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b-thalassemias are monogenic disorders characterized by defective synthesis of the b-globin chain, one of the major
components of adult hemoglobin. A large number of mutations in the b-globin gene or its regulatory elements have
been associated with b-thalassemias. Due to the complexity of the regulation of the b-globin gene and the role of red
cells in many physiological processes, patients can manifest a large spectrum of phenotypes, and clinical requirements
vary from patient to patient. It is important to consider the major differences in the light of potential novel therapeu-
tics. This review summarizes the main discoveries and mechanisms associated with the synthesis of b-globin and
abnormal erythropoiesis, as well as current and novel therapies.

ABSTRACT

The complex phenotype of b-thalassemias

b-thalassemias are monogenic disorders characterized by
reduced or no synthesis of the b-globin chain, one of the
major components of adult hemoglobin (HbA). Several hun-
dred mutations in the b-globin gene or regulatory elements
have been associated with b-thalassemias.1 Homozygous or
compound heterozygous mutations in the b-globin gene or
promoter impair the production of b-globins. This results in
the relative overproduction of a-globins and formation of
insoluble hemichromes. The hemichromes damage cell mem-
branes, while their heme component leads to the formation
of noxious reactive oxygen species (ROS) and increased
oxidative stress.2,3 Altogether, this impairs erythropoiesis,
triggers erythroid apoptosis and, in turn, leads to anemia.2,3

Due to the complexity of the regulation of the b-globin gene
and the role of red cells in many physiological processes,
patients can manifest a large spectrum of phenotypes.4,5 As
clinical requirements vary from patient to patient, it is appro-
priate to emphasize the major differences in the light of
potential novel therapeutics. 

Patients suffering the most severe form, indicated as b-tha-
lassemia major, require chronic blood transfusion for survival.
The excess of iron from the blood transfusion requires
intense iron chelation to prevent an increase in plasma iron
levels and formation of non-transferrin bound iron (NTBI).
NTBI can increase cellular iron concentration, disrupt iron
homeostasis and trigger harmful ROS formation leading to
tissue iron overload and organ damage.6-8 Some additional
pressing issues are osteoporosis and parenchymal damage in
several different tissues, predominantly in the liver, heart and
endocrine organs.4 Patients associated with a milder pheno-
type, as in b-thalassemia intermedia or non-transfusion
dependent thalassemia (NTDT), produce comparatively
higher levels of hemoglobin and might require only sporadic
transfusions.3 However, these patients exhibit increased iron
absorption and NTBI leading to severe iron overload and clin-

ical sequelae.9 In addition, they are more prone to thrombot-
ic-related complications than patients affected by b-tha-
lassemia major.10,11 Furthermore, the phenotype of these
patients might also change over time, as NTDT patients often
become transfusion dependent.

Historically many investigators have focused on under-
standing the mechanisms controlling b-globin gene expres-
sion and the consequences of the thalassemic mutations on
red cell production and, in turn, on physiological processes
affected by hypoxia and abnormal erythropoiesis. In addi-
tion, many scientists and clinicians have attempted or are cur-
rently trying to translate scientific discoveries into new ther-
apeutics, with the aim of improving the clinical care and qual-
ity of life of these patients.

The first part of this review will summarize the main dis-
coveries and mechanisms associated with the synthesis of 
b-globin and abnormal erythropoiesis. The second part will
provide a brief overview of the current treatments. And final-
ly, the third and more extensive section of the review will dis-
cuss some of the novel therapies that are under development,
bearing in mind the requirements for patients with more or
less severe phenotypes.

Globin synthesis, erythropoiesis and iron 
metabolism: a complex ménage à trois

b-globin, Locus Control Region and switching
The human b-globin gene is mapped on chromosome 11,

along with the e-, g- and d-globin genes.12 The b-globin gene
was one of the first to be cloned and the corresponding pro-
tein crystallized.13,14 The b-globin gene has also been much
used to study RNA transcription and processing, while muta-
tions in the b-globin gene have provided invaluable informa-
tion to further characterize these processes and associated
mechanisms, such as nonsense-mediated RNA decay.15-18 In
addition, mutations in the b-globin gene have been closely
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correlated with the selective pressure triggered by the
presence of the malaria parasite.19 The expression of these
genes during development is regulated by several tran-
scription factors (discussed below) and a genomic region
in cis to the globin genes, indicated as Locus Control
Region (LCR) (Figure 1A). The LCR has historically been
characterized by clinical observations and by additional
genetic approaches. Deletions of this region in humans are
associated with forms of b-thalassemia,20-22 where the 
b-globin gene, despite absence of mutations, was inacti-
vated.23,24 Further characterization of this region, by the use
of transgenic animals, indicated that the LCR is absolutely
required for high level of expression of the b-globin gene
in erythroid cells.25-28 The single genetic components of the
LCR were identified as hypersensitive sites (HS) to the
DNAse I in the chromatin of erythroid cells.29 The chro-
matin at the individual HSs is composed of arrays of mul-
tiple ubiquitous and lineage-specific transcription factor-
binding sites (discussed further below).30 The LCR activates
the genes at the b-globin locus by folding and looping the
HSs of the LCR to the appropriate promoter (Figure 2A).
This creates a close association between this “holocom-
plex”, made of LCR-bound transcription proteins and co-
activators, and the promoter of the adjacent gene, enhanc-
ing its transcription.27 In addition, the sequential looping of
the LCR is also responsible for the switch between embry-
onic, fetal (HbF) and HbA (Figure 2A).31-34 

