Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

Lesley-Ann Sutton,¹ Emma Young, ¹ Panagiotis Baliakas, ¹ Anastasia Hadzidimitriou,² Theodoros Moysiadis,² Karla Plevova,³ Davide Rossi,⁴ Jana Kminkova,³ Evangelia Stalika,² Lone Bredo Pedersen,⁵ Jitka Malcikova,³ Andreas Agathangelidis,^{6,7} Zadie Davis,⁸ Larry Mansouri,¹ Lydia Scarfò,^{6,7} Myriam Boudjoghra,⁹ Alba Navarro,¹⁰ Alice F. Muggen,¹¹ Xiao-Jie Yan,¹² Florence Nguyen-Khac,⁹ Marta Larrayoz,¹³ Panagiotis Panagiotidis,¹⁴ Nicholas Chiorazzi,¹² Carsten Utoft Niemann,⁵ Chrysoula Belessi,¹⁵ Elias Campo,¹⁰ Jonathan C. Strefford,¹³ Anton W. Langerak,¹¹ David Oscier,⁸ Gianluca Gaidano,⁴ Sarka Pospisilova,³ Frederic Davi,⁹ Paolo Ghia,^{6,7} Kostas Stamatopoulos,^{1,2,16*} Richard Rosenquist,^{1*} and on behalf of ERIC, the European Research Initiative on CLL

¹Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; ²Institute of Applied Biosciences, CERTH, Thessaloniki, Greece; ³Central European Institute of Technology, Masaryk University and University Hospital Brno, Czech Republic; ⁴Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy; ⁵Department of Hematology, Rigshospitalet, Copenhagen, Denmark; ⁶Università Vita-Salute San Raffaele, Milan, Italy; ⁷Division of Experimental Oncology and Department of Onco-Hematology, IRCCS, San Raffaele Scientific Institute, Milan, Italy; ⁸Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; ⁹Hematology Department and University Pierre et Marie Curie, Hopital Pitie-Salpetriere, Paris, France; ¹⁰Hematopathology Unit and Department of Hematology, Hospital Clinic, University of Barcelona, Institute d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain; ¹¹Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands; ¹²The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, NY, USA; ¹³Cancer Sciences, Faculty of Medicine, University of Southampton, UK; ¹⁴First Department of Propaedeutic Medicine, University of Athens, Greece; ¹⁵Hematology Department, Nikea General Hospital, Piraeus, Greece; and ¹⁶Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece

*KS and RR contributed equally to this work.

©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2016.141812

Received: January 2, 2016.

Accepted: May 12, 2016.

Pre-published: May 19, 2016.

Correspondence: richard.rosenquist@igp.uu.se

Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

Sutton et al.

The supplemental material consists of the following tables and figures:

Supplemental Tables 1-9

Supplemental Figure 1

Supplemental Table 1. The two 'sub-subsets' of subset #8 were considered as a single entity within this study.

		UM IGHV4-39	
IMMUNOGENETICS	#8 (n=14)	#8 (n=29)	p-value
MUTATIONS	18 AA VH CDR3	19 AA VH CDR3	
NOTCH1 ^{mut}	3/14 (21%)	10/29 (34%)	ns
TP53 ^{mut}	1/14 (7%)	0/29 (0%)	ns
SF3B1 ^{mut}	0/14 (0%)	0/29 (0%)	ns
BIRC3 ^{mut}	0/14 (0%)	3/28 (11%)	ns
MYD88 ^{mut}	0/14 (0%)	0/29 (0%)	ns
CONCURRENT MUTATIONS			
<i>Notch1</i> ^{mut} only	3/3 (100%)	8/10 (80%)	ns
Concurrent Notch1 ^{mut}	0/3 (0%)	2/10 (20%)	ns
TP53 ^{mut} only	1/1 (100%)	NA	ns
Concurrent TP53 ^{mut}	0/1 (0%)	NA	ns
SF3B1 ^{mut} only	NA	NA	ns
Concurrent SF3B1 ^{mut}	NA	NA	ns
BIRC3 ^{mut} only	NA	1/3 (33%)	ns
Concurrent BIRC3mut	NA	2/3 (67%)	ns
GENETIC ABERRATIONS			
del(17p)	2/6 (33%)	1/17 (5.9%)	0.09
del(11q)	0/6 (0%)	3/16 (19%)	ns
trisomy 12	2/6 (33%)	11/14 (79%)	0.05
del(13q)*	0/6 (0%)	1/14 (7%)	ns
no RCAs	2/6 (33%)	1/14 (7%)	0.13

