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Iron Metabolism & its Disorders

Introduction

Hepcidin is a 25-amino-acid, cysteine-rich peptide first
described in human blood and urine.1,2 Hepcidin expression is
induced by iron loading and inflammation and suppressed by
anemia and hypoxia.3-5 Iron-dependent regulation of hepato-
cyte hepcidin expression requires multiple proteins that togeth-
er "sense" plasma transferrin-bound iron and transmit a bone
morphogenetic protein-dependent signal to increase hepcidin
gene transcription.6 The predominant physiological role of hep-
cidin is to regulate cellular iron egress through the iron exporter
ferroportin present on the surface of macrophages of the retic-
uloendothelial system, duodenal enterocytes and hepatocytes.7-

9 Hepcidin binds ferroportin, causing its internalization and
degradation.10 By this mechanism, hepcidin regulates the
absorption of dietary iron via duodenal enterocytes and recy-
cling of hemoglobin-derived iron in macrophages. While most
mammals including humans, sheep,11 dogs,12 and horses11 have
a single hepcidin gene, mice have two: Hepc-1 and Hepc-2.3

Hepcidin-2 expression responds to iron,13 but does not appear
to regulate iron metabolism, in contrast to hepcidin-1, as trans-
genic overexpression of hepcidin-2 does not lead to an iron-
related phenotype.14,15

Due to the small, compact structure and poor immunogenic-
ity of hepcidin, quantitative immunoassays for this compound
have been difficult to develop. The current standard method to
evaluate hepcidin-1 expression in mice is quantitation of liver
mRNA transcripts by reverse transcriptase polymerase chain
reaction (qPCR). An assay for hepcidin-1 protein in small quan-
tities of plasma and urine would permit a more dynamic under-
standing of its biology in research and pre-clinical murine mod-
els by accurately quantifying the biologically active hepcidin
hormone itself and allowing serial measurements in a single
animal over time. While mass spectrometry protocols for
mouse hepcidin-1 quantitation have recently been
described,16,17 there is no assay that is both widely accessible
and validated in diverse experimental models. Here we
describe a competitive enzyme-linked immunosorbent assay
(C-ELISA) that sensitively and specifically measures murine
serum and urine hepcidin-1. We compared the hepcidin-1 C-
ELISA to qPCR assays in three settings: (i) experimental manip-
ulation of dietary iron, anemia and inflammation, (ii) previous-
ly described transgenic models of iron overload and iron defi-
ciency, and (iii) novel compound mutant transgenic mice. We
not only demonstrate that hepcidin-1 can be analyzed reliably
in small volumes, enabling serial sampling of individual mice,
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but that the C-ELISA correlates better with iron-related
phenotypes and, in some cases, its greater accuracy at lower
concentrations permits statistically significant differences to
be discerned in small datasets.

Methods

Mouse hepcidin-1 enzyme-linked immunosorbent assay
Antibodies to mouse hepcidin-1 were prepared similarly to a

previously described approach (Online Supplementary Materials and
Methods).5

Effect of dietary iron
Serum samples were collected from three groups of 5-week old

C57BL/6 male and female mice (n=8 per gender, per diet; n=48
total) fed a low iron diet (4 ppm), normal iron diet (300 ppm), or
high iron diet (30,000 ppm; Harlan Teklad Custom Diets) over the
preceding 4 weeks. Serum samples were frozen at -80°C until
analysis.

Effect of acute blood loss
Six-week old C57BL/6 male and female mice (n=6 per gender,

n=12 total) were maintained on  a low iron diet (20 ppm) for 12
days after introduction to the vivarium. Urine was collected and
mice were bled at baseline via the mandibular vein (≤200 mL).
Mice were returned to a 20 ppm diet until second urine and blood
samples (50 mL) were collected 72 h later. Serum was prepared and
stored at -80°C until analysis. 