The pattern of expression of the b-globin gene has also
been a subject of intense investigations since the switching
between HbF and HbA represents an important biological
phenomenon and an exemplary model to understand how
gene expression is regulated during development. In

humans, the switching between the expression of g-globin
and b-globin gene occurs in the first three months after
birth (Figure 1B).35 It has been shown that hereditary per-
sistence of HbF is beneficial in individuals that concurrent-
ly inherit mutations in b-globin.36 Therefore, characteriza-
tion of this process could lead to the development of new
reagents or strategies to reactivate production of HbF, with
potential therapeutic effects not only in b-thalassemia, but
also in sickle cell anemia.37-79 

Transcription factors such as GATA binding protein 1
(GATA1), Friend of Gata1 (FOG1), B-cell
lymphoma/leukemia 11A (BCL11A), Krueppel-like factor
1 (KLF1) and LIM domain binding 1 (LDB1) represent
some of the most important proteins required for proper
globin gene activation and switching (Figure 1C).40 In the
last few years, it has become evident that activation of the
globin genes depends on the co-ordinated function of the
LCR and these transcription factors. In particular, directly
or indirectly, these factors contribute to establish LCR-
enhancer proximity through chromatin looping,41-45 acti-
vating globin gene expression (Figure 2A).46

BCL11A is a zinc finger transcription factor and repres-
sor of g-globin expression in humans.47,48 In adult erythroid
cells, BCL11A occupies several regions within the human
b-globin cluster, including the LCR and the e-globin gene.43

Knockdown of BCL11A in human definitive erythroblasts
results in increased expression of HbF.49 Furthermore, in
transgenic mice affected by sickle cell disease, inactivation
of Bcl11A corrected the hematologic and pathological
defects of this disorder through HbF induction.50 As a con-
sequence, BCL11A is considered an excellent target for
reactivation of HbF in patients with b-hemoglo-
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Figure 1. Representation of the genomic structure of the a- and b-globin loci. (A) Genes are indicated. LCR: locus control region (not to scale).
(B) Relative expression of the globin genes during development. (C) Graphic representation of some of the candidate proteins involved in the
regulation of the switching between to fetal to adult hemoglobin.  



binopathies. KLF1 is an erythroid-specific transcription
factor essential for b-globin expression, definitive erythro-
poiesis, and switching HbF to HbA.51 Klf1 null mice die in
utero due to failure of b-globin gene activation and aber-
rant erythropoiesis during fetal development.52 However,
reduced expression of KLF1 in human erythroblasts is
associated with cell viability and differentiation, reduced
expression of BCL11A and increased g- to b-globin ratio.53

In fact, in patients, reduced synthesis of KLF1 is associated
with survival and increased HbF synthesis; it can also
result in an amelioration of the b-thalassemic pheno-
type.54,55 Therefore, KLF1 expression is also considered an
excellent target for activating HbF in individuals with sick-
le cell disease and b-thalassemia. 

LDB1 is a non-DNA-binding protein with a 200-amino
acid N-terminal domain required for its dimerization or
multimerization in vitro.56-69 In erythroid cells, LDB1 inter-
acts with LIM domain only 2 (LMO2) and the DNA-bind-
ing partners GATA1 and T-cell acute lymphocytic
leukemia 1 (TAL1).45,60 Importantly, genome-wide localiza-
tion studies suggest that regulation of gene expression
requiring Tal1 and Gata1 in mouse erythroid cells are exe-

cuted in concert with Ldb1.61-65 In particular, the important
role of Ldb1 in globin gene regulation has been empha-
sized by the observation that this protein is able to reacti-
vate the silenced mouse embryonic globin and the human
g-globin genes when fused to an artificial zinc finger teth-
ering Ldb1 onto their promoters (Figure 2B).32,34 It has been
shown that this artificial zinc finger-Ldb1 fusion protein is
able to force the LCR-holocomplex to loop onto the pro-
moter recognized by the zinc finger moiety.32,34 This repo-
sitioning of the LCR is sufficient to re-activate the expres-
sion of otherwise silenced globin genes.32,34 This activity
supports the model of the LCR-promoter looping mecha-
nism and underscored the importance of LDB1 in the tran-
scription of the genes at the b-globin cluster.