*refers to del(13q) as the sole aberration. RCAs: recurrent cytogenetic aberrations; NOTCH1^{mut}: mutation in NOTCH1; TP53^{mut}: mutation in TP53; SF3B1^{mut}: mutation in SF3B1; BIRC3^{mut}: mutation in BIRC3; MYD88^{mut}: mutation in MYD88; NA: not applicable. Concurrent mutations indicate that the mutation specified coincides with a mutation in at least one of the other four genes analyzed. UM: cases with unmutated IGHV genes; ns: not significant.

Subset	Tested prior to treatment %	Tested after treatment %
#1	81,48	19,61
#2	80,60	19,40
#3	85,00	15,00
#4	93,85	6,15
#5	70,00	30,00
#6	75,68	16,22
#7	100,00	0,00
#8	89,66	10,34
#59	64,29	35,71
#99	92,86	7,14

Supplemental Table 2. The percent of cases within each subset tested prior to or after the administration of treatment.

Supplemental Table 3. Overview of methodologies utilized by each collaborating institution.

	BIRC3	MYD88	NOTCH1	SF3B1	TP53
Czech Republic: Brno (n=63)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	Sanger sequencing, exon 34, del7544_7545 hotspot	Sanger sequencing, exons 14-16	FASAY & Sanger sequencing, exons 4-10
Denmark: Copenhagen (n=44)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	GeneScan & Sanger sequencing, exon 34, del7544_7545 hotspot	Sanger sequencing, exons 14-16	Sanger sequencing, exons 4-8
France: Paris (n=74)	Sanger sequencing, exons 6-9	Sanger sequencing & HRM analysis, exon 5	Sanger sequencing & HRM analysis, exon 34, del7544_7545 hotspot	Sanger sequencing & HRM analysis, exons 14-16	Sanger sequencing & HRM analysis, exons 4-9
Greece: Athens (n=37)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	GeneScan & Sanger sequencing, exon 34, del7544_7545 hotspot	Sanger sequencing, exons 14-16	Sanger sequencing, exons 4-8
Greece: Piraeus (n=19)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	Allele specific PCR for del7544_7545 & Sanger sequencing	Sanger sequencing, exons 14-16	FASAY & Sanger sequencing, exons 4-10
Greece: Thessaloniki (n=47)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	Allele specific PCR for del7544_7545 & Sanger sequencing	Sanger sequencing, exons 14-16	FASAY & Sanger sequencing, exons 4-10
Italy: Milan (n=11)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	GeneScan & Sanger sequencing, exon 34, del7544_7545 hotspot	Sanger sequencing, exons 14-16	Sanger sequencing, exons 4-8
Italy: Novara (n=32)	Sanger sequencing, exons 6-9	Sanger sequencing, exons 3 & 5	Sanger sequencing, exon 34	Sanger sequencing, exons 14-16	Sanger sequencing, exons 4-9
Netherlands: Rotterdam (n=63)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	GeneScan & Sanger sequencing, exon 34, del7544_7545 hotspot	Sanger sequencing, exons 14-16	Sanger sequencing, exons 4-9
Spain: Barcelona (n=10)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	Sanger sequencing, exon 34, del7544_7545 hotspot	Sanger sequencing & NGS, exons 14-16	Sanger sequencing & NGS, exons 4-9
Sweden: Uppsala (n=58)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	GeneScan & Sanger sequencing, exon 34, del7544_7545 hotspot	Sanger sequencing, exons 14-16	Sanger sequencing, exons 4-9
UK: Southampton/ Bournemouth (n=63)	Sanger sequencing & HRM analysis, exons 6-9	Sanger sequencing & HRM analysis, exons 3 & 5	Sanger sequencing & HRM analysis, exon 34, del7544_7545 hotspot	Sanger sequencing & HRM analysis, exons 14-16	SSCP & Sanger sequencing, exons 5-8
US: New York (n=44)	Sanger sequencing, exons 6-9	Sanger sequencing, exon 5	GeneScan & Sanger sequencing, exon 34, del7544_7545 hotspot	Sanger sequencing, exons 14-16	Sanger sequencing, exons 4-8