Effect of inflammation 
The same group of C57BL/6 animals employed in the phleboto-

my experiment described above (8 weeks old) were divided into
two groups of male and female mice (n=3 per gender per group,
n=12). The experimental group was treated with lipopolysaccha-
ride (LPS, Escherichia coli O111:B4; Sigma) by intraperitoneal injec-
tion (1 mg LPS/g body weight).18 Controls (n=3 per gender) were
treated with phosphate-buffered saline. Blood and urine samples
(50 mL) were collected after dietary acclimation at baseline before
LPS injection and at 24 h after treatment. 

Animal husbandry and transgenic mouse models
All procedures were performed in accordance with protocols

approved by the respective Institutional Animal Care and Use
Committees (see Online Supplementary Materials and Methods). 

Statistics
For all datasets, two-tailed Student t-tests (Microsoft Excel) were

employed to determine statistical significance, which was consid-
ered present when P<0.05.

Results

Antibody specificity
We produced high-titer polyclonal antisera against

mouse hepcidin-1 and employed the protein A purified
fraction to develop a C-ELISA. Western blot analysis
demonstrated that the antibodies bind both synthetic hep-
cidin-1 and a novel synthetic hepcidin-1-biotin conjugate
(Peptides International, Louisville, KY, USA) employed in
the C-ELISA with equal affinity (Online Supplementary
Figure S1). 

The murine genome contains a second hepcidin gene,
Hepc-2, which encodes a protein with 68% amino acid
identity.14 To determine the specificity of the antibodies,

we tested the ability of hepcidin-1 and hepcidin-2 to com-
pete in solution with the hepcidin-1-biotin conjugate in
the C-ELISA. We detected no interaction, even at a hep-
cidin-2 concentration of 1000 ng/mL (Figure 1A). We also
assessed the cross-reactivity of rat hepcidin, which is 80%
identical to mouse hepcidin-1, and found no response at
concentrations up to 250 ng/mL, and only a slight
response beyond that, up to 1000 ng/mL. Anti-hepcidin-1
antibodies also did not bind to human hepcidin-25. This
lack of cross-reactivity enabled us to employ human plas-
ma or urine spiked with mouse hepcidin-1 to assess the
performance of the assay.

Performance of the competitive enzyme-linked
immunosorbent assay

Standard curves were generated with 12 or 8 calibration
points beginning at 1000 ng/mL and proceeding lower by
serial 1:2 or 1:3 dilutions, respectively. The 12-point curve
was used to evaluate the initial assay’s characteristics,
including specificity (Figure 1), but all subsequent data uti-
lized an 8-point curve. This standard was acceptable
according to criteria outlined by DeSilva et al.,19 insofar as
the accumulated back-calculated values from all curves
have an absolute mean relative error ≤10% and a coeffi-
cient of variation (CV) ≤15% (Table 1). The lower limit of
detection (LLOD) of synthetic hepcidin in the standard
curve [defined by two standard deviations (SD) above the
zero standard] was 0.18 ng/mL, and the dynamic range of
the assay extends to 333 ng/mL with an average half-max-
imal effective concentration (EC50) of 3.3 ng/mL (Table 1).
The LLOD for the C-ELISA is 3.6 ng/ml (1.3 nmol/L) and
1.8 ng/mL (0.065 nmol/L) and the lower limit of quantita-
tion (LLOQ) is 10.3 ng/mL (3.7 nmol/L) and 5.1 ng/mL
(1.86 nmol/L) for 5% and 10% serum dilutions, respec-
tively. Similarly, five SD above the zero standard defines
the derived LLOQ for 5% and 10% serum dilutions. The
upper limit of quantitation of the C-ELISA was 6666
ng/mL (2418 nmol/L) and 3333 ng/mL (1209 nmol/L), for
5% and 10% serum dilutions, respectively. 