Erythropoiesis
Erythropoiesis involves the process of proliferation and

differentiation of new red blood cells from erythroid pro-
genitors, which at steady-state conditions primarily occurs
in the bone marrow (BM). The key player, erythropoietin
(EPO), primarily produced in the kidney in adults, regu-
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Figure 2. Illustration of the looping
model and mechanism of HbF reac-
tivation mediated by ZF-Ldb1. (A) In
erythroid cell, the chromatin at the
LCR is composed of arrays of multi-
ple ubiquitous and lineage-specific
transcription factor-binding sites,
forming a holocomplex. This holo-
complex loops on promoters at the 
b-globin locus determining the acti-
vation of the corresponding g or b-
globin gene. (A) ZF-Ldb1 is made by
fusing Ldb1 to a specific zinc finger
protein that recognizes a sequence
in the g-globin promoter. When ZF-
Ldb1 is expressed in erythroid cells,
this forces the holocomplex to
move from the b-globin promoter
and loop on the g-globin promoter,
determining the reactivation of HbF
in adult cells. 



lates the erythropoietic activity in response to cellular
hypoxia and activation of hypoxia inducible factors
(HIF).66 The erythoid progenitor cells were identified by
their colony-forming potential in vitro. These are the
burst-forming unit-erythroid (BFUe) colonies, each one
consisting of approximately 500 cells,67,68 and subsequent
colony-forming unit-erythroid (CFUe), containing 8-32
cells.69,70 CFUe-derived erythroid cells progressively mature
to red cells through a process of differentiation, which
likely requires 3-5 divisions.71 The different stages of dif-
ferentiation post CFUe were identified as proerythrob-
lasts, basophilic, polychromatic, orthochromatic erythrob-
lasts, reticulocytes and red blood cells.71-73 

Upon the binding of erythropoietin to EPO receptor
(EPOR), the tyrosine kinase/Janus kinase 2 (JAK2) is phos-
phorylated, which in turn activates multiple signal trans-
duction pathways crucial in erythropoiesis (Figure 3). One
such pathway consists of activation of Signal Transducer
and Activator of Transcription 5 (Stat5) and downstream
antiapoptotic B-cell lymphoma-extra large (BclxL)
protein.74 The relative levels of BclxL and proapoptotic Bim
protein during erythropoiesis modulate cell survival.75

Similarly, Epo signaling also modulated survival by con-
trolling the expression level of the death receptor Fas and

its ligand (FasL) on early erythroblasts.75-77 In erythroid
cells, Irp2 can bind iron responsive element (IRE) on sever-
al transcripts, and depending on the exact position of the
complementary IRE, it stimulates expression of genes
associated with cellular iron uptake, such as Tfr1, or limit
expression of those associated with iron storage, such as
ferritin.78 In particular, Epo, through Stat5, controls expres-
sion of Irp2 in erythroid cells, linking accelerated cellular
activity with erythroid iron intake. Interestingly, also pro-
teins that are associated with the iron sensing complex(es)
in the liver play a role in erythroid cells. For instance,
transferrin receptor 2 (Tfr2) and High Ferum/iron (Hfe) are
genes that control iron metabolism in the liver and are
mutated in hemochromatosis.79 In erythroid cells, it has
been recently shown that Tfr2 adjusts erythrocyte produc-
tion according to iron availability, likely by modulating
erythroblast Epo sensitivity, while Hfe has been involved
in modulation of erythroid iron homeostasis.80,81 

When steady-state erythropoiesis is insufficient to pro-
vide adequate levels of oxygenation, such as in hypoxic
conditions or severe blood loss, the production of red cells
is increased through a mechanism indicated as stress ery-
thropoiesis (SE). Switching from steady state to SE
depends on the production of Epo and additional factors,
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Figure 3. Representation of some of the pathways regulating steady state and stress erythropoiesis and their relationship to ineffective ery-
thropoiesis in b-thalassemia. In this disorder, the imbalanced synthesis between a- and b-globin chains leads to formation of hemichromes,
ROS formation and apoptosis of the late stage erythroid progenitors. This leads to anemia and hypoxia. As a consequence, Epo and Gdf1 syn-
thesis are increased, leading to activation of the Jak2/Stat5 and R-Smad pathways respectively, thus altering the proliferation and differen-
tiation of the erythroid progenitors. Furthermore, increased iron absorption and stress erythropoiesis macrophage activity (SEMA) also nega-
tively influence ineffective erythropoiesis by supporting the proliferation of erythroid progenitors. Altogether, activation of these pathways
leads to increased proliferation and reduced maturation of the erythroid progenitors, exacerbating the ineffective erythropoiesis. The question
mark indicates molecules and related pathways that have not yet been identified.  



such as bone morphogenetic protein 4 (Bmp4), iron intake
and the microenvironment. Nevertheless, Epo-induced
pathways still play a major role in activating SE.82,83

Increased Epo levels are associated with further induction
of BclxL and suppression of Bim and Fas-FasL, with a net
increase in the number of erythoid progenitors surviving
and proliferating.82,83 In addition, the downstream tran-
scription factor Stat5 can increase erythoid iron intake
through Irp2-mediated increased Tfr1 translation. In SE,
however, additional proteins and mechanisms are
required that do not seem to be essential to steady-state
erythropoiesis. It has been shown that in SE some of the
signals that regulate this process are Hedgehog, Bmp4,
stem cell factor and hypoxia.84-86 The Bmp4-dependent SE
pathway plays a key role in the recovery from acute ane-
mia.87 Bmp4 induces, through Smad5 signaling, the prolif-
eration of stress erythroid progenitors, which are pheno-
typically different from steady-state progenitors.88

