Haematologica 1996; 81:127-131

INFLUENCE OF TWO DIFFERENT ESCHERICHIA COLI ASPARAGINASE PREPARATIONS ON FIBRINOLYTIC PROTEINS IN CHILDHOOD ALL

Ulrike Nowak-Göttl, Gisela Werber, Detlef Ziemann, Elvira Ahlke, Joachim Boos

Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany

ABSTRACT

Background. Alterations in hemostasis have frequently been observed in patients with leukemia, and thrombotic events are well documented in patients receiving L-asparaginase (ASP) as a single agent or in combination with vincristine, prednisone (sometimes complemented by an anthracycline). The present study was designed to evaluate prospectively fibrinolytic parameters in leukemic children receiving different *E. coli* ASP preparations (Kyowa ASP, n=20; Bayer ASP, n=20), and to relate changes in the fibrinolytic system to serum ASP activity.

Materials and Methods. Blood samples for coagulation studies were obtained together with serum samples for pharmacokinetic monitoring in the same venipuncture (before the first and 6th-7th doses of ASP).

Results. Patients receiving Kyowa ASP showed significantly (0.0001) enhanced ASP-activity compared to children treated with the Bayer preparation. Significantly decreased values of fibrinogen (p<0.001), plasminogen (p<0.0002) and α 2-antiplasmin (p<0.0003) were found in the Kyowa group, along with significantly enhanced thrombin generation (F1+2; p<0.001), t-PA (p<0.01) and D-dimer levels (p<0.05). In contrast, PAI 1 activity demonstrated no significant difference in the two *E. coli* ASP administered.

Conclusions. Changes in fibrinogen, plasminogen, α 2-antiplasmin and D-dimer are clearly associated with ASP activity during the course of ASP administration in children with ALL.

Key words: asparaginase activity, childhood ALL, plasminogen, @2-antiplasmin, t-PA, PAI 1

A lterations in hemostasis have frequently been observed in patients with leukemia, and thrombotic events are well documented in patients receiving L-asparaginase (ASP) as a single agent or in combination with vincristine or prednisone (sometimes complemented by an anthracycline).¹⁻⁷

A wide range of circulating half-lives has been reported when different commercially available asparaginase preparations from *E. coli* and *Erwinia chrysanthemi* were used.⁸⁻¹⁰

The present study was designed to prospectively evaluate fibrinolytic parameters in leukemic children receiving different *E. coli* ASP preparations, and to relate changes in the fibrinolytic system to serum ASP activity.

Materials and Methods

Forty leukemic children diagnosed within an 18-month period and treated according to the ALL-BFM 90 study protocol I (part I: prednisone 60 mg/m² days 1-29; *E. coli* asparaginase 10,000 U/m² days 12, 15, 18, 21, 24, 27, 30, 33; vincristine 1.5 mg/m² and daunorubicin 30 mg/m² days 8, 15, 22, 29) received one of the two *E. coli* asparaginase preparations officially approved in Germany: L-asparaginase Crasnitin[®] (Bayer, Leverkusen, Germany) or Medac[®] (Medac, Hamburg, Germany; original-ly purchased from Kyowa Hacco Kyogo, Japan). No patient had an individual or family history of bleeding or thrombophilia. Blood samples for coagulation studies and serum samples for

Correspondence: Dr. Ulrike Nowak-Göttl, Ped. Hematology/Oncology, University Children's Hospital, Albert Schweitzer Str. 33, 48149 Münster, Germany. Tel. international +49.251.837783. Fax. international +49.251.837828. Received November 27, 1995; accepted January 29, 1996.