Five-percent human serum spiked with murine hep-
cidin-1 gave an average recovery of 100% (range, 93-
107%) across the range of the standard curve (n=4).
Similarly, in hepcidin-1-spiked 10% human urine, we
observed an average percent recovery of 99% (range, 93-
105%) demonstrating minimal interference (n=3).
Recovery in 10% serum gave slight interference, manifest-
ed only at <4 ng/mL, as evidenced by a 30-40% over-
recovery of hepcidin-1 in spiked samples (data not shown).

Precision was determined by assaying human serum
spiked with hepcidin-1. The average intra-assay CV was
3.1% (range, 1.3-5.2%; n=4). The average inter-assay pre-
cision of these samples (n=4 independent assays) was
5.9% (range, 4.7-7.7%). Similarly, human urine spiked
with hepcidin-1 was analyzed, and yielded an average
intra-assay CV of 5.5% (range, 1.0-11.7%; n=3), and an
average inter-assay CV (n=3) of 3.5% (range, 1.5-5.9%).
The linearity of the assay was also tested in human serum
and urine spiked with 1000 ng/mL hepcidin-1 diluted 1:4,
1:8, or 1:16 in buffer (n=3 each). Average recovery was
94% (range, 92-95%) and 108% (range, 107-112%) in
serum and urine, respectively.

Serum hepcidin-1 response to dietary iron correlates
with hepatic hepcidin mRNA expression

Serum hepcidin-1, ferritin, and iron parameters were
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determined in male and female mice fed low (4 ppm), nor-
mal (300 ppm), and high (30,000 ppm) iron diets (n=8 for
each sex and diet). As expected, we found that serum hep-
cidin-1, iron, transferrin saturation and ferritin increased in
parallel with increasing dietary iron (Figure 1B, Table 2).
Only in mice fed the 300 ppm diet was there a statistically
significant difference between serum hepcidin levels
between male and female animals (Table 2, Figure 1B).
Plasma iron and transferrin saturation were significantly
different between genders in mice fed normal and high
iron diets (Figure 1B, Online Supplementary Figure S2B),
while ferritin was significantly different between genders
in mice fed low and high iron diets (Figure 1B). Combining
data for both genders and all iron diets, there was a strong
(r = 0.881) linear correlation between log10[hepcidin-1] and
transferrin saturation (Online Supplementary Figure S2C). In
all mice subjected to dietary iron modulation, serum hep-
cidin-1 and liver mRNA expression were strongly correlat-
ed (r = 0.889, Figure 1C, Online Supplementary Figure S1A).

Correlation of serum hepcidin with urinary hepcidin  
In the absence of a reliable assay for murine hepcidin-1,

it has been impossible to determine whether in mice, as in
humans,20-22 urinary and serum hepcidin levels are correlat-
ed. To answer this question, serial serum and urine sam-
ples were collected from male and female mice on days 9,
12, 13, and 14 (n=6 per day; 14 males and 10 females; n=24
total) as they acclimated to a low iron diet (20 ppm). We
found a moderate correlation (r = 0.688) between serum
hepcidin and urinary hepcidin levels normalized to urinary
creatinine (Online Supplementary Figure S2D).

The effects of acute blood loss and inflammation
The abundance of liver hepcidin-1 mRNA decreases in

response to anemia.4 Following acclimation to a low iron
diet (20 ppm), we induced acute anemia by bleeding male
and female mice (n=3 per gender). Hepcidin-1 was meas-
ured in serum and urine after the initial bleed and again 3
days later. As expected, we found that serum and urinary
hepcidin were suppressed 2.3- to 3.6-fold, respectively
(Figure 1D).

