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Transplantation of Macaca cynomolgus iPS-derived
hematopoietic cells in NSG immunodeficient mice

The use of iPSCs to generate hematopoietic stem/prog-
enitor cells (HSPC) is of considerable therapeutic interest,
as allogeneic HSPC transplantation is limited by the lack
of compatible donors, a high risk of engraftment failure
and GVHD. Efficacy and safety assessments are required
and non-human primates (NHP) are the most appropriate
animal model for preclinical validation. We generated
and characterized Macaca cynomolgus iPSCs (cy-iPSCs).
We assessed their capacity to differentiate in vitro, in the
presence of hematopoietic cytokines, and determined the
molecular signature triggered during hematopoietic dif-
ferentiation. We then investigated cy-iPSC-derived
hematopoietic cell engraftment in NSG mice, an essential
step before the scaling up of hematopoietic cell produc-
tion for autologous transplantation in monkeys.

Cynomolgus primary cells were refractory to standard
reprogramming techniques.! However, we were able to
reprogram them efficiently through two rounds of retro-
viral transduction with molecules known to improve
iPSC generation (a mixture of SB431542, PD0325901,
and thiazovivin, or VPA alone),” using the procedure
summarized in the Ounline Supplementary Figure S1. Cy-
iPSCs expressed the pluripotency marker alkaline phos-
phatase, SSEA4 and the endogenous factors NANOG,
REX-1, OCT3/4, SOX2, KLF4 and MYC. Several iPS
clones displayed incomplete silencing of the exogenous
genes, although all expressed the DNMT genes involved

in the de novo methylation of proviral DNA,® consistent
with previous reports* and with the known incomplete
silencing of the MSCV-derived vectors used here’ (Online
Supplementary Figure S2A-D,F). The teratomas developing
from cy-iPSCs contained tissues originating from the
three germ layers. DNA methylation studies showed the
OCT3/4 and NANOG promoters to be less methylated in
cy-iPSCs than in primary cells, which is consistent with
transcriptional activation. Cytogenetic analysis revealed a
normal female karyotype (42,XX) (Online Supplementary
Figure S2E, G, H).