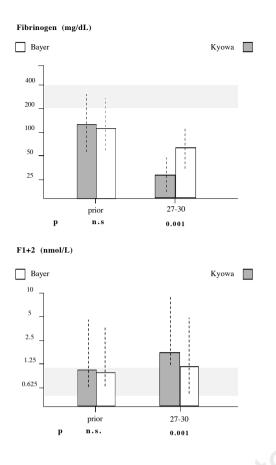
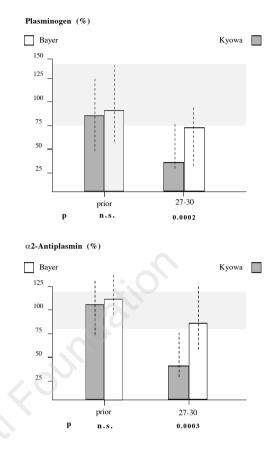
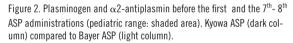




Figure 1. Fibrinogen and thrombin generation (F1+2) before the first and the 7th - 8th ASP administrations (pediatric range: shaded area). Kyowa ASP (dark column) compared to Bayer ASP (light column).

pharmacokinetic monitoring were obtained in the same venipuncture before the first and the 6th-7th doses of ASP.

Blood samples were drawn into premarked 3 mL plastic tubes (citrate 3.8%/blood:1:10; Saarstedt[®] the same venipuncture), immediately placed in iced water and centrifuged at 4°C and 3000 g for 20 minutes. Fibrinogen was measured according to Clauss (Behring Werke, Marburg, Germany). Plasminogen and α^2 antiplasmin were assayed by enzymatic procedures using chromogenic substrates S 2765, 2403 (Chromogenix, Mölndal, Sweden). Prothrombin fragment F1+2 (EIA F1+2 micro) and D-dimer (EIA-D-dimer micro) were determined using ELISA kits from Behring Werke, Marburg, Germany. T-PA antigen and PAI 1 activity were quantitated using test kits from Chromogenix, Mölndal, Sweden. Controls

included calibration plasma, normal and abnormal control plasma (IL Test[™], Instrumentation Laboratory, Italy).

Serum asparaginase activity, defined as ammonia-release per minute after addition of serum to Nessler's solution,^{11,12} and asparagine levels¹³ were determined simultaneously throughout the testing period.

Calculations of medians, ranges and nonparametric statistics (Wilcoxon-Mann-Whitney U-test, Spearman's rank test) were performed with an Apple computer (Macintosh Performa 630) using the Stat View version 4.02 program.

Results

Changes in fibrinolytic parameters were more severe in those patients who received Kyowa ASP. Fibrinogen values were significantly

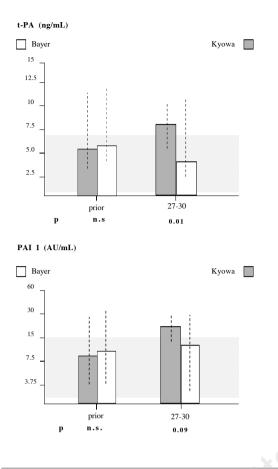


Figure 3. T-PA antigen and PAI 1 activity before the first and the 7^{th} - 8^{th} ASP administrations (pediatric range: shaded area): Kyowa ASP (dark column) compared to Bayer ASP (light column).

decreased (p<0.001) and thrombin generation enhanced (F1+2; p<0.001), as shown in Figure 1. Plasminogen (Figure 2: p<0.0002), and α 2antiplasmin (Figure 2: p<0.0003) levels followed a pattern similar to that of fibrinogen; t-PA values (Figure 3; p<0.01) and D-dimer levels (Figure 4; p<0.05) were also significantly enhanced. In contrast, PAI 1 activity (Figure 3) showed no significant difference in the two *E. coli* ASP administered.

Furthermore, pharmacokinetic data (Figure 4) from patients receiving Kyowa ASP demonstrated significantly (0.0001) enhanced ASP activity compared to that in children treated with the Bayer type A preparation.

