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ABSTRACT

Effects of concurrent inhibition of mTORC1/2 and Bcl-2/Bcl-xL in human acute myeloid leukemia cells were
examined. Tetracycline-inducible Bcl-2/Bcl-xL dual knockdown markedly sensitized acute myeloid leukemia cells
to the dual TORC1/2 inhibitor INK128 i vitro as well as in vivo. Moreover, INK128 co-administered with the Bcl-
2/xL antagonist ABT-737 sharply induced cell death in multiple acute myeloid leukemia cell lines, including TKI-
resistant FLT3-ITD mutants and primary acute myeloid leukemia blasts carrying various genetic aberrations e.g.,
FLT3, IDH2, NPM1, and Kras, while exerting minimal toxicity toward normal hematopoietic CD34" cells.
Combined treatment was particularly active against CD347/CD387/CD123" primitive leukemic progenitor cells.
The INK128/ABT-737 regimen was also effective in the presence of a protective stromal microenvironment.
Notably, INK128 was more potent than the TORC1 inhibitor rapamycin in down-regulating Mcl-1, diminishing
AKT and 4EBP1 phosphorylation, and potentiating ABT-737 activity. Mcl-1 ectopic expression dramatically atten-
uated INK128/ABT-737 lethality, indicating an important functional role for Mcl-1 down-regulation in
INK128/ABT-737 actions. Immunoprecipitation analysis revealed that combined treatment markedly diminished
Bax, Bak, and Bim binding to all major anti-apoptotic Bcl-2 members (Bcl-2/Bcl-xL/Mcl-1), while Bax/Bak
knockdown reduced cell death. Finally, INK128/ABT-737 co-administration sharply attenuated leukemia growth
and significantly prolonged survival in a systemic acute myeloid leukemia xenograft model. Analysis of subcuta-
neous acute myeloid leukemia-derived tumors revealed significant decrease in 4EBP1 phosphorylation and Mcl-1
protein level, consistent with results obtained in vitro. These findings demonstrate that co-administration of dual
mTORC1/mTORC2 inhibitors and BH3-mimetics exhibits potent anti-leukemic activity in vitro and in vivo, arguing
that this strategy warrants attention in acute myeloid leukemia.

Introduction

Acute myelogenous leukemia (AML) is characterized by
frequent aberration of the PISK/AKT/mTOR axis reflecting
various mechanisms including FLT3, Ras, and ¢-KIT muta-
tions,' PI3K delta isoform amplification,” or autocrine IGF-
1/IGF-1R signaling.* The mammalian target of rapamycin
(mTOR) is a key component of this pathway* which inte-
grates growth factor signals through AKT and multiple other
cellular processes.” mTOR is a serine/threonine kinase
involved in two distinct multi-protein complexes: mTOR
complex 1 (mTORC1) and mTOR complex 2 (mTORC2).?
mTORCI1 plays a central role in cap-dependent mRNA trans-
lation initiation through 4EBP1 phosphorylation, releasing
eukaryotic initiation factor elF4E.° mTORC1 also promotes
translation elongation by phosphorylating S6 kinase 1
(S6K1). mTORC2 is less studied and has distinct substrates
e.g., AKT and AGC protein kinase family members.’
Importantly, mTORC2 phosphorylates AKT at serine 473,
inducing maximal AKT activation.

First-generation agents, including rapamycin and its analogs
(rapalogs) e.g., everolimus, temsirolimus and ridaforolimus,
inhibited mTORC1 but not mTORC2. While these agents

are approved in RCC/ leukemic activity has been minimal,’
despite evidence they target leukemia stem cells.” Limited
rapalog activity may reflect absent (nTORC2) or incomplete
(4EBP1) target inhibition, or feedback activation of PISK, AKT
and MEK/ERK through p70S6K and IRS1."" Second genera-
tion inhibitors targeting both mTORC1 and mTORC2,
including AZD8055 and INK128, are currently undergoing
clinical evaluation. (www.clinicalTrials.gov).

Anti-apoptotic Bcl-2 members e.g., Bcl-2, Bel-xL, and Mcl-1
are often overexpressed in hematological malignancies, includ-
ing AML.”Loss or diminished expression of pro-apoptotic Bcl-
2 members e.g., Bim or Bax have also been observed in many
malignancies.” This prompted development of agents that neu-
tralize anti-apoptotic or activate pro-apoptotic Bcl-2 members.
ABT-737 and its clinical derivative ABT-263 target Bcl-2 and
BclxL, but not Mcl-1, and show significant pre-clinical
activity.""® ABT-199 is a BH3-mimetic that specifically targets
Bcl-2,'° and displays promising early activity in CLL" and
AML."” However, BH3-mimetics by themselves are unlikely to
be curative, thus arguing for rational combination strategies.

Previously, we demonstrated that combining dual
PISK/mTOR inhibitors and Bcl-2/Bcl-xL antagonists sharply
induced cell death in diverse leukemia types in vitro and in
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vivo."” Herein, we sought to determine whether mTOR
inhibition, which targets primitive AML progenitors,’
could similarly potentiate BH3-mimetic anti-leukemia
activity, and whether dual mTORC1/TORC2 inhibition
might provide an advantage over selective mTORCI1 inhi-
bition.

