An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study

Jonathan Bond, ${ }^{1 *}$ Tony Marchand, ${ }^{2 *}$ Aurore Touzart, ${ }^{1}$ Agata Cieslak, ${ }^{1}$ Amélie Trinquand, ${ }^{1}$ Laurent Sutton, ${ }^{3}$ Isabelle Rad-ford-Weiss, ${ }^{4}$ Ludovic Lhermitte, ${ }^{1}$ Salvatore Spicuglia, ${ }^{5}$ Hervé Dombret, ${ }^{6}$ Elizabeth Macintyre, ${ }^{1}$ Norbert Ifrah, ${ }^{7}$ JeanFrançois Hamel, ${ }^{7 \S}$ and Vahid Asnafi ${ }^{18}$
${ }^{1}$ Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades; ${ }^{2}$ Department of Hematology, University Hospital and INSERM UMR 917, Rennes 1 University; ${ }^{3}$ Department of Hematology, Centre Hospitalier Argenteuil; ${ }^{4}$ Université Paris 5 Descartes, Department of Cytogenetics, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades; ${ }^{5}$ Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Aix-Marseille University UMR-S 1090; ${ }^{6}$ Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis; and ${ }^{7}$ PRES LUNAM, CHU Angers Service des Maladies du Sang et INSERM U 892, Angers, France
*These authors contributed equally to this work. ${ }^{\text {s }}$ Co-corresponding authors
©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.141218
Received: December 18, 2015.
Accepted: February 26, 2016.
Pre-published: March 4, 2016.
Correspondence: vahid.asnafi@nck.aphp.fr

Supplementary Methods

Quantification of HOXA9 by qRT-PCR: RNA was extracted using an RNeasy MicroKit (Qiagen) and retrotranscribed using Superscript III reverse transcriptase (Life Technologies). The change-in-threshold ($-\Delta \Delta \mathrm{CT}$) method was used to quantify transcript levels following PCR amplification. HOXA9 levels were calculated relative to the reference gene $A B L$, and HOXA9/ $A B L$ was expressed as a HOXA ratio, whereby a ratio of 1 indicated equivalent expression of the two genes. Primer and Taqman probe sequences are shown in Supplementary Table S2.

Fluorescence in situ hybridization (FISH): The following Break Apart probes were used: TCRB: 5': RP111084E4 and RP11-615P18 (rhodamine-dUTP). 3': RP11-114L10 and CTD-2552B9 (FITC-dUTP). HOXA: 5': RP11-1036C18 (rhodamine-dUTP). 3': RP11-1132K14 (FITC-dUTP). MLL: 5': RP11-59N1 and RP11-112I9 (rhodamine-dUTP). 3': RP11-278O8 and RP11-30E1 (FITC-dUTP). MLLT10: RP11-469D16 (rhodaminedUTP) and RP11-140P12 (FITC-dUTP).

RNA-sequencing: Poly(A)-enriched RNA-sequencing was performed using strand-specific and paired-end sequencing on Life Technologies SOLiD HQ5500XL. Poly(A)+ RNA was enriched from $3 \mu \mathrm{~g}$ of total RNA using the MACS mRNA isolation kit (Miltenyi Biotec). Quantity and quality of mRNA was verified using RNA Pico chips on a 2100 Bioanalyzer (Agilent) and 200 ng of mRNA was used for mRNA-seq library preparation according to SOLiD Poly(A) RNA-Seq Kit (Life Technologies). The resulting library was sequenced on an AB SOLiD 5500xl using paired-end $75-35 \mathrm{bp}$ sequencing chemistry following the manufacturer's instructions. High quality reads were matched to individual samples based on the barcode tag and using default parameters. Basecalls were performed using 5500 Series Genetic Analyzers Instrument Control Software v1.2 (Life Technologies). Mapping, coverage and fusion discovery were performed using default parameters of Lifescope ${ }^{\mathrm{TM}}$ (Life Technologies) after mapping of sequence reads to version hg 19 of the human genome.

