for disease
modelling or drug discovery processes.



Editorials

haematologica | 2016; 101(9) 1001

the screening of new drugs.
The marriage between the HSC and iPS technology

therefore represents a very promising and interesting area
of stem cell research.
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