The optimized anti-CD20 monoclonal antibody ublituximab bypasses natural killer phenotypic features in Waldenström macroglobulinemia

Magali Le Garff-Tavernier,^{1,2,3} Linda Herbi,^{1,2,4} Christophe de Romeuf,⁴ Nabih Azar,⁵ Damien Roos-Weil,^{1,5} Patrick Bonnemye,³ Rémi Urbain,⁴ Véronique Leblond,^{1,5} Hélène Merle-Beral,^{1,3,6*} and Vincent Vieillard^{1,2,7*}

*HMB and VV contributed equally to this manuscript.

¹Sorbonne Universités, UPMC, Univ Paris 06, Paris; ²INSERM U1135, CIMI-Paris; ³AP-HP, Hôpital Pitié-Salpêtrière, Service d'Hématologie Biologique, Paris; ⁴Laboratoire Français de Fractionnement et des Biotechnologies (LFB), Les Ulis; ⁵AP-HP, Hôpital Pitié-Salpêtrière, Service d'Hématologie Clinique, Paris; ⁶INSERM U1138, Programmed cell death and physiopathology of tumor cells, team 19, Centre de Recherche des Cordeliers, Paris, and ⁷CNRS, ERL8255, CIMI-Paris, Paris, France

Correspondence: magali.legarff@psl.aphp.fr doi:10.3324/haematol.2014.118083

Antibodies	Clone #	Fluorochrome	Compagny
NK Cell-surface staining			
Anti-CD3	UCHT1	ECD	Beckman Coulter
Anti-CD8	Т8	FITC	Beckman Coulter
Anti-CD16	3G8	FITC	Beckman Coulter
Anti-CD56	N901	PC7	Beckman Coulter
Anti-CD69	TPI.55.3	PE	Beckman Coulter
Anti-CD159a/NKG2A	Z199	APC	Beckman Coulter
Anti-NKG2D	ON72	APC	Beckman Coulter
Anti-CD335/NKp46	BAB281	PE	Beckman Coulter
Anti-ILT-2/CD85j	GHI/75	PE	Beckman Coulter
Anti-CD19	SJ25C1	PerCP Cy5.5	BD Biosciences
Anti-DNAM-1	DX11	FITC	BD Biosciences
Anti-LAIR1	DX26	FITC	BD Biosciences
Anti-2B4	C1.7	PE	BD Biosciences
Anti-CD57	HNK-1	FITC	BD Biosciences
Anti-CD107a	H4A3	FITC	BD Biosciences
Anti-NKG2C	134591	PE	R&D systems
Anti-NKp80/KLFR1	239127	PE	R&D systems
Anti-CD337/NKp30	AF29-4D12	APC	Miltenyi Biotec
Intra-cellular staining			
Anti-Perforin	δG9	FITC	BD Biosciences
Anti-Granzyme-B	GB11	FITC	BD Biosciences
B Cell-surface staining			
Anti-CD19	J3-119	PC5.5	Beckman Coulter
Anti-CD20	B9H9 (HRC20)	PB	Beckman Coulter
Anti-FMC7	FMC7	FITC	Beckman Coulter
Anti-CD10	ALB1	AF750	Beckman Coulter
Anti-CD45	HI30	HV500	BD Biosciences
Anti-CD5	L17F12	PE-Cy7	BD Biosciences
Anti-CD23	EBVCS-5	APC	BD Biosciences
Anti-CD79b	SN8	APC	BD Biosciences
Anti-CD38	HB7	PE	BD Biosciences
Anti Kappa/Lambda	polyclonal	FITC/PE	Dako

Supplemental data 1 : Antibodies used in this study

Supplemental data 2. Determination of a B-cell circulating clone in WM. Lymphocytes were isolated from peripheral blood samples by gating on the forward (FSC)/side (SSC) scatters and CD45/SSC. (a) The CD19⁺ B-lymphocytes were evaluated for the B-cell surface markers (Supplemental data 1) for the determination of the Matutes/Moreau score, which was less than or equal to 3 for all patients. In this representative case (patient #7, Table 1), the B-cell circulating clone, shown in red, was Kappa ⁺CD5⁺CD79b⁺CD20⁺. This B-cell clone corresponded to 50% of the peripheral B-lymphocytes and to 10% of the total lymphocytes. Residual normal B lymphocytes are shown in green. (b). The NK cells were evaluated on the CD3⁻CD56⁺ lymphocytic gate for the determination of a panel of NK-cell markers (Supplemental data 1), like CD16, CD69 and CD57.

Supplemental data 3. Stability of CD16, CD57, and CD69 surface expression and intracellular staining of lytic granule components in NK cells from WM patients with or without circulating clones. (a) Cell-surface markers were tested at To, corresponding to the first inclusion, and then 12 to 24 months later (T1) on NK cells from WM patients without (clone (-); squares) or with (clone (+); triangles) circulating B clones. (b) Comparison of intra-cellular expression of perforin and granzyme-B in NK cells collected from healthy donors (Ctl) and WM patients without (clone (-); squares) or with (clone (+); triangles) circulating B clones. Horizontal bars represent the median value.