Hepcidin is a type II acute-phase protein induced by the
inflammatory cytokine, interleukin-6.5 In order to mimic
acute inflammation, groups of male and female mice were

Murine hepcidin-1 ELISA
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Figure 1. Characterization of
a murine hepcidin-1 ELISA.
(A) Specificity of murine
immunoassay to hepcidin-1.
A dose-response curve for
mouse hepcidin-1 compared
to conserved hepcidin pep-
tides (mouse Hepcidin-2, rat
hepcidin, and human hep-
cidin). The data depict 12-
point standard curves serial-
ly diluted 1:1 starting from
1000 ng/mL. The X-axis is
shown in log format. (B)
Serum hepcidin-1 response
to varying iron diets. Male
and female mice were sepa-
rately grouped and fed low (4
ppm Fe), normal (300 ppm
Fe), or high (30,000 ppm Fe)
iron diets (n=8). Serum was
collected after 4 weeks and
assessed for hepcidin-1, fer-
ritin, and iron concentra-
tions. (C) Correlation of
serum hepcidin-1 by C-ELISA
with hepcidin-1 mRNA from
liver. Hepcidin-1 mRNA val-
ues were normalized to β-
actin controls. (D) Serum and
urine hepcidin-1 response to
phlebotomy (n=6). (E) Serum
and urinary hepcidin-1
response to inflammation.
Female or male mice (n=3)
were treated intraperitoneal-
ly with phosphate buffered
saline (PBS) or 1 mg LPS/g
body weight. Hepcidin-1 was
unchanged in both serum
and urine by PBS injections
from time 0 to 24 h after
injection. However, LPS chal-
lenge drastically increased
hepcidin-1 in serum and
urine from time 0 to 24 h
after injection. Hepcidin
(ng/mL) is represented on a
log scale. Ratios are
expressed ± SEM. P values
were calculated using the
Student t-test. ****P<0.001
***P<0.005 and *P<0.05.
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injected intraperitoneally with phosphate-buffered saline
or LPS at a dose of 1 mg/g body weight.18 Serum and uri-
nary hepcidin-1 were measured immediately prior to
injection and again 24 h later (Figure 1E). In both males
and females, serum and urinary hepcidin-1 concentrations
dramatically increased 24 h after exposure to LPS. For
serum hepcidin, the average increase was 46-fold in males
and 20-fold in females while the average increase in uri-
nary hepcidin-1 was 26-fold in both genders.

Comprehensive re-analysis of genetic mouse models 
of dysregulated iron homeostasis with the hepcidin-1
competitive enzyme-linked immunosorbent assay

In order to further validate the murine hepcidin-1 C-
ELISA assay, we compared its performance to that of
qPCR of liver RNA by re-analyzing previously published
cohorts of animals with genetic iron disorders. We evalu-
ated serum hepcidin in the Trfhpx/hpx mouse model of hypo-
transferrinemia, which has profound iron overload due to
a near complete absence of transferrin and severely sup-
pressed hepcidin.23,24 We also studied animals lacking the
transmembrane serine protease Tmprss6, which are iron-
deficient due to overexpression of hepcidin.25-30 In Trfhpx/hpx

animals we found serum concentrations of hepcidin (14.98
± 2.0 ng/mL) at least 10-fold lower than in wild-type ani-
mals (Figure 2A). In contrast, despite their iron deficiency,
Tmprss6-/- mice have hepcidin concentrations 2-fold higher
than those of normal mice (Figure 2C). Animals heterozy-
gous for a Tmprss6 null allele (Tmprss6+/-) demonstrate a
liver iron phenotype intermediate between that of
Tmprss6-/- and wild-type mice.29 Here we demonstrate that
these mice do not exhibit an intermediate level of hepcidin
peptide or mRNA (Figure 2C,D), presumably as a conse-
quence of compensatory regulatory events.31 The hepcidin
C-ELISA also enabled us to evaluate the effect of a Tmprss6
missense mutation, Tmprss6hem8 (Tmprss6I286F), more precise-
ly. Tmprss6hem8/hem8 mice have a slightly less severe pheno-
type than that of Tmprss6-/- animals.32 Whereas there is no
difference in expression of Tmprss6 mRNA in these mod-
els,32 serum hepcidin-1 concentrations were increased only
about half as much in Tmprss6hem8/hem8 animals as they were
in Tmprss6-/- null mice (Figure 2C,E). This observation is
concordant with activity of the mutant Tmprss6hem8 pro-
tein in vitro, where it has nearly half the enzymatic activity
of the wild-type protein.32 The Tmprss6hem8/- compound
mutant mice have approximately the same hepcidin
expression as Tmprss6-/- animals (Figure 2G).32