In addition, macrophages are emerging as erythropoi-
etin-complementary regulators of erythroid development,
particularly under stress conditions. In fact, macrophages
contribute decisively to recovery from induced anemia, as
well as the pathological progression of polycythemia vera
and b-thalassemia, by modulating erythroid proliferation
and differentiation, through a stress erythropoiesis
macrophage-supporting activity (SEMA) (Figure 3).89

SEMA might require support from the expression of many
adhesion molecules on erythrocyte progenitors, which
likely allow the erythroid progenitors to receive support
from the macrophages and, possibly, the microenviron-
ment. These adhesion molecules might include a4, a5 and
b1 integrins, CD44, Lu, Icam-4, Vcam1, Emp and
Swap70.90-93 These proteins might also be present on
macrophages and are potentially responsible for various
adhesive homotypic and heterotypic interactions within
the erythropoietic niche, namely the erythroblastic
island.91

These erythroblastic islands provide survival, prolifera-
tion and differentiation signals at early stages of erythro-
poiesis. It has been postulated that several pathways are
triggered by these interactions, including those character-
ized by the activity of Phosphatidylinositol-4,5-bisphos-
phate 3-kinase/RAC-alpha serine/threonine-protein
kinase (Pi3k/Akt) and BclxL, which regulate survival,94,95

while Focal Adhesion Kinase 1 (Fak1) and mitogen-acti-
vated protein/extracellular-regulated kinases (Mapk/Erk)
modulate proliferation.96-99 Similarly, stem cell factor (Scf)
and its receptor, c-Kit, have an important role in the
expansion of stress erythroid progenitors via Erk and Akt,
which is enhanced by the concomitant activation of the
glucocorticoid receptor (GR).100 Additional factors that
might contribute to SE are the RNA-binding protein
ZFP36L2,101 the Notch receptor 2,102 the anti-inflammatory
polymeric immunoglobulin A1 (pIgA1)103 and dexametha-
sone.104 In particular, dexamethasone, in addition to induc-
ing proliferation of proerythroblasts,105 stimulates expan-
sion of these cells indirectly by supporting the activity of
macrophages.105 

Iron metabolism
There is a close connection between erythropoiesis and

iron metabolism.106 In fact, the process of red cell hemoglo-
binization and synthesis requires harmonization with ery-
throid iron intake, heme production and, overall, iron
metabolism. Therefore, it is not surprising that iron avail-
ability affects erythropoiesis, likely through the IRP/IRE
system, as observed in iron deficiency. In addition, as ery-
thropoiesis needs to be increased under hypoxia condi-
tions, iron metabolism and absorption are stimulated. 

The hormone that controls iron absorption is hepcidin.
Hepcidin is synthesized in the liver and secreted in the
bloodstream. Hepcidin in the serum targets ferroportin
(FPN), the only known iron exporter.107-109 Upon binding of
FPN, this protein is internalized and degraded, preventing
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Figure 4. Illustration of the relationship
between anemia, hypoxia, Epo, erythro-
poiesis and iron metabolism in b-tha-
lassemia. Hypoxia, through HIF2a, con-
tributes to augmented iron absorption by
increasing expression of Fpn, Dmt1 and
DcytB in the duodenum. Epo, ROS and
Growth differentiation factor 11 (Gdf11)
alter erythropoiesis, increasing cell prolif-
eration and decreasing cell maturation,
contributing to the extramedullary
hematopoiesis. As the number of erythroid
progenitors increases, more ERFE and less
hepcidin are produced, leading to
increased iron absorption and increased
Tf-sat. Altogether, these modifications con-
tribute to the pathophysiology of ß-tha-
lassemia, and exacerbate the ineffective
erythropoiesis and iron overload over time.
The diagram also shows potential targets
and therapeutics that might benefit b-tha-
lassemia, as discussed in the text.



iron egress.109 Hepcidin synthesis is controlled by Tf-sat
and iron storage, inflammation and erythropoiesis’
demand. Fpn is expressed mainly on enterocytes, on
macrophages and hepatocytes.110 Therefore, the relative
abundance of hepcidin in the bloodstream and Fpn on the
cellular membranes controls iron absorption in the duode-
num, iron recycling in the reticuloendothelial system and
iron storage in the liver.110

Two molecules that take a major role in controlling both
erythropoiesis and iron metabolism are hypoxia inducible
factor-2a (Hif2a ) and Irp1. Hif2a is a transcription factor
that orchestrates the response to hypoxia, including Epo
synthesis.111 Hif2a not only stimulates Epo production, but
also the transcription of the divalent metal transporter 1
(Dmt1), apical ferric reductase, duodenal cytochrome B
(DcytB) and Fpn in the enterocytes.112 Therefore, under
conditions of hypoxia, both erythropoiesis and iron
absorption are increased by, respectively, elevated levels of
Epo and augmented activities of duodenal DMmt1, DcytB
and Fpn. Irp1 operates as either an IRE/RNA-binding pro-
tein in conditions of low intracellular iron, or a cytosolic
aconitase in iron-repleted cells.111 IRP1, as an RNA-binding
protein, reduces HIF2a mRNA translation. In fact, Irp1−/−