RT-PCR testing for leukemic fusion transcripts: Primer sequences are shown in Supplementary Table S3.

Taqman Low-density array (TLDA): Custom 48-well TLDA cards containing primers and probes for amplification of HOX genes were designed in collaboration with and ordered from Life Technologies. PCR was performed according to the manufacturer's instructions following retrotranscription of 200ng of RNA extracted from leukemic blasts at diagnosis. Expression of $H O X$ genes was normalized to the GAPDH reference gene.

Supplementary Table S1: Characteristics of the HOXA study patients and the remainder of the T-ALL cohort in the GRAALL-2003 and GRAALL-2005 studies.

	Non-included cohort	HOXA cohort	P-value
Total, no.	129	209	
Clinical subsets analyzed Median age, y [Q1-Q3]	$33 \cdot 55$ (25•32-45•10)	$30 \cdot 58$ (23.78-40.47)	0•1754
WBC > $100 \times 10^{9} / 1$, no. (\%)	20 (15.50\%)	54 (25.84\%)	$0 \cdot 0256$
CNS involvement, no. (\%)	8 (6.20\%)	27 (13.17\%)	$0 \cdot 0429$
CR, no. (\%)	121 (93.80\%)	196 (93.78\%)	0.9945
CS, no. (\%)	94 (73.44\%)	113 (54.07\%)	0.0004
CHS, no. (\%)	75 (60.48\%)	112 (54.37\%)	$0 \cdot 2776$
SCT, no. (\%)	32 (26.45\%)	77 (39.49\%)	$0 \cdot 0178$
Relapse rate, no. (\%)	36 (30.00\%)	60 (30.61\%)	0.9086
DFS at 5 years [$95 \% \mathrm{Cl}$]	$\begin{gathered} 49 \cdot 73 \% \\ {[40 \cdot 08 \%-60 \cdot 29 \%]} \end{gathered}$	$\begin{gathered} 46 \cdot 65 \% \\ {[39 \cdot 2 \%-54 \cdot 76 \%]} \end{gathered}$	$0 \cdot 4018$
OS at 5 years [$95 \% \mathrm{CI}$]	$\begin{gathered} 47.42 \% \\ {[38.07-57.79 \%]} \end{gathered}$	$\begin{gathered} 40 \cdot 12 \% \\ {[33 \cdot 04-48 \cdot 10 \%]} \end{gathered}$	0•1652

no: number; Q: Quartile WBC: white blood cell count; CNS: central nervous system; CR: complete remission; Cs: cortico-sensitive; CHs: chemo-sensitive; SCT: stem-cell transplantation; DFS: DiseaseFree Survival; OS: Overall Survival.

Supplementary Table S2: Sequences of primers and probes used for quantification of HOXA9.

Gene	Forward Primer	Reverse Primer	Taqman Probe
HOXA9	GAAAACAATGCTGAGAATGAGAGC	CGCGCATGAAGCCAGTT	ACAAGCCCCCCATCGATCCCA
$A B L$	TGGAGATAACACTCTAAGCATAACTAAAGGT	GATGTAGTTGCTTGGGACCCA	CCATTTTTGGTTTGGGCTTCACACCATT

Supplementary Table S3: Sequences of primers used for PCR testing for fusion transcripts associated with HOXA positivity.

Fusion Transcript	Forward Primer	Reverse Primer
PICALM-MLLT10*	GCAATCTTGGCATCGGAAAT	GCGCTTCAATGATCCAGATATAGAG and CCGTTTGCTCTTTTTCAGCTT
SET-NUP214	TTCCCGATATGGATGATG	CTTTGGGCAAGGATTTG
NUP98-RAP1GDS1	CTTACTACATTTGGAAGCAGC	CAGACAATCCAAGCATCCTTC
$X P O 1-M L L T 10 ~$	GTTTCCCAGCATTCCTTGC	CAGTCCGGCAAACTGAGCG
$D D X 3 X-M L L T 10 ~$	TGCTGGCCTAGACCTGAACT	AGAGCGCTCCTACTTGTTGC
NAP1L1-MLLT10	CCCCTCCTGAAGTTCCTGAGAGTGGA	GCACCAGTGGCTGCTTTGCTTTCTC

*A multiplex PCR reaction was used in the detection of PICALM-MLLT10, therefore the sequences of two separate reverse primers are shown.