We evaluated serum hepcidin in the Hbbth3/+ model of tha-
lassemia intermedia and the Hfe-/- model of hereditary
hemochromatosis. In both cases, hepcidin level measured
by qPCR is suppressed relative to the extent of systemic
iron overload.33 We also examined serum hepcidin in each

of these mutant strains following treatment with a lipid
nanoparticle encapsulated short interfering RNA (siRNA)
directed against Tmprss6, which ameliorates the tha-
lassemia and hemochromatosis iron and anemia pheno-
types.33 We confirmed inappropriately low levels of serum
hepcidin in iron-loaded mutants and induction of hepcidin
by Tmprss6 siRNA treatment (Figure 3A,C). By and large, in
these and previous analyses of Trfhpx/hpx and Tmprss6-/- ani-
mals, the correlation between qPCR and serum hepcidin-1
analyses is strong (Figures 2B,D,H, and 3B,D). The Pearson
correlation coefficients for each genetic cohort analyzed
individually are listed in Online Supplementary Table S1.

We also re-examined hepcidin in a Tfr2-/- model of
hereditary hemochromatosis,34 in wild-type animals over-
expressing a liver-specific Hfe-transgene,35 and in Tfr2-/- ani-
mals carrying the same transgene. The latter two models
are iron deficient, owing to Hfe-induced hepcidin overex-
pression. In contrast to experiments performed on animals
with inbred genetic backgrounds, in these crosses, the
serum hepcidin-mRNA correlation was not as robust
(Figure 3E,F). Importantly, correlation of transferrin satura-
tion (Figure 3G) and non-heme liver iron (Figure 3H) with
hepcidin measured by C-ELISA was far better than with
hepcidin measured by qPCR. This suggests that serum
hepcidin may be more indicative of iron-related biological
outcomes.

Serum hepcidin in novel compound mutant genetic
mouse models of dysregulated iron metabolism

Previously, we and others proposed a model whereby
HFE bound to transferrin receptor (TFRC) in human hepa-
tocytes participates in regulating hepcidin production in
response to plasma iron.36 In this model, as saturation
rises, and total body iron burden increases, diferric trans-
ferrin (Tf-Fe2) competes HFE from TFRC, signaling for
increased hepcidin expression. Conversely, as transferrin
saturation diminishes, more HFE binds to TFRC and hep-
cidin production is reduced. To better understand the
importance of the stoichiometry of the HFE/TFRC/Tf-Fe2

complex, we bred mice lacking Hfe to animals heterozy-
gous for a null mutation in the transferrin receptor (Tfrc+/-).
Tfrc+/- animals, regardless of Hfe status, were relatively ane-
mic (Online Supplementary Figure S3A,B) and had smaller
red blood cells (Online Supplementary Figure S3C), consis-
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Table 1. Curve characteristics of the murine hepcidin-1 C-ELISA.
N Assay range, ng/mL Average, % Range, %

CV 6 1.4-330 6.7 3.7 - 11.9
RE 6 1.4-330 1.9 -1.3 - 4
CV: coefficient of variance; RE: relative error.