mice exhibit features of Hif2a overexpression and hyper-
production of Epo, while Irp1 constitutive transgenic mice
show defects in erythroid differentiation that can be

attributed to decreased Hif2a expression.113-115 These
observations indicate that Irp1 acts as an iron and oxygen
sensor, linking iron metabolism with erythropoiesis via
EPO. In iron deficiency, Irp1 suppresses HIF2a and Epo
expression to reduced iron availability, consistently with
iron-restricted erythropoiesis.111 In contrast, under iron-
replete conditions, unconstrained HIF2a mRNA transla-
tion increases Epo levels and erythropoiesis, as a homeo-
static adaptation to the deficit of oxygen.111 

It has been postulated that an erythroid factor commu-
nicates to the liver the need of iron for the incoming red
cells. This factor would be produced by erythroid cells,
especially under condition of SE, and its function would be
to suppress hepcidin synthesis in the liver. A variety of
erythroid factors have been proposed, such as growth dif-
ferentiation factor 15 (GDF15), twisted-gastrulation 1
(Twsg1) and Erythroferrone (Erfe).116-118 However, only this
last factor is increased in both animals affected by physio-
logical-induced SE (following Epo administration) or
chronic-SE, like b-thalassemia.118 Erfe is a member of the
tumor necrosis factor (Tnf)-related protein family and is
produced, and presumably secreted, by nucleated ery-
throid cells in response to Epo. Erfe-KO mice fail to sup-
press hepcidin following phlebotomy and show a delay in
recovery from the anemia. Erfe expression is also signifi-
cantly augmented in mice affected by thalassemia inter-
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Figure 5. Potential use of JAK2
inhbitors in b-thalassemia.  (A) In
NTDT, the underlining chronic stress
erythropoiesis exacerbates the ane-
mia and the hepatosplenomegaly
over time. This leads to increased
sequestration of RBCs and further
worsening of the ineffective erythro-
poiesis and iron overload. 
(B) Administration of a JAK2 inhibitor
for a short period of time might
decrease the number of erythroid
progenitors, reversing the
hepatosplenomegaly and decreas-
ing iron absorption, with no or limit-
ed side effects. If administration of
the JAK2 inhbitor is associated with
reduced production of RBC, some
blood transfusion could be provided
to NTDT patients during administra-
tion of the drug. (C) In b-thalassemia
major, splenomegaly might ensue
over time, limiting the number of
RBC transfused in circulation. 
(D) Administration of a JAK2
inhibitor might decrease the number
of erythroid progenitors and reverse
the hepatosplenomegaly. In turn,
this might reduce the number of
RBC sequestered by the spleen and,
in turn, the requirement for blood
transfusion, and ameliorate the
management of iron overload.    



media, contributing to the suppression of hepcidin and the
systemic iron overload.118

Novel potential therapies for b-thalassemia
patients 

Mouse models of b-thalassemia and ineffective 
erythropoiesis 

Features associated with the phenotype of b-tha-
lassemia in humans are well reproduced in mouse models
indicated as Hbbth1/th1 and Hbbth3/+.119-121 The Hbbth1/th1 mice
were generated by a homozygous deletion of the b-major
mouse globin gene, whereas Hbbth3/+ mice present a het-
erozygous deletion of both the b-major and b-minor glo-
bin genes in cis.119-121 In these two models, the animals
show a phenotype very similar to that observed in
patients affected by NTDT,122-124  such as splenomegaly and
iron overload in absence of transfusion. An additional
transplantable model showing features of b-thalassemia
major has been generated by transplanting fetal liver cells
from Hbbth3/th3 embryos into wild-type mice.125 These ani-
mals exhibit features associated with this disorder, such as
profound anemia, need for chronic blood transfusion for
survival, and rapid iron overload.123

In particular, use of these mouse models has led to fur-
ther characterization of the ineffective erythropoiesis (IE)
in b-thalassemia.89,124 Although in b-thalassemia apoptosis
of erythroid progenitors and decreased life span of ery-
throcytes are the primary cause of anemia, the inefficient
oxygen-carrying ability of the abnormal red cells cause a
chronic state of hypoxia, which, in turn, stimulates ery-
thropoietic activity, resulting in chronic SE. This lasting
effort on red blood cell production has many counterpro-
ductive effects. The increased EPO levels, together with
formation of reactive oxygen species in erythoid cells, are
responsible for increasing proliferation and decreasing the
differentiation (or maturation) of erythroid progenitors.
This not only exacerbates IE over time, leading to
hepatosplenomegaly, but also increases iron absorption, in
a vicious circle that over time worsens the patient’s phe-
notype (Figure 4).126 These animals have provided impor-
tant information to widen understanding of the relation-
ship between hepcidin and iron overload in this disorder
as well. In fact, Hbbth3/+ mice were the first to show a cor-

relation between relative low hepcidin mRNA levels in the
liver and iron overload in this disorder.127,128 