＊ $2 \mathbf{S c o s} 0$	＊100	（IE）$\dagger \mathrm{t} / \mathrm{L} \mathcal{L}$	（8£） $8 / \varepsilon$	（0）$L / 0$	（89）6I／EI	（00I）I／I	（L9）ε / \sim	（E9） $8 / \mathrm{S}$	（IL）L／S	（8t） $\mathcal{E} / 91$	（tz）18／6I	ヶ0I＜वy\％
てL．0	tco 0	（££） $607 / 89$	（IE）9I／s	（Lz） $\mathrm{IL} / \mathrm{\varepsilon}$	（88） $6 \mathrm{Z} / \mathrm{II}$	（0）z／0	（ $£$ ¢ $9 / 乙$	（85） $\mathrm{ZI/L}$	（zて） $6 / \tau$	（¢¢）¢¢／6I	（zq）tsi／6t	чюгәа
†0	$8 \mathrm{t}^{\circ} 0$	（0¢）96／／6s	（İ）$\varepsilon 1 / t$	（6）LI／L	（6z） $82 / 8$	（0） $2 / 0$	（LI）9／L	（ $£ \varepsilon$ ） II / t	（8£） $8 / \varepsilon$	（9z） $\mathrm{I} /$／¢	（z¢）StI／9t	วsdepy
1	¢ $L^{\circ} 0$	（t6）60z／961	（18） $91 / \mathcal{L}$	（00I）LI／II	（L6）6z／8z	（001） z	（00I）9／9	（001） $\mathrm{z} / \sim \mathrm{L}$	（68） $6 / 8$	（ $¢ 6) \mathrm{S¢} / \mathrm{IS}$	（t6）tSI／StI	นо！ฺs！
＊＊＊10000＞	＊2700	（tS）902／ZII	（Lt）SI／L	（I6）It／0I	（Iz） $62 / 9$	（0S） $\mathrm{z/I}$	（ \mathcal{E} ） $9 / \tau$	（č） $\mathrm{\tau} / \mathrm{L}$	（0）6／0	（ t ） $\mathrm{tc/2}$（	（6S）ZSI／06	
＊＊LI000	＊＊t00\％	（tS） $60 \mathrm{Z} / \mathrm{ZII}$	（OS）91／8	（ $¢$ L） $\mathrm{L} / \mathrm{l} / 8$	（LI） $6 \mathrm{z} / \mathrm{s}$	（0S） $\mathrm{z/I}$	（LI）9／I	（LI） zI / L	（II） $6 / \mathrm{I}$	（98）¢¢／0	（09）tSLIZ6	кıи！！！sursompo
I	\＆゙0	（E）sozılı	（6I） $91 / \varepsilon$	（8I） IL / τ	（81） $8 \mathrm{z/5}$	（0） $2 / 0$	（0）9／0	（Lz） $\mathrm{I} / \mathrm{\varepsilon}$	（zて） $6 / \tau$	（6I）tS／0I	（II）ISI／LI	чшәшәлоли！SND
$9 \mathrm{I}^{\circ} 0$	2s000	（92）60z／ss	（6I）91／	（0）It／0	（IZ）6z／9	（0） $\mathrm{z/0}$	（LI）9／I	（¢て） $\mathrm{IL} / \mathcal{\varepsilon}$	（ 2 ） $6 / \tau$	（91）¢¢／6	（0¢）tst／9t	T／601 $\times 00 \mathrm{I}<$ วgM
80	$\varepsilon \cdot 0$	$\llcorner\varepsilon$	9＇LI	［95	$\varepsilon \varepsilon$	668	¢ 21	t＇9t	6.08	$\varepsilon \varepsilon$	L＇LE	ие！ррш Јям
＜＇0	2で0	－ε	L＇I	$8{ }^{\text {I }}$	$\tau^{\ell} \tau$	I	I	τ	8	6 I	8 \％	s／W ọper xas
$\varepsilon L^{\circ} 0$	I	（0t）60z／\＆8	（tt）91／L	（9t）It／s	（88） $6 \mathrm{Z} / \mathrm{II}$	（0s） $\mathrm{z/L}$	（LI）9／I	（てt） $\mathrm{\tau l} / \mathrm{s}$	（tt）6／t	（0t）¢¢／てz	（0t）tSt／I9	¢¢くəるจ