We investigated the hematopoietic potential of three
clones in an embryoid body (EB) differentiation strategy.
They all produced hematopoietic cells with similar effi-
ciencies, despite the absence of exogenous gene silenc-
ing. Data are presented for cy-iPSC-cl29, which had the
lowest spontaneous differentiation rate during iPSC
expansion. At around day 15, EBs formed transparent
sac-like structures containing bright round cells, which
spilled into the supernatant over the course of several
days and were able to form hematopoietic colonies. We
performed FACS on cells obtained from EBs and super-
natants (Figure 1B-A,C). On day 4, the EBs contained 5%
CD34- cells. This proportion increased to 15% on day 8,
and 2-3% of these cells were CD34°CD31*CD45". As for
hESCs,’ the hematopoietic marker CD45 was not detect-
ed prior to day 10, and its expression level increased over
time, reaching 8% by day 21. CD11b myeloid cells were
detected on day 10 and accounted for 5% of cells on day
21 (Figure 1A). Only a few cells could be retrieved from
the supernatant before day 14 and were used for colony-
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Figure 1. In vitro cy-iPSC-cl29 differentiation and hematopoietic cell type characterization. (A) Expression of the NHP hematopoietic mark-
ers CD34, CD31, CD45, CD11B and CD14, assessed by flow cytometry on single cells prepared as indicated in B, from EBs (top) or the
supernatant (bottom), on days 2, 4, 5, 7, 10, 12, 14, 16, 18, 21 and 23 of differentiation. (B) Typical images of cy-iPSC-derived EBs releas-
ing hematopoietic cells into the supernatant. (C) Representative FACS studies on the supernatant, after 14 days of differentiation. (D)
Number of hematopoietic progenitors per 10° unsorted EB (top) or supernatant (bottom) cells obtained on the same days as in C. A mag-
nification is shown on the right panel, using a different scale. The data shown are the means of three independent experiments.
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forming unit (CFU) assays. On day 14, the CD45" popu-
lation accounted for 80% of the cells, 65% of which were
CD45*CD34*. The stem/progenitor marker CD34 was
gradually lost, with 40 to 45% of cells identified as
CD45*CD34* on day 23. These cells also expressed the
monocyte/macrophage markers CD11b and CD14
(Figure 1A-C). In CFU assays, many more hematopoietic
colonies developed from supernatants than from EBs
cells, which is consistent with cytometry data. Myeloid
colonies were the most abundant in both cases, with
higher proportions of CFU-M and BFUes in EBs and
supernatants, respectively (Figure 1D). We investigated
the timing of hemato-endothelial and hematopoietic cell
development during cy-iPSC-cI29 differentiation. At
around day 5, a population expressing hemato-endothe-
lial markers (CD34°CD31%) and accounting for 2.4% of
living cells appeared, together with bipotent hemato-
endothelial progenitors (CD34*CD31*CD144*VEGE-
R2*CDA45-) described as hemogenic precursors.’ Indeed,
0.3% of cells were CD31*VEGF-R2*, and 80% of these
cells were CD144*CD34*. A hematopoietic CD34°CD45"
population first detected on day 10 gradually expanded
(Online Supplementary Figure S3). We investigated the spe-
cific gene expression profiles of EB and supernatant cells
at different time points. Expression was compared with
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that in undifferentiated cy-iPSCs (day 0). On day 2, EB
cells strongly expressed Brachyury due to BMP4-mediated
mesoderm formation. CDX4, encoding an upstream reg-
ulator of HOX genes, was induced on day 2 and
repressed after day 7. Expression of VEGF-R2 and ERG
peaked on day 4, subsequently decreasing until day 7 and
remaining stable thereafter. There were two waves of
GATA-2, SCL/TAL-1, Fli-1 and Tie1 gene expression, the
first beginning on day 2 and peaking on day 4 and the
second beginning on day 10 and peaking at around day
21. The concomitant expression of the VEGF-R2, GATA-
2, SCL, FLi-1 and Tief genes corroborates the detection of
CD144:CD34'*CD31*VEGF-R2" cells at around day 5 and
is consistent with efficient differentiation into hemato-
endothelial cells, as demonstrated for hESCs.*' PU-1
and RUNX-1 were induced on day 8, with expression
peaking on day 18. CEBPa. expression increased from
day 4, peaking on day 21. GATA-1 was induced after day
15, whereas MYB was not expressed in EB cells (Figure
2A). EB-derived CFU-M and CFU-G activities were corre-
lated with the expression of PU.1, FLi-1 and CEBPa,
whereas BFU-E erythroid colonies were correlated with
the second wave of SCL, GATA-1, FLi-1 and RUNX-1
expression. Gene expression analysis was also performed
on cells recovered from supernatants, but only for days
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Figure 2. Analysis of gene expression during blood development. (A). Gene expression, analyzed by real-time RT-qPCR, for EB-derived cells
ondays 2, 4,5, 7,10, 12, 14, 18, 21 and 23, with specific TagMan probes for the Brachyury, CDX4, GATA-2, VEGF-R2, Tiel, SCL, GATA-1,
RUNX-1, PU.1, ERG, MYB, CEBPo. and FLI1 genes. Green, red and blue lines correspond to three independent experiments on cy-iPSC-cl-
29. (B). An experiment similar to that shown in A, performed on EB supernatant cells, on days 18 and 21 (purple line). The results are
compared with those for EB-derived cells of the same age (orange line). One representative experiment is shown. The numbers on the y
axis of A and B indicate the relative fold-change in expression with respect to undifferentiated iPSCs (day 0), after normalization with

GAPDH. Different scales are used in A and B.
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18 and 21, and compared with those measured in EB cells
and undifferentiated (day 0) cells. Brachyury and CDX4
were less strongly expressed than in day 2 EB cells. By
contrast, the hemato-endothelial genes GATA-2, SCL,
RUNX-1, MYB, PU-1, CEBP, FLi-1, Tie-1 and GATA-1
were more strongly expressed than in EB cells (Figure 2B),
demonstrating the hematopoietic nature (>90%) of the
cells, and confirming FACS and CFU results. Levels of
MYB-1 and RUNX-1 expression were consistent with a
definitive hematopoietic fate'"'” and the high proportion
of CD45" cells.

We investigated the engraftment potential of cy-iPSC-
derived day 17 EB and supernatant cells in NSG mice. We
overcame possible homing issues by performing both
intrafemoral and retro-orbital injections. 8 of the 10 mice
receiving 10° unsorted cells (including 10-15%
CD34*CD45* cells) injected into the right femur (RF) dis-
played up to 0.53% specific NHP-CD45* cell engraftment
in the RF, whereas engraftment of very small numbers of
these cells was observed in only three left femurs (LFs),
suggesting that cy-iPSC derivatives have a poor homing

