BRCC3 mutations in myeloid neoplasms

Dayong Huang,^{1,2*} Yasunobu Nagata,^{3*} Vera Grossmann,⁴ Tomas Radivoyevitch,⁵ Yusuke Okuno,³ Genta Nagae,⁶ Naoko Hosono,² Susanne Schnittger,⁴ Masashi Sanada,³ Bartlomiej Przychodzen,² Ayana Kon,³ Chantana Polprasert,² Wenyi Shen,² Michael J. Clemente,² James G. Phillips,² Tamara Alpermann,⁴ Kenichi Yoshida,³ Niroshan Nadarajah,⁴ Mikkael A. Sekeres,⁷ Kevin Oakley,⁸ Nhu Nguyen,⁸ Yuichi Shiraishi,⁹ Yusuke Shiozawa,³ Kenichi Chiba,⁹ Hiroko Tanaka,¹⁰ H. Phillip Koeffler,^{11,12} Hans-Ulrich Klein,¹³ Martin Dugas,¹³ Hiroyuki Aburatani,⁶ Satoru Miyano,^{9,10} Claudia Haferlach,⁴ Wolfgang Kern,⁴ Torsten Haferlach,⁴ Yang Du,⁸ Seishi Ogawa,³ and Hideki Makishima^{2,3}

¹Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; ²Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA; ³Department of Pathology and Tumor Biology, Kyoto University, Japan; ⁴Munich Leukemia Laboratory (MLL), Germany; ⁵Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA; ⁶Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Japan; ⁷Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, OH, USA; ⁸Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; ⁹Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan; ¹⁰Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan; ¹¹Department of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; ¹²Cancer Science Institute of Singapore, National University of Singapore; and ¹³Institute of Medical Informatics, University of Münster, Germany

*DH and YN contributed equally to this work.

©2015 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2014.111989 Manuscript received on June 9, 2014. Manuscript accepted on May 12, 2015. Correspondence: makishimah@gmail.com

Supplementary Materials

- 1. Supplementary methods (page 2)
- 2. Supplementary tables (pages 3-5)
- 3. Supplementary figures (pages 6-12)

Supplementary Methods

Quantitative real time-PCR

Total RNA was extracted from cells and cDNA was synthesized from total RNA using the SuperScript III First-Strand Synthesis System (Invitrogen). Quantitative gene expression levels were detected using real-time PCR with the ABI PRISM 7500 Fast Sequence Detection System and FAM dye labeled TaqMan MGB probes (Applied Biosystems). The expression level of target genes was normalized to the *GAPDH* mRNA.

Flow Cytometry

Flow cytometry analysis of mouse bone marrow samples were performed using BD LSRII flow cytometer. Bone marrow cells were stained with antibodies against markers for myeloid (Gr-1, c-Kit) lineages.

Supplementary Tables

Supplementary Table S1. Diagnosis of enrolled cases (N=1778)

Diagnosis	Whole exome / target deep sequencing (n=1444)	Single nucleotide polymorphism-array (SNP-A) (n=677)	Total
MDS	1114	286	1299
Low risk	652	126	721
RA / RCUD / RCMD / 5q- / MDS-U	548	93	599
RARS	104	33	122
High risk	462	160	578
RAEB-1, 2	427	76	478
Secondary AML	35	84	100
MDS/MPN	94	90	148
CMML-1, 2 / aCML	43	56	77
MDS/MPN-U	13	19	27
RARS-T	38	15	44
MPN	23	20	40
CML / CEL / CNL	6	4	10
PV	2	2	4
ET	1	1	2
PMF	14	13	24
Primary AML	210	274	283
Treatment related (tMDS/tAML)	3	7	8

SNP-A, single nucleotide polymorphism-array;

MDS, myelodysplastic syndromes; RA, refractory anemia, RCUD, refractory cytopenia with unilineage dysplasia; RCMD, refractory cytopenia with multilineage dysplasia; 5q-, MDS with isolated del(5q); MDS-U, MDS unclassifiable; RARS, refractory anemia with ring sideroblasts; MDS/MPN, myelodysplastic/myeloproliferative neoplasms; CMML, chronic myelomonocytic leukemia; aCML, atypical chronic myeloid leukemia; MDS/MPN-U, MDS/MPN unclassifiable; RARS-T, RARS associated with marked thrombocytosis; CML, chronic myeloid leukemia; CEL, chronic eosinophilic leukemia; CNL, chronic neutrophilic leukemia; PMF, primary myelofibrosis; PV, polycythemia vera; ET, essential thrombocythemia; AML, acute myeloid leukemia.

Supplementary Table S2. Gene annotation of affected genes associated with BRCA1-A complex

Gene	Annotation
BRCC3	NM_001018055
UIMC1	NM_001199297
BABAM1	NM_001033549
FAM175A	NM_139076

Supplementary Table S3. Somatic mutations of the genes associated with BRCA1 A and BRISC complex.

Case	Gene	Nucleotide change	Amino acid change
1	UIMC1	c.A1847G	p.K616R
2	BABAM1		Splice site
3	FAM175A	c.C377T	p.S126L

Supplementary Figure S1. *BRCC3* mRNA expression in the cases either with or without deletion of *BRCC3* locus. N.S. = not significant.

N.S.; not significant

Supplementary Figure S2. Comparison of BRCC3 mRNA expression between genders. N.S. = not significant.

Supplemental Figure S3. *BRCC3* mRNA expression in various hematopoietic tissues. Relative expressions of mRNA of *BRCC3* in hematopoietic cells were extracted using a GeneAtlas U133A expression array analysis in BioGPS (http://biogps.org/).

Supplementary Figure S4. Effect of *BRCC3* mutations on clinical outcomes. Kaplan-Meier (K-M) and Cox regression hazard model comparison of the overall survival between patients with *BRCC3* mutations and patients with wild-type in *BRCC3*.

Supplementary Figure S5. Flow cytometry analysis of surface markers in murine LSK cells. The surface expressions of c-Kit and Gr-1 on murine LSK cells with *Brcc3* knockdown and mock experiments were measured by flow cytometry.

Supplementary Figure S6. Deletion lesions of BRCA1 A and BRISC complex genes other than *BRCC3*. SNP-A karyotyping analyses demonstrate the deleted lesions of *UIMC1* (A) and *FAM175A* (B), which are encoding the component proteins of BRCA1 A and BRISC complex.

Supplementary Figure S7. Comparison of *UIMC1* mRNA expression in cases with and without deletion of *UIMC1* locus.