89°	$8 t^{\circ} 0$	¢ $0 ¢$	£	$\varsigma \varepsilon$	て＇0¢	1－8¢	¢．92	¢「と	て＇0¢	$6{ }^{\text {¹E }}$	to 0	นе！̣рәш әธิ้ pažimup sıasqns punup
＊＊900\％	It゚0	（ $¢$ ）t6I／t8	（8£）91／9	（II）6／I	（L9）LZ／8I	（001） $\mathrm{z/}$	（L9）9／t	（t9）II／L	（£9） $8 / \mathrm{S}$	（6t）IS／Sz	（It） $\mathfrak{E t I} / 6 \mathrm{~S}$	
＊＊100\％	68°	（0L）60z／LtI	（18） $91 / \mathcal{L} \mathrm{I}$	（00t） $\mathrm{L} / \mathrm{LIL}$	（st） $6 \mathrm{~L} / \mathcal{L}$	（001） rl	（ ε ¢ $9 / \tau$	（2t） $\mathrm{zl/s}$	（tt）6／t	（¢9）¢¢／9E	（zL）tSL／LII	popenuLMXGA／IHOLON
1	18.0	（عI）L6I／9z	（9）9t／I	（8I） LI / L	（s） $\mathrm{Lz/t}$	（0） $\mathrm{I} / 0$	（LI）9／I	（8I） LI / L	（عI）6／I	（II）$£ 5 / 9$	（tI）ttl／oz	t
＊＊600\％	＊＊＊10000＞	（t¢）L6I／90I	（88）91／9	（¢¢） $1 / 1 / 9$	（II）\llcorner Lİ	（0）I／0	（ $£$ ¢ $9 / \tau$	（6）IL／I	（0） $6 / 0$	（8z）ε S／SI	（£9）ttl／L6	
$* 100$	＊＊＊10000＞	（£¢）L6I／¢9	（9S） $9 \mathrm{I} / 6$	（Lz） $\mathrm{L} / \mathrm{\varepsilon}$	（ + L）Lz／0z	（00I）I／L	（0¢） $9 / \varepsilon$	（ $¢ L)$ IL／8	（68） $6 / 8$	（09）$\varepsilon \varsigma / \sim \varepsilon$	（ $\varepsilon \tau \mathrm{ttI} /$／$\varepsilon$	$\tau-\mathrm{I}$
												TIT ${ }^{\text {a }}$
${ }^{\circ} \mathrm{O}$	＊＊＊＊000\％	（Iz）L8I／0t	（£¢）¢ı／8	（II） $6 / \mathrm{I}$	（tt）sz／II	（00t）I／L	（0）s／0	（ \mathcal{L} ）IL／8	（č） $8 / \tau$	（It）6t／0	（st） 8 ¢LIoz	
I	9t＇0	（ع）$+8 \mathrm{~L} /$ ¢	（ \mathcal{L} ）$\varsigma 1 / \tau$	（0Z）01／	（6I） $\mathrm{Lz/S}$	（0）I／0	（ $\varepsilon \varepsilon$ ） $9 / \tau$	（8I） IL / L	（II）6／I	（91）IS／8	（II）EEI／SI	
＊LI000	＊＊＊10000＞	（09）$+8 \mathrm{~L} / 0 \mathrm{IL}$	（L乙）¢ l / t	（0L）00／LL	（II）\angle L／E	（0）I／0	（0）9／0	（81） IL / L	（II）6／I	（Lて）IS／tI	（zL） $\mathcal{E \varepsilon L} / 96$	จธีองบ！¢¢
＊＊200\％	＊＊＊ $10000^{\circ}>$	（8z） t81／IS	（09）¢ ¢ $/ 6$	（0I）0t／L	（0L）Lz／6I	（001）I／L	（L9）9／t	（t9） $\mathrm{I} / \mathrm{L} / \mathrm{L}$	（8L） $6 / \mathrm{L}$	（LS）IS／6て	（LI） $\mathfrak{\varepsilon \varepsilon L / \sim \tau}$	
		602	（6Z）91	（02）II	（¢ऽ）¢¢／6z	（t）τ	（II） 9	（zz）乙I	（LI） 6	（000）¢¢	（tL）tst	（\％）u
		vN	JN	VXOH		ISOSIdVY－86dMN	TIN	0LLTTU	tIZdnn－Las		VN	
		VN	имочуип	ร！．	suentily						VN	
		${ }^{\text {P17OL }}$					XOH				${ }_{\text {son }}{ }^{2} \mathrm{VXOH}$	