capacity (Figure 3A,A"). This observation was confirmed
by the absence of engraftment in all mice receiving cy-
iPSC derivatives by retro-orbital injection (data not
shown). NHP cells were not detected in mice analyzed 12
weeks after transplantation, indicating that engraftment
capacity was transient, as described for mouse and
human ES/iPSCs."*" Surprisingly, the intrafemoral injec-
tion of an equivalent number of cynomolgus bone mar-
row (BM) CD34* cells did not result in higher engraft-
ment rates than for cy-iPSC derivatives in NSG mice,
although almost all the RLs and LFs displayed engraft-
ment (Figure 3A). The injection of as few as 5x10* human
cord blood CD34* cells into NSG mice was sufficient to
obtain up to 70% engraftment (data not shown), suggest-
ing that the weak hematopoietic engraftment observed
was specific to monkey-derived cells. In all RFs contain-
ing NHP-CD45* cells from mice receiving hematopoietic
cy-iPSC derivatives or Cyno BM CD34" cells, we detected
B-lymphoid (CD45*CD20%), myeloid (CD45°'CD14*,
CD45*CD11b") and unidentified hematopoietic cells
(CD45*CD20CD14CD11b’), but no T-lymphoid cells,
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Figure 3. Engraftment of cy-iPSC derivatives in NSG mice. (A) Transplantation of 10° unsorted cells obtained from cy-iPSC-derived day-17
EBs, into the right femurs (RFs) of 10 mice. Same number of freshly sorted cynomolgus bone marrow (BM) CD34" cells transplanted into
the RFs of 5 mice. Eight to 10 weeks after transplantation, cells were recovered from the RF and left femur (LF), stained with two specific
antibodies against NHP-CD45 and mouse-CD45, and analyzed by flow cytometry. We subjected BM from two untreated mice (Ctrl) to the
same antibody staining protocol and determined the threshold (dotted line) for NHP-CD45 positivity, which was set to 0.01%. A flow cytom-
etry image for representative mice is provided in the Online Supplemental Figure S4. (A'). Flow cytometry results of 3 representative right
femurs of mice engrafted with NHPCD45* mCD45- cells, following transplantation with cy-iPSC-derived day-17 EBs. Cells from untreated
mice were subjected to the same antibodies (NSG Ctrl). Isotype control antibodies were also included to determine the amount of back-
ground signal (Iso Ctrl). (B). Distribution of cynomolgus myeloid (CD11b* and CD14"), B-lymphoid (CD20*) and unidentified hematopoietic
(CD20-CD14-CD11b") cells among specific NHP CD45* cells, as detected in the RFs of mice receiving injections of cy-iPSC derivatives (left
panel) or cynomolgus BM CD34" cells (right panel). Each bar corresponds to one mouse with no specific order of the mice. (C). Proportion
of NHP DNA in the total BM DNA retrieved from the right (R) and left (L) femurs of mice receiving injections of cy-iPSC derivatives. We per-
formed qPCR with probes specific for the MIGR vector used for cy-iPSC derivation and mouse actin DNA.
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which indicates the absence of definitive HSCs, although
they have been shown to be underrepresented in NSG
mice" (Figure 3B; Online Supplementary Figure S4). We
confirmed the presence of monkey cells in mice by quan-
titative PCR and showed that all femurs containing NHP-
CD45" cells, except one LF, tested positive for the specific
probe. NHP-DNA accounted for 0.75% to 11% of total
mouse BM DNA (Figure 3C). No overall correlation was
found between NHP-CD45* cell percentages and NHP-
DNA content in pairwise comparisons (P=0.15). The high
levels of NHP-DNA detected suggest that there may also
be non-hematopoietic NHP cells (endothelial or mes-
enchymal) in mouse BM. We were also able to identify
Macaca hematopoietic progenitors in mice receiving cy-
iPSC derivatives. Cells from two RFs containing NHP-
CD45+ cells were plated on methylcellulose and 100
colonies were analyzed by quantitative PCR: 16% and
1% were NHP-specific (data not shown).

We show herein that cy-iPSCs can yield hematopoietic
engraftment in a cytokine-stimulation protocol.
However, the absence of long-term engraftment indicates
a lack of definitive HSCs, and highlights the need for an
appropriate environment (niche and cytokines) to allow
the development and efficient engraftment of these cells.
Macaca nemestrina iPSCs cocultured on endothelial cells
overexpressing JAG1 or DLL4 Notch ligands have recent-
ly been shown to generate HSCs with long-term engraft-
ment capacity in immunodeficient mice.’ It was suggest-
ed that a vascular niche expressing JAG1/DLL4 activated
Notch signaling in hemangioblastic cells, upregulating
the GATA-2 and RUNX1 genes, mediating endothelial-to-
hematopoietic transition and the emergence of definitive
HSCs. In our specific cytokine-induced hematopoietic
cells, a hemangioblastic population emerged and
hematopoietic genes, including GATA-2 and RUNX1,
were activated, consistent with Gori's model; however,
short-term engraftment was weaker as compared to their
cytokine-induced strategy and there was no long-term
engraftment. In the absence of additional modifications,
autologous transplantation will undoubtedly provide the
most appropriate niche for evaluating the hematopoietic
potential of cy-iPSCs.
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