Methods

Cells

Human acute myeloid leukemia U937, KG-1 and MV4-11 cells
were as previously reported.” MOLM-13 and OCI-AML3 cells
were purchased from DSMZ (Braunschweig, Germany). U937
cells exhibiting inducible knockdown of Bcl-2 and Bcl-xL have
been described previously.” U937 cells stably overexpressing
wild-type Mcl-1, Bcl-2, Bcl-xL, Bax or Bak were previously
described.”

Generation of Ba/F3 mutants
Ba/F3 cells carrying FLT3 mutations were generated as described
in Online Supplementary Methods.

Stromal cells
As described in Online Supplementary Methods.

Isolation of patient-derived leukemic blast cells

These studies are sanctioned by the Virginia Commonwealth
University Investigational Review Board. Bone marrow or periph-
eral blood were collected with informed consent from 11 patients
with acute myeloblastic leukemia (AML) with a preponderance of
blasts (e.g., = 80%). Normal hematopoietic cells were isolated
from cord blood. Mononuclear cells were isolated by Ficoll-
Hypaque gradient separation as described.”

Mutation analysis

Primary AML samples were analyzed for mutations in 50 cancer
associated genes using next generation sequencing (NGS) as in
Online Supplementary methods.

Reagents

ABT-737 and ABT-199 were provided by Abbott Laboratories
(Abbott Park, IL). INK128 was purchased from ChemieTek
(Indianapolis, IN). AKT inhibitor VIII was purchased from EMD
Millipore.

Assessment of apoptosis and cell growth and viability
Apoptosis was assessed by Annexin V/PI analysis.”’ Cell growth
and viability were monitored by the CellTiter-Glo Luminescent
Assay (Promega Corporation).”’
Immunoprecipitation and immunoblotting were performed as
before.”* Primary antibodies are listed in Online Supplementary
Methods.

Subcellular fractionation
Cytosolic and membrane fractions were separated as previously
described.”

In vivo studies

These studies were approved by the Virginia Commonwealth
University Institutional Animal Care and Use Committee and con-
ducted as previously described.”” Briefly, female NOD/SCID-
gamma (Jackson laboratories) were injected intravenously via tail
vein with 5x10° luciferase-expressing U937 cells in which dual
knockdown of Bcl-2 and Bcl-xL is achieved by doxycycline. The
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mice were monitored using the IVIS 200 imaging system
(Xenogen Corporation, Alameda, CA), and separated into 2
groups, one of which was fed with doxycycline-supplemented
pellets (200 mg/kg, Bio-Serv, Frenchtown, NJ). Both groups were
treated with INK128 administered by gavage every 24 hours, 5
days a week. NOD/SCID-gamma mice were inoculated via tail
vein with 5x10° luciferase-expressing MV4-11 cells. 5 days later,
the mice were randomly separated into 4 groups; each group was
treated with vehicle, ABT-737 (intraperitoneal), INK128 (oral), or
ABT-737 + INK128. Tumor growth was monitored by the IVIS
200 imaging system. In some cases, female athymic nude mice
(Chatles River laboratories) were injected subcutaneously in the
flank with 5 x 10°MV4-11 cells. Once tumors reached 1 cm in
diameter, the mice were treated as above, and 4 hours later tumors
were excised, lysed and subjected to Western blot analysis.
Statistical analysis is described in Online Supplementary Methods.

Results

Dual knockdown of Bcl-2/Bcl-xL markedly potentiates
the anti-leukemic activity of the mTORC1/TORC2
inhibitor INK128 in vitro and in vivo

To determine whether Bcl-2/xL inhibition sensitized
AML cells to mTOR inhibitors, U937 cells exhibiting tet-
inducible Bcl-2 and Bcl-xL dual knockdown were
employed. Doxycycline exposure (48 hrs) sharply down-
regulated both Bcl-2 and Bcl-xL. In dual knockdown cells,
the dual mTORC1/TORC2 inhibitor INK128 (50 nM) trig-
gered rapid (e.g., within 4 hrs) and pronounced apoptosis,
reflected by caspase-3 and PARP cleavage (Figure 1A) and
cytochrome ¢ and AIF cytosolic release (Figure 1B). In
sharp contrast, INK128 effects on caspase-3 and PARP in
cells with intact Bcl-2 and Bcl-xL were minimal. Dose-
response studies confirmed that knockdown of Bcl-2/Bcl-
xL rendered cells exquisitely sensitive to INK128-mediat-
ed lethality (Figure 1C, and Omnline Supplementary Figure
S1A). In contrast, effects of the selective mTORCI1
inhibitor rapamycin were only modestly enhanced by
dual knockdown of Bcl-2 and Bcl-xL (Figure 1C, and
Online  Supplementary Figure S1A). Notably, INK128
markedly reduced both AKT-activating sites (serine 473
and threonine 308) phosphorylation in the presence or
absence of doxycycline (Figure 1A).

