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Supplementary methods

Cell lines

The HLA class I-deficient target cell line K562 was grown in DMEM (Gibco, CA,

USA) supplemented with 10% FBS and 1% Penicillin/Streptomycin/L-Glutamine

(Gibco).

Annexin V apoptosis assay

Apoptosis of NK cells in MDS patients and healthy age-matched donors was

determined using the Annexin V detection Kit (Biolegend). Briefly, PBMCs were

stained with fluorescence-labeled CD56 and CD3 surface marker. After washing

with PBS, Annexin V-FITC and 7-AAD was added. Apoptotic NK cells were

identified as Annexin V+ 7-AAD- NK cells by flow cytometry.

KIR genotyping

Genomic DNA was isolated from blood of MDS patients and healthy age-

matched donors via QiaAmp DNA Blood Mini Kit (Qiagen). KIR genotyping was

performed by polymerase chain reaction with sequence specific primer (PCR-

SSP) as reported previously.1

NK cell stimulation

1x105 CD3-depleted PBMC (CD3 Microbeads, Miltenyi Biotech) were incubated

in a 24-well tissue culture plate with 1x105 irradiated K562 and 1x106 irradiated

feeder PBMC (pooled from 3 different donors) with 1000 U/ml IL-2 in RPMI

1640, 10% FBS and 5% human serum type AB. Medium was exchanged every

two days with fresh medium.

1. Vilches C, Castano J, Gomez-Lozano N, Estefania E. Facilitation of KIR genotyping by a

PCR-SSP method that amplifies short DNA fragments. Tissue Antigens. 2007;70(5):415-422

.



Supplementary figure legends:

Figure S1: Decreased frequency of NK cells in MDS patients. Frequency of

NK cells (CD56+CD3-) in healthy adult donors (n=116; age 18-50) compared to

MDS patients (n=75). Statistical significance was determined by two-tailed t-test

(***p˂0.001).

Figure S2: Correlation between frequency of NK cells and cytotoxicity in

MDS patients. Specific lysis of K562 is plotted versus frequency of NK cells

among PBMC of MDS patients (linear regression analysis, p=0.136).

Figure S3: Reduced IFN-ɣ production in MDS patients. Intracellular IFN-ɣ

production by IL-2-stimulated NK cells after co-culture with K562 in patients

(n=10) and healthy age-matched donors (n=7). Statistical significance was

determined by two-tailed t-test (*p˂0.05).

Figure S4: Association between cytotoxicity and levels of granzyme B and

perforin in MDS patients. NK cells of 5 MDS patients and one healthy age-

matched donor were enriched to 80-90% purity (EasySep™ Human NK Cell

Enrichment Kit, Stemcell Technologies). Cytotoxicity as well as intracellular

staining of granzyme B and perforin were performed as described in the

Methods section. Filled dots represent patients with low NK cell function

(specific lysis of K562 <20%) and open dots patients with normal NK cell

function (specific lysis of K562 ≥20%). The open triangle represents a healthy

age-matched controls with normal NK cell function. (linear regression analysis,

p=0.0019).

Figure S5: Annexin V-determined apoptosis of CD56dim and CD56bright NK

cell. PBMC of MDS patients (n=20) and healthy age-matched donors (n=13)

were thawed. Annexin V apoptosis assay was performed and the frequency of



apoptotic cells (Annexin V+7-AAD-) was determined in the CD56dim (A) and

CD56bright NK cell (B). (C) Correlation between frequency of apoptotic NK cells

and absolute number of NK cells in MDS patients (linear regression analysis,

p=0.585).

Figure S6: KIR repertoires in MDS patients and healthy age-matched

donors according to presence of group A and B haplotypes. Frequency of

16 KIR (KIR2DL1, KIR2DL2/3 and KIR3DL1) and NKG2A receptor

combinations, ordered according to number of expressed receptors in MDS

patients (A/A: n=10, B/x: n=20) and healthy age-matched donors (A/A: n=6, B/x:

n=14) with A/A haplotype (A) and B/x haplotype (B). Statistical significance was

determined by two-tailed t-test (*p˂0.05, **p˂0.01).

Figure S7: Increased expression of CD62L on NK cells in MDS. Surface

expression of CD57, CD62L, NKG2D, NKp30 and CD16 on NK cells of MDS

patients (n=16) and healthy age-matched donors (n=10). Statistical significance

was determined by two-tailed t-test (*p˂0.05).

Figure S8: Expression of CD16 on CD56dim and CD56bright NK cells.

Frequency of CD16 on CD56dim and CD56bright NK cells of 15 MDS patients and

5 healthy age-matched controls. Statistical significance was determined by two-

tailed t-test (*p˂0.05).

Figure S9: Reduced granzyme B and perforin content in CD107+ NK cells

of MDS patients. Box plots showing frequencies of granzyme B (A) and

perforin (B) expressing NK cells when restricting analysis to the CD107+ subset.

Intracellular granzyme B and perforin were analyzed in CD56+CD107+ cells

following stimulation with K562. Statistical significance was determined by two-

tailed t-test (*p˂0.05, **p˂0.01, ***p˂0.001).
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