Supplementary Table S5: Multivariate models of the interaction of HOXA with other covariates.

OS	Haz. Ratio	[95\% Conf.	Interval]	$\mathrm{P}>\mathrm{z}$		
		4.647				0.022
WBC >100	2.288	1.127				
SCT	0.701	0.350	1.406	0.317		
ETP	1.099	0.430	2.808	0.844		
HOXA pos	1.300	0.682	2.477	0.425		
risk classifier high	2.469	1.334	4.571	0.004		
EGIL 3-4 vs 1-2	0.721	0.353	1.475	0.371		
cs pos	1.092	0.576	2.071	0.787		
chs pos	0.835	0.398	1.751	0.632		

EFS	Haz. Ratio	[95\% Conf.	Interval]	$\mathrm{P}>\mathrm{z}$
WBC >100	1.388	0.802	2.401	0.241
SCT	0.807	0.433	1.501	0.497
ETP	1.452	0.629	3.351	0.382
HOXA pos	1.806	0.884	3.687	0.105
risk classifier high	2.529	1.489	4.296	0.001
EGIL 3-4 vs 1-2	1.281	0.595	2.758	0.528
cs pos	0.898	0.501	1.609	0.716
chs pos \|HOXA neg	1.111	0.541	2.283	0.774
chs pos \| HOXA pos	0.277	0.071	1.074	0.063

DFS	Haz. Ratio	[95\% Conf.	Interval]	$\mathrm{P}>\mathrm{z}$
WBC >100	1.396	0.757	2.575	0.285
SCT	1.056	0.530	2.107	0.876
ETP	1.692	0.663	4.319	0.271
HOXA pos	1.758	0.784	3.943	0.171
risk classifier high	2.922	1.643	5.195	0.000
EGIL 3-4 vs 1-2	1.504	0.647	3.493	0.343
cs pos	0.755	0.408	1.397	0.371
chs pos \|HOXA neg	1.500	0.625	3.596	0.364
chs pos HOXA pos	0.362	0.091	1.441	0.149

Multivariate Cox models were performed for studying OS, EFS and DFS. Multivariate Fine \& Gray models adapted for competing risk events were performed for studying CIR.

The effect of HOXA was adjusted on WCC, SCT, EGIL classification, Risk classifier, ETP status,
Corticosensitivity (CS) and Chemosensitivity (CHS).
Interactions between Chemosensitivity and HOXA status have been highlighted for EFS ($\mathrm{p}=0.053$), CIR ($\mathrm{p}=$ $0.039)$ and DFS ($\mathrm{p}=0.071$).