In vivo studies employing a systemic xenograft mouse
model bearing luciferase-labeled U937 cells exhibiting
inducible Bcl-2/Bcl-xL dual knockdown revealed that
doxycycline significantly enhanced INK128 anti-leukemia
effects compared to controls (Figure 1D,E). Knockdown of
Bcl-2/Bcl-xL also significantly prolonged median survival
of INK128-treated mice i.e., from 14 to 21 days (P = 0.0027
log-rank test; Figure 1F). Doxycycline alone had no effect
on tumor growth or survival (Online Supplementary Figure
51B). Finally, INK128 + doxycycline did not induce weight
loss (Figure 1G) or other signs of toxicity. These findings
indicate that dual knockdown of Bcl-2/Bcl-xL strikingly
enhances INK128-mediated AML cell death in vitro and
inhibits AML growth while prolonging survival i vivo.

INK128/ABT-737 co-administration sharply induces
cell death in AML but not normal hematopoietic
CD34" cells

Dose-response studies of MV4-11 and U937 cells using
a range of clinically relevant INK128 concentrations (e.g.,

50-200 nM)” revealed that minimally toxic concentrations
of the dual Bcl-2/Bcl-xL inhibitor ABT-737 (10 nM for
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MV4-11, and 500 nM for U937 cells) sharply potentiated
INK128 inhibition of cell growth and viability (Figure
2A,B). The disparate ABT-737 concentrations employed
reflect the known variability of leukemic cell vulnerability
to this agent,”” and were selected to achieve comparable
single-agent responses (e.g., marginal toxicity; <15% cell
death). These effects were highly synergistic by median
dose-effect analysis (Online Supplementary Figure S1C,D).
In contrast, identical concentrations of the selective
mTORCI inhibitor rapamycin recapitulating or exceeding
clinically achievable concentrations (20 - 400 nM)* failed
to enhance ABT-737 lethality (Figure 2A,B). Similar results
were obtained in multiple other leukemia cell lines i.e.,
MOLM-13, KG-1, and AML3 (Figure 2C). Annexin V/PI
analysis yielded equivalent results (data not shown).
INK128/ABT-737 co-exposure induced pronounced cas-
pase-3 and PARP cleavage, whereas agents alone had min-
imal effects (Figure 2D). Notably, similar results were
obtained with INK128 and the selective Bcl-2 inhibitor
ABT-199 in MV4-11, MOLM-13, and KG-1 cells (Online
Supplementary Figure S1E). ABT-199 anti-leukemic activi-

mTORC1/TORC2 and Bcl-2/Bcl-xL inhibition in leukemia e

ty was not significantly enhanced by rapamycin in these
cells (data not shown).

Parallel studies in primary blasts isolated from AML
patients (n=10), revealed that INK128/ABT-737 co-expo-
sure was significantly more effective in diminishing cell
viability than single agents; Figure 3A (P < 0.0001). As
with cell lines, drug concentrations were selected based
upon minimal toxicity when administered alone, and clin-
ical relevance. Furthermore, in the CD34*/CD38/CD123*
cell population enriched for leukemia progenitor cells,”
combined treatment sharply induced cell death (Figure
3B). Interestingly, this effect appeared more pronounced
than in bulk blast populations (Figure 3B). Analysis of
three individual primary AML samples (Figure 3C)
demonstrated increased sensitivity of
CD34+/CD38/CD123* cells compared to bulk blasts
(P=0.007). In contrast, combined treatment had no major
effect on normal hematopoietic CD34* cells isolated from
cord blood (Figure 3B,C). Genetic analysis using next gen-
eration sequencing (NGS) revealed that the primary AML
blasts assayed carried diverse genetic aberrations including
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Figure 1. Bcl-2/BclxL dual knockdown strikingly enhances anti-tumor activity of INK128, but not rapamycin, in vitro as well as in vivo.
A-B. U937 cells displaying tet-inducible Bcl-2 and Bcl-xL dual knockdown were left untreated or pre-treated with 1 ug/mL doxycycline (Dox)
for 48 hrs, then exposed to 50 nM INK128 for varying intervals after which Western blot analysis was performed on whole cell lysates (A) or
on the cytosolic fractions (B). Ns = Non-specific. C) Alternatively, tet-inducible Bcl-2 and Bcl-xL U937 dual knockdown cells were treated with
the designated concentrations of INK128 or rapamycin for 24 hrs, after which cell growth and viability was assessed using the CellTiter-Glo
luminescent assay. D) NOD/SCID-gamma (NSG) mice were inoculated via the tail vein with U937 cells exhibiting tet-inducible Bcl-2/Bcl-xL dual
knockdown and expressing luciferase. 5 days following cell injection, mice were treated with 1 mg/kg INK128 in the presence (5 mice) or
absence (4 mice) of doxycycline and imaged using the IVIS 200 system. E) Quantification of the luminescent signals. Data represent the mean
+ SD performed on all mice for each group. *P<0.0005. F) Kaplan-Meier survival plot. Survival curves for treatments with or without doxycy-
cline differed very significantly e.g., P=0.0027, log-rank test. The median survival was prolonged from 14 to 21 days for mice in the presence

of doxycycline. G) Animal body weights during the course of treatment.
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mutations in FLT3, IDH2, NPM1, and Kras, among others
(Figure 3D), suggesting activity across a spectrum of
leukemia types.