Altogether, these new notions, together with the use of
the b-thalassemic mouse models, have been utilized to
identify new drugs or strategies that are currently under
development or in clinical trial; these will be described in
the next sections. Another class of compounds that might
also benefit b-thalassemia are fetal hemoglobin inducers;
these will not be discussed in this manuscript but were
recently summarized in several excellent reviews.37,129,130

JAK2 inhibitors
In animals affected by b-thalassemia, it has been shown

that elevated Epo production is associated with high levels
of Jak2 phosphorylation, in a sort of physiological gain of
function of this phosphokinase.124 This leads to a signifi-
cant increase in the number of erythroid progenitors, con-
tributing to extramedullary hematopoiesis. Based on this
observation, it has been proposed that acute administra-
tion of a Jak2 inhibitor (JAK2i) could reverse the
splenomegaly in this disorder, avoiding the need for
splenectomy. This treatment has been shown to be effec-
tive in Hbbth3/+ mice, as splenomegaly was reversed with a
limited decrease in red cell production. As Jak2i limits ery-
thropoiesis, it might also reduce the production of the ery-
thoid factor(s), partially reversing the suppression on hep-
cidin and limiting iron absorption (Figure 5A and B). Since
erythroid progenitors have been documented in the
spleens of patients affected by b-thalassemia,124 this
approach could potentially work also in humans as an
alternative to splenectomy.131 Furthermore, the use of
JAK2i might also be extended to patients that require
blood transfusion. In this case, as JAK2i decreases the
splenomegaly and the amount of blood sequestered by
this organ, this might also reduce the amount of blood
required per transfusion or the rate of blood transfusion
(Figure 5C and D). Several JAK2i have already been devel-
oped, showing significant and beneficial results in
myelofibrosis and JAK2-related polycythemia vera,132,133 a
disease associated with chronic SE.89 However, trials with
Jak2 inhibitors in myeloproliferative disorders have also
shown several side effects, among them thrombocytope-
nia and anemia.134 This could be especially important for
NTDT patients, in whom reduced splenomegaly due to
the administration of a Jak2i might also decrease RBC pro-
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Figure 6. Schematic representation
of gene therapy/gene editing
approach for the cure of hemoglo-
binopathies. In this approach, HSC
are harvested form the patient and
modified by transduction (gene addi-
tion) or homologous DNA recombi-
nation (HDR). Following partial or
full myeloablation, the genetically
modified HSC are then re-infused in
the bone marrow of the patient.



duction. However, in pre-clinical thalassemic models,
splenomegaly was reversed in less than two weeks and no
side effects were observed (such as thrombocytopenia),
except for a minor reduction in RBC production.124

Therefore, once splenomegaly has been reversed, admin-
istration of the Jak2i could be discontinued. In addition,
blood transfusion could be provided to NTDT patients
during administration of the Jak2i. As a result, the side
effects may be prevented or reduced compared to those
observed in patients treated chronically with these agents.

Activin receptor-II trap ligands 
GDF11 is a member of the bone morphogenetic protein

(BMP) family and the TGF-beta superfamily and a ligand
of the Activin receptor-II trap ligands A and IIB (ActRIIA
and ActRIIB).135 These form complexes with additional
receptors that regulate gene expression primarily by acti-
vating the SMAD2/3 subfamily of intracellular effectors.136

GDF11 is involved in development and, in adults, it has
been involved with rejuvenation of stem cells found in the
skeletal muscle and brain of aged mice.137-139 ActRIIA and
ActRIIB are recognized by several ligands, including
GDF11, and have been involved in a variety of physiolog-
ical functions, including bone homeostasis and age-related
bone loss.140 The trap ligand ACE-011 was made by fusing
the extracellular domain of ActRIIA to the Fc domain of
human IgG1.141 The goal was to reduce the binding of lig-
and(s) to the membrane-associated cellular receptor
ActRIIA, interfere with the downstream signaling cas-
cades, and prevent osteoporosis.141 Interestingly, and unex-
pectedly, in a phase I clinical trial in postmenopausal
women to treat osteoporosis, ACE-011 increased hemat-
ocrit levels.141 The observation triggered further investiga-
tion into this, and another trap ligand targeting ActRIIB
(ACE-536), in mouse models of myelodysplastic syn-
dromes (MDS) as well as b-thalassemia, showed a signifi-
cant improvement of the anemia.142-144 In both these disor-
ders it has been suggested that the mechanism of action of
these drugs is mediated by targeting Gdf11, which in turn
decreases Smad2/3 activation in erythroid progenitors,
and ultimately improves erythroid maturation and RBC
production.142-144 In addition, in Hbbth1/th1 mice, it has been
shown that oxidative stress, through the Gdf11 ligand
(Figure 3), also decreases apoptosis through overactivation
of the Fas-Fas ligand pathway.126,127 As mentioned previ-
ously, both decreased apoptotic rate and maturation of
early erythroid precursors leads to exacerbation of IE,
splenomegaly, and increased iron absorption.117,128,129

