Post-transplant molecularly defined Burkitt lymphomas are frequently *MYC*-negative and characterized by the 11q-gain/loss pattern

Julio Finalet Ferreiro,¹ Julie Morscio,² Daan Dierickx,³ Lukas Marcelis,² Gregor Verhoef,³ Peter Vandenberghe,¹ Thomas Tousseyn,² and Iwona Wlodarska¹

¹KU Leuven, University of Leuven, Center for Human Genetics; ²KU Leuven, University of Leuven, Translational Cell and Tissue Research and KU Leuven, University Hospitals Leuven, Department of Pathology; and ³KU Leuven, University Hospitals Leuven, Department of Hematology, Belgium

Supplementary information

Supplementary Methods

Cytogenetics and FISH

G-banding chromosomal analysis and fluorescence *in situ* hybridization (FISH) followed routine methods. DNA probes, Bacterial Artificial Clones (BAC), applied for FISH were selected from <u>www.Oct29012.archive.ensembl.org</u> (Supplementary Figure 2). The probes were labeled with SpectrumOrange- and SpectrumGreen-d-UTP (Abbott Molecular, Ottigne, Belgium) using random priming. FISH images were acquired with a fluorescence microscope equipped with an Axiophot 2 camera (Carl Zeiss Microscopy, Jena, Germany) and a MetaSystems ISIS imaging system (MetaSystems, Altlussheim, Germany). In each experiment up to 8 abnormal metaphases and/or 200 interphase cells were evaluated.

High resolution array Comparative Genome Hybridization (aCGH)

Total genomic DNA was isolated from fresh frozen lymphoma samples using standard procedures. Genomic profiling, following the manufacturer's protocols, was performed using the Affymetrix Cytogenetic array 2.7M (www.affymetrix.com). The initial data analysis was performed with the software "Chromosome Analysis Suit" (CHAS) and subsequent analysis (segmentation and aberration heatmap) were performed using the software "ArrayStudio" (www.omicsoft.com). Array CGH data are available at GEO (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE64086).

Gene Expression profiling and pathway analysis

Total RNA extraction was performed using TRIzol LS Reagent (Life Technologies Europe B.V., Gent, Belgium). The HG-U133 Plus 2.0 Affymetrix platform (www.affymetrix.com) was used and the raw data (CEL files) were normalized using the GeneChip-Robust Multiarray Averaging (GC-RMA) algorithm. Hierarchical clustering was applied to detect relationship in the data and to identify outliers. To find differentially expressed genes, the General Linear Model (GLM) module of ArrayStudio was used for inference analysis. (www.omicsoft.com). Gene expression data are available at GEO (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE64086).

The cases were classified using two molecular gene signatures of BL described by Hummel *et al.* 2006¹ and Dave *at al.* 2006.² As a control group, we selected 29 previously studied cases of DLBCL

which were analyzed with the same Affymetrix platform.³ To group the cases using hierarchical clustering, we used the Ward and Manhattan methods for the linkage and distance, respectively. The clustering of the probes was done using complete link and Pearson's correlation (see details: http://www.arrayserver.com/wiki/index.php?title=HierarchicalClustering).

To identify 11q genes dysregulated in ID-BL with 11q-gain/loss pattern (11q+/-), we performed inference analysis comparing three cases with 11q+/- *versus* four cases of *MYC*-translocation positive BL (t(MYC)). To find significant enriched pathways and biological functions in ID-BL with 11q+/-, we uploaded the result of the inference analyses into the "Ingenuity Pathway Analysis" application (IPA, www.ingenuity.com). From the three confidence levels provided by the system, we used "Experimentally observed" and "Highly predicted" data. For details see: http://ingenuity.force.com/ipa/articles/Tutorial/Tutorials.

Statistical analysis

Association between categorical variables was tested by the Fisher's exact test. *P*-value <0.005 was considered statistically significant.

Immunohistochemistry and chromogenic in situ hybridization

Immunohistochemical stainings were performed on paraffin-embedded sections. All antisera were ready to use antibodies purchased from DAKO (DAKO, Carpinteria, USA) except for C-MYC (Y69, Epitomics, Abcam, Burlingame, CA, USA) and stained in automated fashion according to the manufacturer's recommendations. IHC results were visualized using the OptiView DAB IHC Detection Kit (Ventana, Oro Valley, Tucson, Arizona). Image acquisition was done through a Leica microscope at 200x and 100x magnification. Images were assembled using Adobe Photoshop CS5. Chromogenic EBER (EBV-encoded RNA) in situ hybridization is considered the standard for diagnosis of EBV-infection and was performed using a 30-mer digoxigenin-labeled oligonucleotide probe (Research Genetics, Huntsville, AL), according to manufacturer's instructions. A control poly-A probe (Ventana Roche, Arizona USA) was used to check for RNA integrity and a proven EBV-driven lymphoma was used as a positive control.