The INK128/ABT-737 regimen is active against AML
blasts carrying FLT3 mutations and in the presence of
a protective microenvironment

Three out of the seven characterized primary AML
specimens used carried FLT3-ITD or D835H mutations,
each of which exhibited significant sensitivity to the regi-
men. To test whether ABT-737/INK128 regimen is active
in FLT3 mutated AML cells, Ba/F3 cells reliant on FLT3
activation for survival were generated by transfecting
wild-type Ba/F3 cells with constructs encoding for FLT3-
ITD or FLT3-ITD F691L. As anticipated, FLT3-ITD Ba/F3
cells were sensitive to the FLT3 inhibitors sorafenib (20
nM) and quizartinib (10 nM), whereas FLT3-ITD F691L
displayed significant resistance to both (up to 100 nM
each; Ounline Supplementary Figure S2). However, while
both leukemia cells exhibited little susceptibility to
INK128 or ABT-737, combined treatment sharply
increased cell death. (Figure 4A,B). Parallel studies involv-
ing bone marrow-derived HS5 cell co-culture revealed that
combined INK128/ABT-737 treatment robustly killed
AML cells cultured with protective microenvironmental
factors (Figure 4C-D). Specifically, GFP-labeled U937 cells
co-cultured with HS-5 cells displayed a marked increase in
cell death (reflected by Annexin positivity) following com-
bined ABT-737/INK128 exposure (Figure 4C), while
luciferase-labeled MV4-11 cells demonstrated a sharp
decline in luciferase activity (reflecting both cell viability
as well as proliferation) with combined treatment (Figure
4D). As before, drug concentrations were selected based
upon minimal toxicity alone and clinical achievability.
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INK128/ABT-737 co-administration triggers AKT
inactivation and Mcl-1 down-regulation in AML cells

U937 cell time course analysis revealed that clinically
relevant INK128 concentrations significantly reduced
AKT phosphorylation at both activating sites e.g., serine
473 and threonine 308, associated with marked transla-
tional factor 4EBP1 dephosphorylation, Mcl-1 down-regu-
lation, and Bak up-regulation (Figure 5A,B). These events
were also observed when INK128 was combined with
ABT-787, but were not substantially greater (Figure 5A,B).
Notably, Bak was also upregulated in MV4-11 cells by
combined treatment (Online Supplementary Figure S3A). No
major changes were observed in protein levels of other
anti-apoptotic Bcl-2 family members i.e., Bcl-2 or Bel-xL or
pro-apoptotic members i.e., Bim or Bax (Figure 5B).
Similar results were obtained in MV4-11 cells (Figure 5C),
and in primary AML blasts isolated from 2 AML patients
(Figure 5D).

Down-regulation of Mcl-1 plays a critical functional
role in INK128/ABT-737-mediated lethality, an event
that involves Bax and Bak

To determine whether Mcl-1 down-regulation con-
tributed functionally to INK128/ABT-737 activity, U937
cells ectopically expressing Mcl-1 were employed. These
cells were significantly less susceptible to INK128/ABT-
737 than control pCEP4 cells, reflected by sharply reduced
Annexin V/PI positivity (Figure 6A) and caspase-3 and
PARP cleavage (Figure 6B) as well as growth inhibitory
effects (Online Supplementary Figure S3B). These findings
suggest that Mcl-1 down-regulation contributes function-
ally to cell death mediated by combined treatment with
INK128/ABT-737.

Paralle] immunoprecipitation analysis revealed that

€ INK
@ INK/ABT
©- Rap
-8 Rap/ABT

Figure 2. Co-administration of INK128,
but not rapamycin, with ABT-737
induces marked inhibition of cell
growth and viability in association with
pronounced induction of apoptosis in
human AML cells. A-B) U937 (A) or
MV4-11 (B) cells were exposed to the
designated concentrations of INK128
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INK128 + ABT-737 markedly diminished Bak, Bax and
Bim binding to Mcl-1, presumably reflecting diminished
Mcl-1 protein levels (Figures 6C-E). ABT-737 or INK128
decreased Bak binding to Bcl-xL but not to Bcl-2, an effect
that was enhanced by combined treatment (Figure 6C).
However, combined treatment markedly diminished Bax
binding to both Bcl-2 and Bcl-xL, (Figure 6D). Notably, a
decline in Bax protein bound to Bcl-2 or Bel-xL was also
observed in cells exposed to either agent alone (Figure 6D).
Finally, while INK128 increased Bim binding to Bcl-2 and
Bcl-xL, similar to our previous findings with PISK/mTOR
inhibitors,”” ABT-737 decreased Bim binding to Bcl-2 but
not to Bcl-xL (Figure 6E). Combined treatment led to
diminished Bim/Bcl-2 binding and abrogation of INK128-
mediated increases in Bim/Bcl-xL binding (Figure 6E).
The role of Bax and Bak in cell death mediated by com-
bined treatment with INK128 and ABT-737, was assessed
in Bax or Bak knockdown cells (Figure 6F). Notably, these
cells were significantly less sensitive to INK128/ABT-737
compared to non-targeted shRNA controls, reflected by

mTORC1/TORC2 and Bcl-2/Bcl-xL inhibition in leukemia e

diminished Annexin V/PI positivity (Figure 6G). Similar
results were obtained in MV4-11 cells (data not shown).
Consistent with the notion that Bax, Bak, and Bim play
important roles in INK128/ABT-737 lethality, cells ectopi-
cally expressing Bcl-2 or Bcl-xL, which, like Mcl-1
sequester Bax, Bak, and Bim,"*** were significantly less sus-
ceptible to INK128/ABT-737 (Online Supplementary Figure
S3C,D). Together, these findings suggest that Bax, Bak,
and Bim release from Bcl-2/Bcl-xL (by ABT-737 or
INK128) and Mcl-1 (by INK128) contributes to
INK128/ABT-737 anti-leukemic effects.