Furthermore, these compounds also target the aberrant
metabolism that leads to premature osteoporosis in this
disorder, improving bone structure in these mice. Clinical
trials with these agents are underway, showing ameliora-
tion of the anemia in NTDT patients and a potential
reduction of the transfusion regimen in patients affected
by b-thalassemia major.145 

Minihepcidin
Longitudinal analyses of Hbbth3/+ mice indicate that

hemoglobin levels decrease over time, while the concen-
tration of iron in the liver, spleen, and kidneys increases.
Furthermore, excessive organ iron content is associated
with low levels of hepcidin. Individuals affected by NTDT
develop systemic iron overload from increased dietary
iron absorption, associated with inappropriately low hep-
cidin.146,147 Significantly, progressive iron overload is the

most salient and ultimately fatal complication of b-tha-
lassemia.4 Based on these observations, it has been postu-
lated that more iron is absorbed in b-thalassemia than is
required for erythropoiesis, and that increasing the con-
centration of hepcidin might be therapeutic, limiting iron
overload. This hypothesis has been proved by generating
Hbbth3/+ mice over-expressing hepcidin.148 In fact, these ani-
mals showed decreased organ iron content. Furthermore,
decreased iron absorption was associated with decreased
transferrin-saturation (Tf-sat), which, in turn, decreased
erythroid iron intake, heme synthesis and formation of
insoluble membrane-bound globins, as well as reactive
oxygen species. Altogether, moderate overexpression of
hepcidin ameliorated iron overload and also increased the
lifespan of RBC, reversed IE and splenomegaly, and
increased total hemoglobin levels. 

Therefore, by limiting the availability of iron to ery-
throid precursors, hepcidin agonists might improve the
efficiency of erythropoiesis and the survival of the result-
ing reticulocytes and erythrocytes, by decreasing the for-
mation of hemichromes. Minihepcidins (MH) are short
peptide mimetics (9 AA long) that are sufficient to induce
Fpn degradation in reporter cells.  

In vivo, these compounds lowered serum iron levels and
were efficacious in ameliorating the iron overload in ani-
mals affected by Hfe- and Hamp-related hemochromato-
sis.149,150 Furthermore, use of these compounds significantly
reduced iron overload and erythroid cell damage in Hbbth3/1

mice, which in turn led to reduced IE, reticulocyte count,
spleen size, and improved anemia.151 

Tmprsss6 inhibitors
Matriptase-2, or Transmembrane protease serine 6

(TMPRSS6), is a transmembrane serine protease that
attenuates hepcidin expression.152-156 The fundamental role
of TMPRSS6 on hepcidin expression is underscored by the
observation that patients and mice with mutations in this
gene are affected by iron-refractory iron deficiency anemia
(IRIDA).154,157 Interestingly, lack of Tmprss6 in Hbbth3/+ mice
significantly improved iron overload and anemia, corrob-
orating the notion that increased hepcidin activity could
be beneficial in this disorder.158 In fact, in Hbbth3/+ mice, use
of both antisense oligonucleotide (Tmprss6-ASO) and
RNA interference (Tmprss6-siRNA) can reduce the syn-
thesis of transmembrane serine protease Tmprss6 by
degrading the corresponding mRNA. This led to increased
hepcidin expression, decreased Tf-sat and reduction of
hemichrome formation and apoptosis in erythroid cells.
These animals also exhibited lower Epo levels, a signifi-
cant amelioration of IE and splenomegaly, and an increase
in total hemoglobin levels. Altogether, these data suggest
that Tmprss6-ASOs or -siRNA molecules could be benefi-
cial in individuals with b-thalassemia.159,160 

Administration of Apo-transferrin
Based on the notion that decreased Tf-sat can be benefi-

cial in b-thalassemia, it has been shown that administration
of Apo-transferrin (apo-Tf) can decrease erythroid iron
intake, significantly improving the phenotype of Hbbth1/th1

mice.122-124 In particular, apo-transferrin administration nor-
malized labile plasma iron concentrations, normalized RBC
survival, and increased hemoglobin production together
with decreased reticulocytosis, Epo synthesis and
splenomegaly. These results suggest that Tf therapy might
be beneficial in patients affected by b-thalassemia.
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HIF2a� inhibitors
As mentioned previously, the relative level of expression

of hepcidin in the liver and Fpn in the duodenum dictates
iron absorption. Fpn is elevated in enterocytes of Hbbth3/+

mice, likely contributing to the increased iron absorption
observed in these animals.123 In addition, Fpn, divalent
metal transporter 1 (Dmt1) and apical ferric reductase duo-
denal cytochrome B (DcytB) in the dudodenum are regu-
lated by hypoxia and intracellular iron concentra-
tion.112,115,161,162 It has been shown that expression of the
Dmt1, DcytB and Fpn are increased in the duodenum of
Hbbth3/+ mice as a consequence of hypoxia and Hif2a stabi-
lization and activity.112,162 In fact, Hbbth3/+ mice showed
improvement in tissue-iron levels and anemia following
genetic ablation of intestinal Hif2a.112 This observation
suggests that duodenal HIF2a might represent a novel
therapeutic target in b-thalassemia to improve the anemia
as well as the iron overload.