FASAY: functional analysis of separated allele in yeast; HRM: high resolution melting; NGS: next generation sequencing; SSCP: single strand conformational polymorphism.

Supplemental Table 4. P-values obtained from the pairwise comparison of gene mutations within stereotyped subsets using Fisher's exact test.

Rank	< Comparison of the second sec	2	3	4	5	6	7	8	9	10
	Subset	#99	#59	#3	#5	#6	#7	#8	#2	#4
1	#1	0,7824	0,5821	0,0099	0,0683	0,5632	0,2974	0,6990	0,0000	0,0000
2	#99		0,7112	0,1417	0,3752	1,0000	0,6221	0,7552	0,0150	0,0041
3	#59			0,0134	0,0565	0,3599	0,1931	1,0000	0,0005	0,0001
4	#3				0,6020	0,0463	0,5377	0,0116	1,0000	0,4393
5	#5					0,1935	1,0000	0,0646	0,3273	0,1372
6	#6						0,4260	0,4700	0,0006	0,0002
7	#7							0,1562	0,4423	0,2502
8	#8								0,0000	0,0000
9	#2									0,4432

Pairwise comparison to evaluate the null hypothesis that the two percentages (NOTCH1=yes/total # of cases) are equal for all possible combinations among the 10 subsets included in the study (45 comparisons in total). Due to multiple testing, Bonferroni correction was performed and every pairwise correction was checked at a level of significance, p=0.001. Color scale is based on the level of significance.

4B.

4A.

Rank		2	3	4	5	6	7	8	9	10
	Subset	#99	#59	#3	#5	#6	#7	#8	#2	#4
1	#1	0,5995	0,6182	0,0000	0,6790	0,2119	0,0583	0,1171	0,0000	0,0280
2	#99		0,4857	0,0005	0,5017	0,1727	0,0542	1,0000	0,0001	1,0000
3	#59			0,0210	1,0000	1,0000	0,3644	0,0836	0,0054	0,0336
4	#3				0,0039	0,0037	0,2943	0,0000	1,0000	0,0000
5	#5					0,7037	0,3035	0,1317	0,0003	0,0571
6	#6						0,3742	0,0266	0,0001	0,0021
7	#7							0,0084	0,2352	0,0019
8	#8								0,0000	1,0000
9	#2									0,0000

Pairwise comparison to evaluate the null hypothesis that the two percentages (SF3B1=yes/total # of cases) are equal for all possible combinations among the 10 subsets included in the study (45 comparisons in total). Due to multiple testing, Bonferroni correction was performed and every pairwise correction was checked at a level of significance, p=0.001. Color scale is based on the level of significance.

1	r	
4	L	•

Rank		2	3	4	5	6	7	8	9	10
	Subset	#99	#59	#3	#5	#6	#7	#8	#2	#4
1	#1	0,0934	0,1356	0,5343	0,0468	0,0696	1,0000	0,0298	0,0000	0,0119
2	#99		0,0191	0,0517	0,0031	0,0051 0,3642		0,0019	0,0000	0,0012
3	#59			0,5017	1,0000	1,0000	0,3571	1,0000	1,0000	1,0000
4	#3				0,4898	0,6131	1,0000	0,5496	0,1495	0,5926
5	#5					0,5342	0,2857	1,0000	1,0000	1,0000
6	#6						0,4591	1,0000	0,3262	1,0000
7	#7							0,3447	0,2295	0,3883
8	#8								1,0000	1,0000
9	#2									0,4141

Pairwise comparison to evaluate the null hypothesis that the two percentages (TP53=yes/total # of cases) are equal for all possible combinations among the 10 subsets included in the study (45 comparisons in total). Due to multiple testing, Bonferroni correction was performed and every pairwise correction was checked at a level of significance, p=0.001. Color scale is based on the level of significance.