Supplementary references

- 1. Hummel M, Bentink S, Berger H, et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419-2430.
- Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt's lymphoma. N Engl J Med. 2006;354(23):2431-2442.
- Morscio J, Dierickx D, Ferreiro JF, et al. Gene expression profiling reveals clear differences between EBV-positive and EBV-negative posttransplant lymphoproliferative disorders. Am J Transplant. 2013;13(5):1305-1316.
- Salaverria I, Martin-Guerrero I, Wagener R, et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123(8):1187-1198.

Supplementary Figure 1

Supplementary Figure S1. Validation of the molecular features of 11 studied BL cases. Hierarchical clustering using the BL signatures from Hummel *et al.* 2006¹ (A) and Dave et al.² (B). All cases clustered together and were separated from 19 IC-DLBCL and 10 PT-DLBCL.³ These data were collected from our microarray experiment in which we used the HG-U133 Plus 2.0 Affymetrix platform. In this platform the gene annotation is based on the genome build Hg19. Supplementary Figure 2

Supplementary Figure S2. Design of the 11q-MGR/MLR FISH assay. (A) View of chromosome 11 with the indicated 11q23.3qter region; (B) 11q imbalances detected by aCGH in case 6, which showed the smallest region of gain (~4 Mb); (C) Selected bacterial artificial chromosome (BAC) clones (www.Oct2012.archive.ensembl.org) and their genomic localization. Note that the assay comprises three MGR-related BAC clones (labeled with SpectrumOrange-d-UTP, shown in red-scale) representing three differentially gained areas in case 6 and two clones spanning *FL11* (labeled with SpectrumGreen-d-UTP, shown in green), the gene targeted by biallelic deletion on one case reported by Salaverria et al.⁴

Supplementary Figure S3. Expression value of selected genes. Normalized signal values of array probes covering *USP2, ETS1, PAFAH1B2, FLI1* and *MYC*. The p-value and the "corrected-for-multiple-testing" p-value (FDR) are provided for the individual probes.

Supplementary Figure 4

Supplementary Figure S4. Morphology and immunophenotype of ID-mBL. Images in the top and bottom rows represent *MYC*-translocation-positive case 4 and case 5 with the 11q-gain/loss pattern, respectively. (A) and (G), hematoxilin&eosin staining. In the remaining images, examples of immunohistochemistry for CD20 (B and H), CD10 (C and I), BCL2 (D and J), MYC (E and K) and Ki67 (F and L). The images were taken at 200x and then scaled.

Supplemental Table S1. Differentially expressed genes in MGR (red) and MLR (green).