Table 1 reports the correlation between fibrinolytic protein levels and serum asparaginase activity (rho and p values) in blood obtained

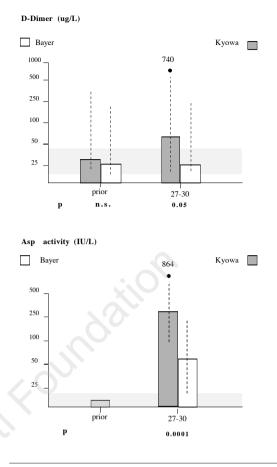


Figure 4. D-dimer formation and ASP activity before (all patients) and after the 7th-8th ASP administrations (pediatric range: shaded area): Kyowa ASP (dark column) compared to Bayer ASP (light column).

with the same venipuncture; the highest ASP activity was clearly associated with the lowest values of fibrinogen, plasminogen and $\alpha 2$ -

Table 1. Correlation (Spearman's rank test) between fibrinolytic proteinlevels and asparaginase activities (Rho and p value) in leukemic children receiving Bayer type A asparaginase (n=20) or Kyowa asparaginase (n=20).

Parameter	Rho	p value
Fibrinogen	- 0.495	0.021
Plasminogen	- 0.472	0.025
α 2-antiplasmin	- 0.735	0.036
t-PA	0.329	0.188
PAI 1	0.331	0.213
D-dimer	0.581	0.05

antiplasmin, and with enhanced D-dimer.

Both groups of patients showed almost complete asparagine depletion, at a detection limit of 0.1 uM, during the course of ASP treatment.

In the Kyowa group, a 13-year-old boy and a 7-year-old girl developed thrombosis on day 31, and one child experienced intermediate insulindependent hyperglycemia. Both patients with vascular occlusion presented increased values of PAI 1, t-PA and D-dimer (upper patient range) along with decreased plasminogen and α 2-antiplasmin (lower patient range) prior to the thrombotic event. No antithrombin concentrate¹⁴ or fresh frozen plasma¹⁵ was administered in these patients. No patient treated with the Bayer preparation showed evidence of vascular insults.

Discussion

L-asparaginase is an enzyme that provides specific metabolic therapy for ALL and non-Hodgkin's lymphomas. This enzyme catalyzes the conversion of the amino acid L-asparagine to aspartic acid and ammonia, leading to rapid depletion of the circulating pool of asparagine and glutamine and resulting in decreased protein synthesis.⁸

In agreement with literature data,^{1,4,6,7} this study demonstrated a significant decrease in fibrinogen, plasminogen and α 2-antiplasmin during the course of *E. coli* asparaginase administration. In addition, F1+2, t-PA and D-dimer levels were significantly enhanced. Furthermore, fibrinogen, plasminogen and α 2-antiplasmin were clearly correlated to serum asparaginase activity; thus, the changes in fibrinolytic parameters were more pronounced in those patients receiving Kyowa asparaginase.

In humans, the circulating half-lives of asparaginase enzymes from *E. coli* and *Erwinia chrysanthemi* vary widely.^{16,17} Moreover, halflives differ not only between E. coli strains type A and type B, but also among different commercial E. coli preparations.^{8-10,18,19} One of the most obvious distinctions between the two *E. coli* asparaginase preparations administered in this study is the absence of cystine in Kyowa ASP, which also has a lower isoelectric point, a lower clearance and a longer half-life than the Bayer type A ASP. The lower clearance of the Kyowa preparation results in higher through levels of L-asparaginase activity and a prolonged duration of the L-asparaginase depletion. This possibly induces prolonged inhibition of protein synthesis as well as undesired effects on other amino acids and proteins, and in summary may cause a higher rate of side effects even with the same dose. However, our results revealed not only down regulation of fibrinolytic protein activity, but the enhanced D-dimer levels along with decreased values of plasminogen and α 2-antiplasmin also signified an activated fibrinolytic system.