AKT inhibition enhances rapamycin/ABT-737 lethality
associated with Mcl-1 down-regulation

To gain insights into the disparate interactions of
INK128 and rapamycin with ABT-737, key proteins were
monitored in U937 and MV4-11 cells. In contrast to
INK128, which sharply dephosphorylated AKT and
down-regulated Mcl-1 protein levels, rapamycin failed to
diminish AKT phosphorylation or Mcl-1 protein expres-
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Figure 3. Co-administration of INK128 and ABT-737 kills primary AML blasts and CD34'/CD38-/CD123* leukemic cells while sparing normal
CD34" progenitor cells. A) Primary AML specimens with a preponderance of blasts (e.g 2 80%) were isolated from 10 patients with AML
(patients 1 to 8, 10 and 11) and treated with ABT-737 (10 - 500 nM) and/or INK128 (50 - 200 nM) for 24 hrs after which cell viability was
assessed using the CellTiter-Glo Luminescent Assay. As in the case of cell lines, ABT-737 and INK128 concentrations were selected based
upon marginal toxicity when administered alone as well as clinical relevance. B) Primary AML blasts (patient 7), were treated with INK128
(200 nM) £ ABT-737 (7.5 nM) for 24 hrs, after which cell death was assessed in leukemia CD34*/CD38-/CD123" progenitors as well as in the
bulk blast cell population using an Annexin V/7-AAD staining assay. In parallel studies, normal hematopoietic mononuclear cells isolated from
cord blood were treated with INK128 + ABT-737 (100 nM each) and cell death was assessed in the CD34* cell population using an Annexin
V/T7-AAD staining assay. C) Additional studies using the Annexin V/7-AAD staining assay were carried out in the bulk blast populations and in
leukemia CD34'/CD38-/CD123* progenitor cells isolated from 3 patients with AML as well as in normal hematopoietic CD34" cells isolated
from 3 individuals. Agent concentrations were: ABT-737: 50 nM for patients 6 and 9, and 7.5 nM for patient 7; INK128: 100 nM for patients
6 and 9, and 200 nM for patient 7. For normal CD34+ cells, ABT-737 and INK128 were used at 100 nM and 200 nM, respectively. D) Mutation
analysis of primary AML specimens using targeted next-generation sequencing (NGS); only AML associated mutations are presented.
U = unknown.
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sion, including at concentrations significantly higher than
achievable plasma levels™ (Figure 7A). Instead, increased
AKT phosphorylation occurred in both U937 and MV4-11
cells following a 4- or 8- hour exposure to rapamycin, con-
sistent with previous reports (Figure 7A and Online
Supplementary Figure S4A,B). INK128 was more effective
than rapamycin in diminishing 4EBP1 phosphorylation as
previously reported in other cell types” (Figure 7A).
Furthermore, co-administration of a selective AKT
inhibitor (AKT inhibitor VIII) with rapamycin/ABT-737
suppressed cell growth and viability (Figure 7B) associated
with decreased Mcl-1 protein levels (Figure 7C), compara-
ble to findings with INK128/ABT-737. Similar results were
obtained in MV4-11 cells (Online Supplementary Figure
S4C), arguing that more pronounced AKT inactivation
and Mcl-1 down-regulation contribute to the enhanced
potentiation of ABT-737 anti-leukemic activity by INK128
compared to rapamycin.

Co-administration of INK128/ABT-737 markedly
decreases tumor growth in vivo and prolongs survival in
a systemic leukemia xenograft model

To determine whether INK128/ABT-737 co-treatment
exhibited anti-leukemic activity in vivo, NOD/SCID-
gamma mice bearing systemic MV4-11-derived xenografts
were employed. Combined INK128 (0.5 mg/kg) and ABT-
737 (80 mg/kg) treatment significantly reduced leukemia
growth (Figure 8A) and strikingly prolonged mouse sur-
vival. Moreover, on day 108 after treatment initiation,
50% of the mice treated with the combination remained
alive with healthy appearances, whereas all of the mice

120 W MV4-11Luc

A © FLT3-ITD C 80 -
® FLT3-ITD + INK
* FLT3-ITD F691L « 60 -
= * FLT3-ITDF69IL +INK 3
= 1007 -
g o] Z 40 -
S 80 -2
é 607 & 20
z 401
% 207 " -
S oo ¢
NI IS
[ABT-737] (uM)
B D _
FLT3-ITD FLT3-ITD F691L E 100
2 g 80 1
= é = = £
faa] [aa] 1
o2 E Fo < z Z g 4
Z 20
- - . =
PARP (W o wwe e 5 o
c-casp3 l - - "'l
A AE T 1 1

from vehicle or single agent groups had died by day 57
(Figure 8B). Western blot analysis performed on subcuta-
neous tumor tissues excised from mice 4 hours post-treat-
ment revealed that INK128 + ABT-737 markedly dimin-
ished 4EBP1 phosphorylation and decreased Mcl-1 protein
(Figure 8C), analogous to in vitro results. Notably, the
effects of combined treatment or INK128 alone on these
proteins were similar, as shown by densitometry (Online
Supplementary Figure S4D). Significantly, combined treat-
ment did not induce weight loss (Online Supplementary
Figure S5) or other toxicities (e.g., fur loss, behavioral
changes etc., data not shown). Together, these findings indi-
cate that co-administration of INK128 and the BHS3-
mimetic ABT-737 markedly reduces in vivo leukemia
growth associated with 4EBP1 dephosphorylation and
Mcl-1 down-regulation, and significantly prolongs the sur-
vival of mice bearing systemic leukemia.

