Multicentric study underlining the interest of adding CD5, CD7 and CD56 expression assessment to the flow cytometric Ogata score in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms

Valérie Bardet,¹ Orianne Wagner-Ballon,² Julien Guy,³ Céline Morvan,⁴ Camille Debord,¹ Franck Trimoreau,⁴ Emmanuel Benayoun,² Nicolas Chapuis,¹ Nicolas Freynet,² Cédric Rossi,³ Stéphanie Mathis,¹ Marie-Pierre Gourin,⁵ Andréa Toma,⁶ Marie C. Béné,⁷ Jean Feuillard,⁴ and Estelle Guérin;⁴ on behalf of the Groupe Francophone des Myélodysplasies (GFM) and the Groupe d'Etude Immunologique des Leucémies (GEIL)

¹Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre-Cochin, Faculté de Médecine Paris Descartes, INSERM U1016, UMR 8104, Paris; ²Département d'Hématologie et d'Immunologie Biologiques, Hôpitaux Universitaires Henri Mondor, APHP, Faculté de Médecine UPEC, Créteil; ³Service d'Hématologie Biologique, CHU de Dijon; ⁴Service d'Hématologie Biologique, Hôpital Dupuytren, CHU de Limoges, Faculté de Médecine et UMR CNRS 7276, Limoges; ⁵Service d'Hématologie Clinique, Hôpital Dupuytren, CHU de Limoges; ⁶Service d'Hématologie Clinique, Hôpitaux Universitaires Henri Mondor, APHP, Créteil; and ⁷Service d'Hématologie Biologique, CHU de Nantes, France

©2015 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2014.112755 Manuscript received on July 14, 2014. Manuscript accepted on January 23, 2015. Correspondence: estelle.guerin@chu-limoges.fr

		Centre 1 n=178	Centre 2 n=56	Centre 3 n=179	Centre 4 n=239
	RA n=50	12	6	14	18
	RCMD n=126	65	9	23	29
Low risk	RARS n=31	6	7	10	8
(N=218)	5q- n=11	7	0	3	1
	Low risk proven	52	12	15	22
	Low risk not proven	38	10	25	34
High risk	RAEB 1 n=90	10	4	26	50
(n=128)	RAEB 2 n =38	10	4	9	15
MDS/MPN	CMML n=43	6	3	14	20
(n=53)	Other n=10	2	1	5	2
Controls (n=253)		60	22	75	96

Supplementary table 1 : distribution of patients between the 4 participating centers

Panel	Antibodies
4 colors panel	FITC conjugated CD45 monoclonal antibody (mAb) (CD45-FITC, clone ALB12), ref IM0647
	PE-cyanine 5 (Cy5) conjugated CD19 mAb (CD19-PC5, clone J3-119), ref A07771
	PE-cyanine 7 (Cy7) conjugated CD34 mAb (CD34-PC7, clone 581), ref A21691
	PE conjugated CD10 mAb (CD10-PE,clone ALB1), ref A07760
7 colors panel	FITC conjugated CD45 monoclonal antibody (mAb) (CD45-FITC, clone ALB12), ref IM0647
	PE-cyanine 7 (Cy7) conjugated CD34 mAb (CD34-PC7, clone 581), ref A21691
	PE conjugated CD10 mAb (CD10-PE,clone ALB1), ref A07760
	Pacific blue (PB) conjugated CD19 mAb (CD19-PB, clone J3-119), ref A86355
	PE-cyanine 5.5 (Cy5.5) conjugated CD19 mAb (CD19-PC5,5 clone J3-119), refA66328
	Allophycocyanin (APC) conjugated CD56 mAb (CD56-APC, clone N901(NKH-1), ref IM2474
	APC Alexa Fluor (A) 700 conjugated CD7 mAb (CD7-APC-A700, clone 8H8.1), ref A70201
	APC-A750 conjugated CD5 mAb (CD5-APC-A750, clone BL1A), ref A78836

Supplementary table 2: Antibodies used in this study. All were purchased by Beckman Coulter (Miami, FL)

Supplementary legends

Supplementary figure 1 : gating strategy

Events were first gated on SSC/FCS (A) and secondly on CD45/SSC (B) biparametric histograms. CD34⁺ events were gated on a CD45/CD34 histogram (C). CD34⁺ cells were backgated on a CD45/SSC histogram (D). CD19⁺ CD34⁺ CD10⁺ hematogones were counted on a CD34/CD19 histogram (E). CD19⁻ CD10⁻ CD34⁺ myeloid blasts were counted on a CD45/CD10 histogram (F). SSC peak intensity for lymphocytes and granulocytes was estimated on an SSC monoparametric histogram (G). CD45 mean intensity of lymphocytes and myeloid progenitors was measured on a CD45 monoparametric histogram. From A to G, lymphocytes are stained in black. Lymphocytes and granulocytes were gated on CD45/SSC biparametric histograms (not shown)

Supplementary figure 2

Examples of CD5 and CD7 monoparametric histograms gated on lymphocytes and myeloid progenitors and of CD56 monoparametic histograms gated on lymphocytes and monocytes. Monocytes on a CD45/FSC histogram were gated in a Boolean fashion after exclusion of $CD19^+$, $CD10^+$, $CD5^+$ and/or $CD7^+$ events.

Supplementary Figure 3 :

Contingency table showing the partition of Ogata FCM scores in MDS/MPN patients (A), controls (B) and in the whole cohort (C) according to the degree of BM hemodilution. There is no significant difference in the percentages of classified cases.

А				
	MDS/MPN	BM purity <80%	BM purity ≥80%	Total
	Ogata FCM score ≥ 2	37 (59%)	102 (59%)	139
	Ogata FCM score <2	26 (41%)	72 (41)	98
		63	174	237

В

Controls	BM purity <80%	BM purity ≥80%	Total
Ogata FCM score ≥ 2	2 (5%)	9 (9%)	11
Ogata FCM score <2	38 (95%)	86 (91%)	124
	40	95	135

С				
-	All patients	BM purity <80%	BM purity ≥80%	Total
	Ogata FCM score ≥ 2	39 (38%)	111 (41%)	150
	Ogata FCM score <2	64 (62%)	158 (59%)	222
		103	269	372

Supplementary figure 3