			11q+/- vs t[MYC]	11q+/- vs t[MYC]				
probe set id	Gene Symbol	Gene Title	FoldChange	PValue	Chromosome	Start	End	Chromosomal band
224777_s_at	PAFAH1B2	platelet-activating factor acetylhydrolase 1b, catalytic subunit 2 (30kDa)	1,5121	7,88E-05	chr11	117015043	117041759	chr11q23
202038_at	UBE4A	ubiquitination factor E4A	2,1626	0,0335	chr11	118230358	118269922	chr11q23.3
208745_at	ATP5L	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G	1,8159	0,0432	chr11	118272103	118280562	chr11q23.3
208746_x_at	ATP5L	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G	1,5583	0,0282	chr11	118272320	118279908	chr11q23.3
210453 x at	ATP5L	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G	1,5499	0,0342	chr11	118272321	118279914	chr11q23.3
207573 x at	ATP5L	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G	1,5705	0,0358	chr11	118272330	118279910	chr11g23.3
218483 s at	IFT46	intraflagellar transport 46 homolog (Chlamydomonas)	2,3249	0,0091	chr11	118415260	118436714	chr11g23.3
201176 s at	ARCN1	archain 1	2,7523	0,0114	chr11	118443147	118473613	chr11g23.3
225549 at	DDX6	DEAD (Asp-Glu-Ala-Asp) box helicase 6	1.3804	0.0222	chr11	118500744	118620182	chr11q23.3
227208 at	CCDC84	coiled-coil domain containing 84	2.6342	0.0394	chr11	118883892	118889035	chr11q23.3
200091 s at	RPS25	ribosomal protein S25	1.3548	0.0359	chr11	118886429	118889326	chr11q23.3
203292 s at	VPS11	vacuolar protein sorting 11 homolog (S. cerevisiae)	2.2357	0.0177	chr11	118938492	118952675	chr11q23
213344 s at	H2AFX	H2A histone family member X	1 8155	0.0209	chr11	118964583	118965076	chr11q23 3
205436 s at	H2AFX	H2A histone family, member X	2 0447	0.0427	chr11	118964586	118966177	chr11q23 3
203 150_5_ut	C2CD2I	C2CD2-like	1 71	0.0475	chr11	118978783	118989043	chr11a23 3
206495 s at	HINEP	histone H4 transcription factor	3 211	0.0171	chr11	118997642	119005764	chr11a23 3
1553695 a at	NI RX1	NIR family member X1	2 2767	0.021	chr11	119039439	119054725	chr11a23 3
219680 at	NI RY1	NLR family member X1	2,2707	0,021	chr11	119045428	119054723	chr11q23.3
219000_at	CRI	Chl proto-opcogene. E2 ubiguitin protein ligase	2,2703	0,0010	chr11	110171122	110172744	chr11q23.3
223010_at	CBL	Chi proto-oncogene, E2 ubiquitin protein ligase	2,0057	0,0240	chr11	110175/01	110170057	chr11a22.2
225251_at	CBL	Chi proto-oncogene, E2 ubiquitin protein ligase	1 0970	0,0272	chr11	110175481	110178857	chr11a22.2
223234_at		ubiquitin specific poptidace 2	25 2407	0,0275	chr11	110225024	110226401	chr11a22.2
229557_dl		ubiquitin specific peptidase 2	1 272	0,0118	chr11	119223924	119220401	chr11a22.2
207211_dl		ubiquitin specific peptidase 2	1,372	0,0399	chr11	11922/511	119234629	chr11q23.3
207213_3_dt	03F2 7NF202	abiquitii specific peptidase 2	2,0264	0,0144	chill chr11	119227511	119234029	chi 11q23.3
204327_S_dl		zinc finger protein 202	-2,0204	0,0080	chr11	123594034	123012325	chir11q23.3
204329_S_dl	ZNFZUZ	zinc linger protein 202	-1,7887	0,034	chr11	123394034	123012325	chir11q23.3
223019_dl	TDRG1	transforming growth factor beta regulator 1	-1,0204	0,0219	chr11	124492775	124502054	ciii 11q24.2
230320_at	IBRG1	transforming growth factor beta regulator 1	-1,4489	0,0304	chr11	124504861	124505294	cnr11q24.2
235054_dl		transmembrane protein 218	-1,0734	0,0319	chr11	124905539	124900001	chir11q24.2
220073_dl		transmembrane protein 218	-1,0272	0,024		124900570	124981004	chir11q24.2
208289_s_at	EIZ4	etoposide induced 2.4 mRNA	-1,0532	0,0395	chr11	125439411	125454575	cnr11q24
216396_s_at	EIZ4	etoposide induced 2.4 mRNA	-1,7454	0,0167	chr11	125452532	125454124	cnr11q24
202223_at	STI3A	STT3, subunit of the oligosaccharyltransferase complex, homolog A (S. cerevisiae)	-1,9276	0,0081	chr11	125462741	125490953	
2212//_s_at	PUS3	pseudouridyiate synthase 3	-1,9179	0,004	chr11	125/633/9	125766209	chr11q24.2
225398_at	RPUSD4	RNA pseudouridylate synthase domain containing 4	-2,1666	0,0062	chr11	1260/1990	126081531	chr11q24.2
223386_at	FAMILISB	ramily with sequence similarity 118, member B	-1,5259	0,0477	chr11	126081698	126132460	cnr11q24.2
223128_at	FOXRED1	FAD-dependent oxidoreductase domain containing 1	-1,8328	0,0025	chr11	126139054	126148026	chr11q24.2
1552804_a_at	TIRAP	toil-interieukin 1 receptor (TIR) domain containing adaptor protein	-1,4053	0,0153	chr11	126153001	126163130	chr11q24.2
218//4_at	DCPS	decapping enzyme, scavenger	-2,0301	0,0227	chr11	1261/3969	126215644	chr11q24.2
224833_at	EIS1	v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)	-1,402	0,0027	chr11	128328659	128332010	chr11q23.3
1555355_a_at	EISI	v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)	-1,3274	0,0412	chr11	128331389	128392160	chr11q23.3
214447_at	ETS1	v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)	-1,3826	0,0064	chr11	128332071	128392248	chr11q23.3
214875_x_at	APLP2	amyloid beta (A4) precursor-like protein 2	-1,6967	0,049	chr11	129979330	130014283	chr11q24
202005_at	ST14	suppression of tumorigenicity 14 (colon carcinoma)	-1,9629	0,0261	chr11	130029839	130080256	chr11q24-q25
216905_s_at	ST14	suppression of tumorigenicity 14 (colon carcinoma)	-2,0863	0,0067	chr11	130058086	130080256	chr11q24-q25
226148_at	ZBTB44	zinc finger and BTB domain containing 44	-1,8138	0,0349	chr11	130100253	130131329	chr11q24.3
220243_at	ZBTB44	zinc tinger and BTB domain containing 44	-2,3587	0,0376	chr11	130108974	130184321	chr11q24.3
202358_s_at	SNX19	sorting nexin 19	-1,3925	0,0414	chr11	130745773	130786362	chr11q25
202359_s_at	SNX19	sorting nexin 19	-1,5302	0,048	chr11	130745774	130786362	chr11q25
1554986_a_at	SNX19	sorting nexin 19	-1,4202	0,0304	chr11	130775552	130786344	chr11q25
212789_at	NCAPD3	non-SMC condensin II complex, subunit D3	-1,6052	0,0363	chr11	134022339	134093868	chr11q25
221669_s_at	ACAD8	acyl-CoA dehydrogenase family, member 8	-1,3771	0,0254	chr11	134123464	134135555	chr11q25