Discussion

Susceptibility of various tumor types, including AML, to
BHS3-mimetics like ABT-737 is regulated by Mcl-1 expres-
sion.®” This has prompted combination strategies to
down-regulate Mcl-1, including CDK inhibitors,”
inhibitors of translation,” and deubiquitinase inhibition.”
Ourselves  and  others have reported that
PISK/AKT/mTOR pathway inhibition down-regulates
Mcl-1 expression” and increases BH3-mimetic lethali-
ty.””*** Rapamycin is an approved selective mTORC1
inhibitor with a relatively low toxicity profile,” and in pre-

U937 cells *

Figure 4. Co-administration of INK128
and ABT-737 effectively kills AML blasts
carrying FLT3 mutations or cultured in
the presence of a protective microenvi-
ronment. A) Ba/F3 cells carrying FLT3-
ITD or FLT3-ITD F691L were exposed to
the designated concentrations of ABT-
@& eﬁ' Q& 737 alone or in combination with 200
» S &\\ nM INK128 for 24 hrs after which cell

growth and viability were assessed
-4 using the CellTiter-Glo Luminescent
Assay. Alternatively, protein lysates
were prepared and subjected to
Western blot analysis (B). C) U937 cells
expressing copGFP were co-cultured
with bone marrow-derived stromal HS5
cells for 24 hrs, and exposed to 200 nM
INK128 + 500 nM ABT-737 for an addi-
tional 24 hrs. Cell death was then
assessed in cop-GFP U937 cells using
the Annexin V-APC/7-AAD staining
assay. D) MV4-11 cells expressing
luciferase were co-cultured with HS5
cells for 24 hrs and treated with INK128
(100 nM) £ ABT-737 (10 nM). After 24
hrs, a luciferase assay was performed

U & using D-luciferin to reflect cell growth
Q g g and viability. Error Bars: SD of 3 inde-
< ) pendent experiments; *P<0.0001 in

each case.
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clinical studies targets primitive leukemia progenitors.” In
contrast, INK128 is a novel, clinically relevant ATP-com-
petitive dual TORC1/TORC2 inhibitor that potently
inhibits ser473 AKT phosphorylation, a process requiring
TORC2 activation.” INK128 is effective against B-lym-
phoblastic leukemia cells,* but AML activity has not been
explored. Furthermore, dual TORC1/TORC2 inhibition
by AZD8055 enhances ABT-737 lethality in malignant
epithelial cells,”* but this strategy has not been investigat-
ed in hematologic malignancies, including AML. Herein
we report that the novel dual TORC1/TORC2 inhibitor
INK128 potently inhibits AKT activation and triggers Mcl-
1 down-regulation in cultured and primary AML cells,
sharply increasing BH3 mimetic susceptibility.

The capacity of INK128 to potentiate ABT-737 anti-
leukemic effects was greater than that of rapamycin.
Notably, disabling Bcl-2 and Bcl-xL pharmacologically by
ABT-737 or genetically by tet-inducible shRNA knock-
down rendered AML cells exquisitely sensitive to INK128
but not rapamycin, suggesting that combined mTORCI1
and mTORC?2 inhibition is required for effective interac-
tions. The superiority of INK128 in potentiating BHS3-
mimetic anti-leukemic activity could reflect multiple fac-
tors. For example, rapamycin may be a less potent
inhibitor of protein translation, as suggested by its dimin-
ished inhibition of 4EBP1 phosphorylation in AML cells,
consistent with results in other malignant hematopoietic
cells.”*® Second, in contrast to INK128, rapamycin failed
to down-regulate Mcl-1 efficiently, an action that we and
others have shown to play a key role in ABT-737 sensitiv-
ity."”?** Failure of rapamycin to down-regulate Mcl-1 may

reflect ineffective inhibition of mRNA translation” or
other mechanisms e.g., increased Mcl-1 stability through
activation of AKT and inactivation of GSK3.” Third,
rapamyecin activates AKT through feedback mechanisms
involving p70S6K inactivation and IRS1 activation," rais-
ing the apoptotic threshold. Consistently, rapamycin acti-
vated AKT and did not significantly induce Mcl-1 down-
regulation. However, the addition of AKT inhibitor VIII to
rapamycin/ABT-737 sharply increased apoptosis in associ-
ation with pronounced AKT inactivation and Mcl-1
down-regulation, as observed with INK128/ABT-737.
These findings suggest that rapamycin-mediated AKT
activation, and its failure to down-regulate Mcl-1 or
dephosphorylate 4EBP1, may contribute to minimal
rapamycin/ABT-737 interactions. In addition to Mcl-1, a
variety of AKT downstream targets might play a role in
conferring resistance to BH3-mimetics, including 4EBP1,
GSK3 and Bim, among others.””**