References

- Semeraro N, Montemurro P, Giordano P, et al. Unbalanced coagulation-fibrinolysis potential during L-asparaginase therapy in children with acute lymphoblastic leukemia. Thromb Haemost 1990; 64:38-40.
- 2. Leone G, Gugliotta L, Mazzucconi MG, et al. Evidence of a hypercoagulable state in patients with acute lymphoblastic leukemia treated with low doses of E. coli asparaginase. A GIMEMA study. Thromb Haemost 1993; 69:12-5.
- Kucuk O, Kwaan HC, Gunnar W, Wasquez RM. Thromboembolic complications associated with L-asparaginase therapy. Cancer 1985; 55:702-6.
- Homans AC, Rybak ME, Baglini RL, Tiarks C, Steiner ME, Forman EN. Effect of L-asparaginase administration on coagulation and platelet function in children with leukemia. J Clin Oncol 1987; 5:811-7.
- Pui CH, Jackson CW, Chesney CM, Abilgaard CF. Involvement of von Willebrand factor in thrombosis following asparaginase-prednison-vincristine therapy for leukemia. Am J Hematol 1987; 25:291-8.
- 6. Mitchell L, Hoogendoorn H, Giles AR, et al. Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: risk of thrombotic complications in L asparaginase-induced antithrombin III deficiency. Blood 1994; 83:386-91.
- Nowak-Göttl U, Wolff J, Kuhn N, et al. Enhanced thrombin generation, P-VonWillebrand factor, P-fibrin, D-dimer and P-plasminogen activator inhibitor 1: predictive for venous thrombosis in asparaginase-treated children. Fibrinolysis 1994; 8:63-5.
- Capizzi R, Holcenberg JS. L-asparaginase. In: Holland J, Frei E, eds. Cancer Medicine. Philadelphia:Lea & Febiger 1992:796.
- Ohnuma T, Holland JF, Freemann A, et al. Biochemical and pharmacological studies with asparaginase in man. Cancer Res 1979; 30:2297-305.
- Wriston JC, Yellin TO. L-asparaginase: a review. Advanced Enzymol Relat Areas Mol Biol 1973; 39:185-248.
- Bergemeyer HU. Methoden der enzymatischen Analyse. L-Asparaginase. 3. überarbeitete und erweiterte Auflage. Verlag Chemie 1974; 11:464-5.
- 12. Werber G, Ahlke E, Nowak-Göttl U, Jürgens H, Verspohl EJ, Boos J. Asparaginase activities are highly sensitive to different

buffer conditions. In: Büchner T, Hiddemann W, Wörnemann B, Ritter O, eds. Haematology and Blood Transfusion, v. 38; Berlin:Springer Verlag, 1996; in press.

- 13. Lenda K, Svenneby G. Rapid high-performance liquid chromatographic determination of amino acids in synaptosomal abstracts. Chrom 1980; 198:516-9.
- 14. Nowak-Göttl U, Kuhn N, Wolff JEA, et al. Inhibition of hypercoagulation by antithrombin substitution in E. coli Lasparaginase -treated children. Eur J Haematol 1995; in press.
- 15. Nowak-Göttl U, Rath B, Binder M, et al. Inefficacy of fresh frozen plasma in the treatment of L-asparaginase- induced coagulation factor deficiencies during ALL induction therapy. Haematologica 1995; 80:451-3.
- 16. Arens A, Rauenbusch E, Iron E, Wagner O, Bauer K, Kauf-

mann WZ. Physiol Chem 1970; 351:197.

- 17. Boos J, Nowak-Göttl U, Jürgens H, Fleischhack G, Bode U. Loss of activity of Erwinia asparaginase on repeat applications. J Clin Oncol 1995; 13:2474-5.
- 18. Boos J, Werber G, Ahlke E, Nowak-Göttl U, Verspohl E, Jürgens H. Significant differences in the pharmacokinetics of two l-asparaginase preparations from Escherichia Coli. In: Büchner T, Hiddemann W, Wörnemann B, Ritter O, eds. Haematology and Blood Transfusion, Berlin:Springer Verlag, 1995; in press.
- 19. Mashburn LT, Landin LM. In: Grundmann E, Oettgen HF, eds. Recent results in cancer research. New York:Springer, 1970:33-48.

a chainer at a substance of the substanc