Subset	No. of cases	MYD88	NOTCH1	TP53	SF3B1	BIRC3		
1	137	135 (99%)	137 (100%)	135 (99%)	137 (100%)	131 (96%)		
2	162 159 (98%)		162 (100%)	150 (93%)	161 (99%)	153 (94%)		
3	26	25 (96%)	26 (100%)	25 (96%)	26 (100%)	25 (96%)		
4	78	78 (100%)	78 (100%)	78 (100%)	78 (100%)	77 (99%)		
5	25	24 (96%)	24 (96%)	25 (100%)	25 (100%)	21 (84%)		
6	46	45 (98%)	45 (98%)	45 (98%)	46 (100%)	45 (98%)		
7	12	12 (100%)	12 (100%)	10 (83%)	12 (100%)	12 (100%)		
8	43	43 (100%)	43 (100%)	43 (100%)	43 (100%)	42 (98%)		
59	18	18 (100%)	18 (100%)	18 (100%)	18 (100%)	18 (100%)		
99	18	18 (100%)	18 (100%)	18 (100%)	18 (100%)	17 (94%)		
	565	557 (99%)	563 (99%)	547 (97%)	564 (99%)	541 (96%)		

Supplemental Table 5. Overview of mutational analysis per subset.

Supplemental Table 6. Co-occurrence of gene mutations within stereotyped CLL subsets.

	#1 (n=137)	#99 (n=18)	#59 (n=18)	#3 (n=26)	#5 (n=25)	#6 (n=46)	#7 (n=12)	#8 (n=43)	#2 (n=162)	#4 (n=78)	n=289
IMMUNOGENETICS	U	VI Clan I genes			UM IGHV1-69			UM IGHV4-39	M & UM IGHV3-21	M IGHV4-34	Heterogeneous CLL
MUTATIONS											
NOTCH1 ^{mut}	37/137 (27%)	4/18 (22%)	6/18 (33%)	1/26 (4%) 2/24 (8%)		10/45 (22%)	1/12 (8%)	13/43 (30%)	7/162 (4%)	1/78 (1%)	10/280 (3.6%)
TP53 ^{mut}	21/135 (16%)	6/18 (33%)	0/18 (0%)	2/25 (8%)	0/25 (0%)	2/45 (4%)	1/10 (10%)	1/43 (2%)	3/150 (2%)	3/78 (4%)	11/237 (4.6%)
SF3B1 ^{mut}	9/137 (7%)	0/18 (0%)	2/18 (11%)	12/26 (46%)	12/26 (46%) 2/25 (8%) 6/46 (13%) 3/12 (25)		3/12 (25%)	0/43 (0%)	72/161 (45%)	0/78 (0%)	10/280 (3.6%)
BIRC3 ^{mut}	2/131 (2%)	0/17 (0%)	0/18 (0%)	0/25 (0%)	1/21 (5%)	0/45 (0%)	1/12 (8%)	/12 (8%) 3/42 (7%) 0/153 (0%)		0/77 (0%)	0/189 (0%)
MYD88 ^{mut}	0/135 (0%)	0/18 (0%)	0/18 (0%)	0/25 (0%)	0/24 (0%)	0/45 (0%)	0/12 (0%)	0/42 (0%)	0/159 (0%)	0/78 (0%)	5/206 (2.4%)†
CONCURRENT MUTATIONS											
<i>Notch1</i> ^{mut} only	31/37 (84%)	2/4 (50%)	5/6 (83%)	0/1 (0%)	2/2 (100%)	8/10 (80%)	0/1 (0%)	11/13 (85%)	5/7 (71%)	1/1 (100%)	10/10 (100%)
Concurrent Notch1 ^{mut}	6/37 (16%)	2/4 (50%)	1/6 (17%)	1/1 (100%)	0/2 (0%)	2/10 (20%)	1/1 (100%)	2/13 (15%)	2/7 (29%)	0/1 (0%)	0/10 (0%)
TP53 ^{mut} only	11/21 (52%)	4/6 (67%)	NA	0/2 (0%)	NA	1/2 (50%)	0/1 (0%)	1/1 (100%)	1/3 (33%)	3/3 (100%)	9/11 (82%)
Concurrent TP53 ^{mut}	10/21 (48%)	2/6 (33%)	NA	2/2 (100%)	NA	1/2 (50%)	1/1 (100%)	0/1 (0%)	2/3 (67%)	0/3 (0%)	2/11 (18%)
SF3B1 ^{mut} only	4/9 (44%)	NA	1/2 (50%)	9/12 (75%)	2/2 (100%)	5/6 (83%)	2/3 (67%)	NA	68/72 (94%)	NA	9/10 (90%)
Concurrent SF3B1 ^{mut}	5/9 (56%)	NA	1/2 (50%)	3/12 (25%)	0/2 (0%)	1/6 (17%)	1/3 (18%)	NA	4/72 (6%)	NA	1/10 (10%)
BIRC3 ^{mut} only	0/2 (0%)	NA	NA	NA	1/1 (100%)	NA	0/1 (0%)	1/3 (33%)	NA	NA	NA
Concurrent BIRC3 ^{mut}	2/2 (100%)	NA	NA	NA	0/1 (0%)	NA	1/1 (100%)	2/3 (67%)	NA	NA	NA