Translation of the short-lived protein Mcl-1 is regulated
by mTORCI1." The observation that INK128 significantly
down-regulated Mcl-1, but rapamycin exerted only mod-
est effects, suggests that factors other than mTORCI1 con-
tribute to the marked Mcl-1 down-regulation, at least in
some cell types. These findings are consistent with recent
reports* describing Mcl-1 down-regulation in mantle cell
lymphoma cells by dual mTORC1/TORC?2 inhibitors, but
not mTORC1 inhibitors alone. However, rapamycin did
not induce significant 4EBP1 dephosphorylation, which
may lead to only partial 4EBP1/elF4E complex dissocia-
tion, limiting effects on cap-dependent mRNA translation.
Of note, previous studies have demonstrated a prominent
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A B C Figure 6. Functional role of Mcl-
pCEP Mel-1 1, Bax, and Bak in INK128/ABT-

80 [0 pCEP s 737-mediated  cell _death
T ] A) U937 cells ectopically

B D i e T O IP: Bak expressing Mcl-1 and their
60 INK ==++==++ % empty vector control pCEP cells
= were exposed to INK128 (200

- % |'-"""-""l' % 2 nM) + ABT-737 (500 nM) for
Mcl-1 == 24 hrs, after which cell death

|— - - ~“|5h°ﬂ Bel-xL was assessed using the Annexin

20 V/PI staining assay. Error Bars:
c-pARp| - 4...| 2 m SD of 3 independent experi-

-- Mcl-1 ments; *P<0.01. Alternatively,

- 3 protein lysates were prepared
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fg\\ Bak _ analysis (B). (C-E) U937 cells
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4 hrs after which cells were

D E F G lysed, Bak (C), Bax (D), or Bim
IP: Bax IP: Bim (E) were immuno-precipitated,

and the immuno-precipitates
were subjected to immunoblot-
ting. F) Western blot analysis in
U937 cells in which Bax or Bak
was knocked down using
shRNA. G) These cells were
exposed to INK128 (200 nM) +
ABT-737 (500 nM) for 24 hrs,
after which cell death was mon-
itored using the Annexin V/PI
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Figure 8. Co-administration of INK128 and ABT-737 exhibits potent in vivo anti-leukemia activity. (A) NOD/SCID-gamma mice were inoculated
via tail-vein with MV4-11 cells expressing luciferase. Five days later, mice were treated with INK128 (0.5 mg/kg) + ABT-737 (80 mg/kg) and
imaged using the IVIS 200 system (A), and survival was analyzed using Kaplan-Meier survival plots (B). Studies involved 5-6 mice per condi-
tion; the survival of mice treated with the combination was significantly prolonged compared to mice treated with single agents (P=0.0011,
and P=0.0007 for combination vs. ABT-737 or INK128 respectively, log-rank test). Treatment was discontinued on day 70. On day 108, 2 mice
were still alive with healthy appearances; on the same day, the experiment was terminated. C) Nude mice were injected subcutaneously with
MV4-11 cells. Once the tumors reached 1 cm in diameter, mice were treated with INK128 (0.5 mg/kg) + ABT-737 (80 mg/kg). 4 hrs later,

tumors were excised, lysed and analyzed by Western blot analysis.

role for elF4E in controlling Mcl-1 translation.® It is also
possible that mTORC2 inhibition potentiates Mcl-1
down-regulation through AKT inactivation, GSK3 activa-
tion, and MCL-1 degradation.”’ The observation that
enforced Mcl-1 expression markedly diminished
INK128/ABT-737-mediated apoptosis indicate that Mcl-1
down-regulation contributes functionally to cell death,
consistent with previous findings from our group and oth-
ers that Mcl-1 plays a critical role in determining ABT-737
sensitivity."” Significantly, Mcl-1 down-regulation was sim-
ilar following exposure to INK128 alone or ABT-
737/INK128, whereas cell death was considerably more
pronounced with combined treatment. This suggests that
Mcl-1 down-regulation is not solely responsible for the
observed cell death, but may cooperate with Bcl-2 and Bcl-
xL inhibition. However, the observation that similar inter-
actions occurred with ABT-199, which inhibits Bcl-2 but

not Bcl-xL,' suggest that Bcl-2 inhibition may be particu-
larly important in some AML cells.

Recent studies have highlighted interactions between
anti- and pro-apoptotic Bcl-2 proteins in cell fate.”*
Combined INK128/ABT-737 treatment not only dimin-
ished Mcl-1 protein levels, but also markedly reduced Bax,
Bak, and Bim binding to Mcl-1 and Bcl-xL. Combined
treatment also significantly decreased Bax/Bcl-2 and
Bim/Bcl-2 binding, collectively leading to increased free
Bax, Bak, and Bim, culminating in apoptosis. This inter-
pretation is supported by evidence that Bax or Bak knock-
down, or ectopic expression of Mcl-1, Bcl-2, or Bel-xL, sig-
nificantly diminished INK128/ABT-737 lethality. Notably,
INK128 decreased Bak binding to Bcl-xL and Bax binding
to Bcl-2 and Bel-xL, consistent with our previous findings
with PISK inhibitors.” The mechanism underlying this
phenomenon could reflect the observed increase in Bim
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binding to Bcl-2 and Bcl-xL which would displace Bax and
Bak from these anti-apoptotic proteins. Together, these
findings support a model wherein INK128/ABT-737 co-
administration induces multiple perturbations that cooper-
atively induce cell death, including AKT inactivation,
4EBP1 dephosphorylation, Mcl-1 down-regulation, and
Bax, Bak, and Bim release from all the major pro-apoptotic
Bcl-2 members e.g., Bcl-2, Bel-xL, and Mcl-1.