Conditional effects of CHS depending on HOXA status are presented when the interaction is highlighted
(chs pos | HOXA neg:
effect of chemosensitivity when HOXA is negative)
(chs pos | HOXA pos:
effect of chemosensitivity when HOXA is positive).

OS = Overall Survival.
EFS = Event-Free Survival.
DFS = Disease-Free Survival.
WBC $=$ White blood cell count.
SCT = Stem Cell Transplant.
ETP = Early Thymic Precursor-like phenotype.
EGIL = European Group for the immunological classification of leukaemia.

Relapse	SHR	[95\% Conf.	Interval]	$\mathrm{P}>\mathrm{z}$
WBC >100	1.322	0.691	2.526	0.399
SCT	0.556	0.270	1.145	0.111
ETP	2.812	0.852	9.280	0.090
HOXA pos	2.049	0.836	5.020	0.117
risk classifier high	3.664	1.987	6.757	0.000
EGIL 3-4 vs 1-2	2.662	0.807	8.780	0.108
cs pos	0.904	0.481	1.701	0.755
chs pos \|HOXA neg	1.461	0.619	3.446	0.387
chs pos HOXA pos	0.119	0.013	1.085	0.059

Supplementary Table S6: Summary of the genetics of HOXA ${ }^{\text {Neg }}$ and HOXA ${ }^{\text {Pos }}$ T-ALL.

	Total	HOXA $^{\text {Neg }}$	HOXA $^{\text {Pos }}$
All patients	209	154	55
SIL-TAL1	18	$18(154)$	$0(55)$
TLX1	44	$42(154)$	$2(55)$
TLX3	25	$23(154)$	$2(55)$
MLL	6	$0(80)$	$6(54)$
PICALM-MLLT10	8	$0(154)$	$8(55)$
TCR $\beta-H O X A$	11	$0(50)$	$9(52)$
SET-NUP214	9	71	16
No abnormality detected	87		

Diagnostic T-ALL samples were tested for the genetic abnormalities as shown. Figures in brackets indicate the number of patients tested in each case.

HOXA5 was measured by qRT-PCR and normalized to the expression of ABL1. Comparison with HOXA9 levels (HOXA ratio) is shown. Each point represents HOXA5 and HOXA9 levels for an individual patient. The indicated R value corresponds to the calculated Spearman's correlation coefficient.

Supplementary Figure S 2 (Corresponds to Figure 3: HOXA ${ }^{\text {Pos }}$ and HOXA ${ }^{\mathrm{Neg}}$ adult T-ALL patients have similar survival outcomes)

(A) 5 year DFS was estimated at $50.0 \% ~\left(95 \% \mathrm{CI}: 33 \cdot 4 \%-64.5 \%\right.$) in HOXA ${ }^{\text {Pos }}$ patients and $51 \cdot 1 \%$ ($95 \% \mathrm{CI}$: $41.5 \%-59.9 \%$) in HOXA ${ }^{\text {Neg }}$ patients. Survival analysis revealed no differences in (B) OS, (C) EFS or (D) DFS when patients were separated by quartile of HOXA ratio.

Supplementary Figure S3. Survival analysis of HOXA ${ }^{\text {Pos }}$ oncogenetic subgroups.

Outcome analyses were performed according the underlying oncogenetic abnormality. Survival graphs for (A) OS, (B) EFS and (C) DFS are shown. There was an observed trend towards poorer prognosis in the MLLT10 subgroup, but limited patient numbers ($\mathrm{n}=12$) preclude definitive conclusions. 5 year OS for MLLT10 patients was estimated at 30% (95% CI: $7 \cdot 11 \%-57.79 \%$). The corresponding figure for EFS was 23.8% (95% CI: 4.7% 50.9%), and for DFS 23.8% (95% CI: $4.7 \%-50.9 \%$).

GRAALL-2003 GRAALL-2005 T-ALL