[†]one MYD88-mutant case also carried a mutation within TP53. NOTCH1^{mut}: mutation in NOTCH1; TP53^{mut}: mutation in TP53; SF3B1^{mut}: mutation in SF3B1; BIRC3^{mut}: mutation in BIRC3; MYD88^{mut}: mutation in MYD88; NA: not applicable. Concurrent mutations indicate that the mutation specified coincides with a mutation in at least one of the other genes analyzed. UM: cases with unmutated IGHV genes; M: cases with mutated IGHV genes. 'The 'Heterogeneous CLL' cases described in the last column of this table refers to newly diagnosed CLL patients from a population-based cohort called SCALE (Scandinavian Lymphoma Etiology). Within this study, 330 CLL cases had immunogenetic and mutation data available, resulting in 41 cases (12%) carrying stereotyped BcR IGs and therefore being assigned to a major subset. For comparison purposes, the frequency of recurrent mutations and cytogenetic aberrations in the remaining cases carrying heterogeneous BcR IGs (n=289) are provided.

Case	Subset	Genetic lesions within BIRC3	Genetic aberration*	Concurrent mutations
1	#1	c. 1299_1302delAAGA; p. R434fs	del(11q), del(13q)	<i>TP53</i> : c.T479C:p.M160T
2	#1	c.1282_1286 del AGGGA; p.R428fs	trisomy 12	<i>NOTCH1:</i> c.7544_7545 delCT
3	#5	c. 1708_1710delATT; p.I570del	del(11q), trisomy 12, del(13q)	No
4	#7	c.1536_1537delCT; p.N512_513fs	ND	<i>NOTCH1:</i> c.7544_7545 delCT
5	# 8 ⁺	c.1285dupG; p.E429fs	trisomy 12	<i>NOTCH1:</i> c.7544_7545 delCT
6	# 8 ⁺	c.1663_1666; p.R555fs	trisomy 12	<i>NOTCH1:</i> c.7544_7545 delCT
7	# 8 ⁺	c.1648A>G; p.R550G	del(11q), trisomy 12	No

Supplemental Table 7. Cases carrying genetic aberrations within *BIRC3*.