Gene therapy
The only established and definitive curative option for

b-thalassemia is allogeneic bone marrow transplantation.
However, this approach is limited by the scarcity of
matched donors and the significant risk of graft-versus-
host disease after transplantation of the donor cells (Figure
6). Gene therapy may offer an alternative approach to cure
patients with severe b-thalassemia,163 as autologous
hematopoietic stem cells (HSC) are isolated, genetically
modified and returned to the same patient. Over recent
years, the techniques and tools to achieve transfer of a cur-
ative b-globin gene using lentiviral vectors have been sig-
nificantly improved and have proved to be curative in sev-
eral animal models for b-thalassemia.163,164 As a result, clin-
ical trials are in progress and several patients seemed to
have been successfully treated with this approach.65-167

These encouraging results are now invigorating the field
of gene transfer and cellular therapies. Even with the abil-
ity of current vectors to improve the hemoglobin synthe-
sis in patients affected by hemoglobinopathies, additional
efforts are now focusing on improving the ability of these
vectors to express curative hemoglobin levels with a
reduced number of gene integrations per cell.  Reducing
integrations minimizes the chance of oncogenic random
integration and limits the level of myeloablation required
for these patients to receive the corrected HSCs. In order
to improve this approach, additional strategies are being
explored. For instance, new elements that induce fetal
hemoglobin expression by forcing LCR-g-promoter loop-
ing, such as the zinc finger-Ldb1 fusion protein, are being
investigated for curative purposes (see “b-globin, LCR and
switching”). Studies aimed at characterizing and including
insulator elements into viral vectors to reduce genome tox-
icity are being actively pursued.168 In addition, new tech-
nologies to genetically modify HSCs and induce pluripo-
tent stem cells by genome editing are also being explored
(see “Genome editing”).

Genome editing
Mutations that lead to increased levels of HbF can pro-

foundly improve the phenotype of patients with hemo-
globinopathies.38 For this reason, drugs that could increase
synthesis of HbF are being actively investigated, as
reviewed elsewhere.38,129,130 The transcriptional factor
BCL11A has been recognized to be one of most important

factors in controlling the switch from HbF to HbA. After
birth, as the level of BCL11A increases, the level of HbF
decreases, while that of HbA increases.47,48 Therefore, tar-
geting BCL11A represents a very attractive option to
increase the synthesis of HbF. However, BCL11A is con-
sidered a very challenging protein to target due to the fact
that it is a transcriptional factor (i.e. it interacts with many
other proteins) and also plays an essential role in many dif-
ferent body tissues. However, additional studies indicated
that suppression of BCL11A only in erythroid cells might
be achieved by deletion of a specific erythroid enhancer,
so that the expression of BCL11A would only be limited
in these cells and not in other hematopoietic lineages.169

Use of a zinc finger genome-editing technology might be
able to knock out the erythroid enhancer of BCL11A in
HSC of patients affected by b-thalassemia
(http://investor.sangamo.com/releasedetail.cfm?ReleaseID=8181
08). If successful, engraftment of these cells following
myeloablation may enable the permanent production of
therapeutic fetal hemoglobin, reducing the excess of a-
globin chains in RBCs, and improving the phenotype of
these patients. 

Potential combinatorial therapies
b-thalassemia is associated with a large spectrum of phe-

notypes, based on the different genotypes and quality of
care that patients have received during their lifetime. If
many of these compounds and genetic strategies prove to
be safe and efficacious, identifying the best therapeutic
approach for each patient will represent a positive, but chal-
lenging task for clinicians. In addition, some of these new
drugs might benefit from combinatorial therapies. For
instance, use of TMPRSS6 inhibitors, apo-Tf and MH can
benefit from the use of iron chelators that accelerate the
removal of iron from the liver.170.171 Similarly, acute use of
JAK2i might rapidly revert splenomegaly, while the subse-
quent use of ARII-trap ligands, apo-TF, TMPRSS6 inhibitors
or MH might prevent the reoccurrence of the enlargement
of the spleen while improving anemia and iron overload.
Again, administration of MH, apo-TF or TMPRSS6
inhibitors might be beneficial to the use of ARII-trap ligands
if the latter drugs prove to be suboptimal in preventing
excessive iron absorption and formation of NTBI.

The genetic strategies for b-thalassemia appear to be
potentially curative. However, once again, due to the phe-
notypic variability of this disorder, some patients might
produce increased but suboptimal levels of red cells and
hemoglobin after gene transfer or editing. Therefore, some
of these patients might also benefit from administration of
ARII-trap ligands, apo-TF, TMPRSS6 inhibitors, MH or
fetal hemoglobin inducers,172,173 shifting their management
from transfusion-dependent to -independent approaches. 

Conclusion

In conclusion, challenging old paradigms associated
with ineffective erythropoiesis and improving gene thera-
py strategies have led, and will continue to lead, to scien-
tific discoveries and new therapeutics. If future studies
and clinical trials prove these to be efficacious and safe,
these novel therapeutic approaches could potentially rev-
olutionize the clinical management of ß-thalassemia, with
a good chance of improving the quality of life and survival
of many patients. 

S. Rivella
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