Combined INK128/ABT-737 treatment significantly
increased cell death in primary blast specimens isolated from
multiple AML patients. These samples exhibited diverse
genetic aberrations including mutations in FLT3 (FLT3-ITD
or FLT3-D835H), Kras, IDH2 (R140Q, R172K), and NPAI1
(p-W288fs*12). Significant heterogeneity occurred in pri-
mary AML cell responses to this regimen, as with AML
lines, in that some specimens responded to very low ABT-
737 concentrations (e.g., 7.5 - 10 nM) while others required
significantly higher concentrations (e.g., 500 nM), although
the latter were equivalent to pharmacologically achievable
concentrations of the clinically relevant ABT-263. These
observations are consistent with previous reports from our
and other groups.”” The molecular basis for this hetero-
geneity is unknown, but may stem from intrinsic disparities
in Bcl-2 family protein expression as reflected by BH3-profil-
ing.®In this regard, AML cells with defined genetic back-
grounds e.g., MLL translocation or IDH1/2 mutations, are
highly sensitive to Bcl-2 inhibition.** Differential sensitivity
of cell lines and primary specimens to INK128 also occurred,
perhaps reflecting dependence of a particular leukemic cell
on the mTOR pathway and/or activation of compensatory
survival pathways.

Interestingly, ABT-737/INK128 regimen activity was, if
anything, more pronounced in CD34*/CD38/CD123*
populations enriched in leukemia progenitor cells than in
bulk blast populations. These findings are consistent with
evidence that primitive blast progenitors may be particu-
larly susceptible to Bcl-2/Bcl-xL inhibitors such as ABT-
737,% or to rapalogs’ when administered individually.

Despite pronounced resistance of Ba/F3 leukemia cells
expressing FLT3-ITD to the Bcl-2 antagonist ABT-737,
these cells were very sensitive to combined ABT-
737/INK128 exposure. Furthermore, FLT3-ITD F691L
mutants exhibiting marked resistance to FLT3 inhibitors
e.g., sorafenib or quizartinib were also susceptible to com-
bined treatment. The ability of INK128/ABT-737 to kill
leukemia cells regardless of upstream FLT3 status may
reflect disruption of critical cell survival factors
downstream of this genetic aberration. In this regard,
recent studies suggest that Mcl-1 represents a critical sur-
vival factor for FLT3-ITD leukemias.® It is noteworthy
that the INK128/ABT-737 regimen effectively killed
leukemia cells in the presence of a protective microenvi-
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ronment e.g., HS5 cells, suggesting that this regimen
might circumvent bone marrow stromal cell protective
effects, known to play an important role in leukemia cell
survival. Microenvironmental factors have also been pos-
tulated to contribute to leukemic cell resistance to various
therapies, including cytotoxic agents.” Moreover, the
PISK/mTOR inhibitor BEZ235 combined with the HDACI
panobinostat circumvented stromal cell resistance of dif-
fuse large B-cell lymphoma cells through a mechanism
involving Mcl-1 down-regulation and Bim up-regulation.”
Studies are currently underway to determine whether
such mechanisms are operative in the present setting.
Whatever the mechanism, the ability of the ABT-
737/INK128 regimen to trigger cell death and/or diminish
survival in AML cells co-cultured with stromal cells argues
that this strategy may be able to bypass survival signals
conferred by the microenvironment.

In vivo studies employing a mouse model bearing a sys-
temic U937 xenograft exhibiting tet-inducible Bcl-2 and Bcl-
xL dual knockdown demonstrated that disabling Bcl-2 and
Bcl-xL markedly increased INK128 anti-leukemic activity
and significantly prolonged survival. Furthermore
INK128/ABT-737 co-administration significantly reduced
leukemia growth and prolonged survival in a systemic
xenograft mouse model without exerting significant toxicity.
Such findings are concordant with evidence that both of
these agents preferentially target neoplastic cells, and partic-
ularly leukemia stem cells.””® Significantly, several
INK128/ABT-737 regimen actions observed in vitro were
recapitulated in a subcutaneous xenograft model, including
4EBP1 dephosphorylation, and Mcl-1 down-regulation. The
relative lack of toxicity i vivo is compatible with the obser-
vation that the INK128/ABT-737 regimen was minimally
toxic to normal CD34* cells at exposures that induced
marked cell death in their leukemic counterparts. Taken
together, these findings demonstrate that combined treat-
ment with INK128 and BH3-mimetics such as ABT-737
robustly kills diverse myeloid leukemia cells i1 vitro as well as
in vivo through a mechanism involving Mcl-1 down-regula-
tion and Bax/Bak activation. They also raise the possibility
that combining a dual mTORC1/mTORC?2 inhibitor such as
INK128 with a BH3-mimetic such as ABT-263 or ABT-199
may be particularly effective in the setting of AML.
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