*ND: not determined; *cytogenetic aberrations detected by FISH; ⁺Subset #8 cases with 19 amino acid VH CDR3.*

Supplemental Table 8. SF3B1 mutations detected in the present study.
--

Exon	Codon	AA change	#2 n=75	%*	#3 n=12	%*	#1 n=9	%*	#5 n=2	%*	#6 n=7	%*	#7 n=3	%*	#59 n=2	%*	
14	622	p.E622D	2	2.7	1	8.3	0	-	0	-	0	-	0	-	0	-	3
14	622	p.E622V	1	1.3	0	-	0	-	0	-	0	-	0	-	0	-	1
14	623	p.Y623C	3	4	2	16.7	0	-	0	-	1	14	0	-	0	-	6
14	625	p.R625H	1	1.3	1	8.3	0	-	0	-	0	-	1	33	0	-	3
14	625	p.R625C	1	1.3	1	8.3	0	-	0	-	0	-	0	-	0	-	2
14	626	p.N626I	1	1.3	0	-	0	-	0	-	0	-	0	-	0	-	1
14	626	p.N626S	0	-	0	-	1	11	0	-	0	-	0	-	0	-	1
14	630	p.R630S	0	-	0	-	1	11	0	-	0	-	0	-	0	-	1
14	658	p.W658C	1	1.3	0	-	0	-	0	-	0	-	0	-	0	-	1
14	662	p.H662D	2	2.7	0	-	0	-	1	50	0	-	0	-	0	-	3
14	662	p.H662Q	1	1.3	1	8.3	0	-	0	-	1	14	0	-	0	-	3
14	662	p.H662Y	0	-	1	8.3	0	-	0	-	0	-	0	-	0	-	1
14	663	p.T663I	0	-	1	8.3	1	11	0	-	2	29	0	-	0	-	4
14	666	p.K666E	0	-	0	-	0	-	1	50	1	14	0	-	1	50	3
15	700	p.K700E	43	57	4	33	2	22	0	-	0	-	1	33	0	-	50
15	704	p.1704F	1	1.3	0	-	1	11	0	-	1	14	1	33	0	-	4
15	704	p.1704N	0	-	0	-	1	11	0	-	0	-	0	-	1	50	2
15	740	p.G740E	1	1.3	0	-	0	-	0	-	0	-	0	-	0	-	1
16	742	p.G742D	15	20	0	-	2	22	0	-	1	14	0	-	0	-	18
16	745	p.A745P	1	1.3	0	-	0	-	0	-	0	-	0	-	0	-	1
16	784	p.M784_K 785delins	1	1.3	0	-	0	-	0	-	0	-	0	-	0	-	1
			75	100	12	100	9	100	2	100	7	100	3	100	2	100	110

*refers to the frequency of a particular SF3B1 mutation within each major subset. AA: amino acid.

Subset	TP53 ^{mut} only	del(17p) only	Both TP53 ^{mut} and del(17p)	Cases analyzed for only one type of aberration and positive	Cases with aberrant TP53
#1	8	2	10	2	22/100 (22%)
#59	0	0	0	0	0/12 (0%)
#99	2	0	2	2	6/15 (40%)
#3	1	2	0	1	4/19 (21%)
#5	0	0	0	0	0/20 (0%)
#6	1	1	1	0	3/33 (9%)
#7	0	1	1	1	3/8 (37.5%)
#8	0	2	1	0	3/23 (13%)
#2	3	0	0	0	3/128 (2%)
#4	3	0	0	0	3/59 (5%)

Supplemental Table 9. TP53 abnormalities detected in the present study.

Cases which were analyzed for only one type of *TP53* lesion i.e. mutation or deletion, could be included in the counts provided in the table above if they demonstrated positivity (since a single *TP53* defect is sufficient to render the case as aberrant with respect to *TP53*). In the same vein, cases analyzed for only one type of *TP53* lesion and negative (wild-type) for that specific analysis were excluded from the counts since the case could still prove to have aberrant TP53. **Supplemental Figure 1. Prognostic implications of** *SF3B1* **mutations within subset #2.** del(11q) is associated with shorter TTFT within subset #2 (A). Impact of *SF3B1* mutations on TTFT for all subset #2 cases (all stages) included in the study (B). Effect of *SF3B1* mutations on OS (C) and (TTFT) in subset #2 patients harboring del(11q) (D). Impact of the p.K700E mutation versus all other *SF3B1* mutations on OS (A) and TTFT (B) in cases assigned to subset #2.