Table 2. Serum concentrations of hepcidin-1, ferritin and iron in male and female mice fed varying iron diets. 
Hepcidin ng/mL Ferritin ng/mL Serum Fe mM 

Iron diet Male Female P Male Female P r* Male Female P r*

Low 10.4 7.1 ns 651.0 475.4 0.05 0.90 21.3 23.6 ns 0.92
Normal 153.6 208.0 0.003 944.0 1030.6 ns 31.8 39.3 0.003
High 675.3 593.6 ns 4317.8 3174.8 0.05 53.8 59.1 0.02
n = 8 per gender per diet; ns = non-significant; Low diet (4 ppm Fe), Normal diet (300 ppm Fe), High diet (30,000 ppm Fe). *Correlation coefficient compared to hepcidin-1 values
for both genders across all iron diets.



tent with reduced erythroid iron availability. We found
that animals lacking Hfe have elevated transferrin satura-
tion and non-heme liver iron and diminished non-heme
spleen iron concentrations, whether or not they are het-
erozygous for a Tfrc null allele (Hfe-/- or Hfe-/- Tfrc+/- geno-
types, Figure 4A-C). Accordingly, liver hepcidin mRNA
measured by qPCR and serum hepcidin levels measured
by C-ELISA were decreased (Figure 4D,E). Loss of one
allele of Tfrc promoted hepcidin expression, but there was
no corresponding change in iron parameters (Figure 4A-E).
In Tfrc+/- mutants, liver hepcidin mRNA and serum hep-
cidin concentrations were concordant (Figure 4F).
Furthermore, transferrin saturation and non-heme liver
iron measurements correlated better with serum hepcidin
than with hepcidin-1 mRNA expression (Figure 4G,H). 

It has been postulated that HFE and TFR2 also function
in a complex with hemojuvelin (HJV), a bone morpho-
genetic protein co-receptor, to modulate hepcidin expres-
sion in relation to serum transferrin saturation.37 To deter-
mine whether loss of either HFE or TFR2 protein had an
additive effect on iron overload in the absence of HJV, we
bred Tfr2-/- and Hfe-/- animals to Hjv-/- animals. Mice lacking
either Hjv or Tfr2, or both genes had significantly elevated
transferrin saturation and non-heme liver iron, as well as

decreased non-heme spleen iron (Figures 5A-C), congruent
with the low hepcidin expression that we observed in
both qPCR and C-ELISA assays (Figures 5D-F).
Importantly, a statistically significant difference between
animals lacking Tfr2, Hjv or both proteins was detected
only with the serum assay, possibly, once again, due to
inherent variability in the qPCR-based assay. Furthermore,
serum hepcidin correlated better than qPCR with transfer-
rin saturation (Figure 5G) and non-heme liver iron (Figure
5H). Likely reflective of their fully replete iron status, mice
lacking Tfr2, Hjv or both proteins had significantly elevat-
ed hemoglobin, hematocrit, and mean corpuscular volume
compared to wild-type animals (Online Supplementary
Figure 4A-C). Interestingly, the mean corpuscular volume
was disproportionately increased in Tfr2-/- mice, possibly
relating to its proposed intrinsic effect on erythropoiesis.6

As expected, in animals lacking Hfe or Hjv or both pro-
teins, transferrin saturation and liver non-heme iron were
greatly increased (Figure 6A,B), while non-heme spleen
iron was decreased (Figure 6C). Commensurate with the
smaller decrease in serum hepcidin (Figure 6D,E), in gen-
eral, Hfe-/- mice had a less severe phenotype than that of
either the Hjv-/- null or Hjv-/- Hfe-/- compound null mutants.
The two analytical methods correlated well (Figure 6F),

Murine hepcidin-1 ELISA
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Figure 2. Analysis of serum hepcidin-1 in
Tmprss6hem8/hem8, Tmprss6-/-, and Trf hpx/hpx
animals. Serum hepcidin-1 (A,C,E and G)
was measured in Trf +/+ (n=5), Trf hpx/hpx

(n=5), Tmprss6+/+ (n=6), Tmprss6+/-

(n=6), Tmprss6-/- (n=6), Tmprss6+/+ (n=8),
Tmprss6hem8/hem8 (n=7), Tmprss6+/+ (n=7),
Tmprss6hem8/+ (n=5), Tmprss6+/- (n=4),
and Tmprss6hem8/- (n=6), animals, respec-
tively, by murine immunoassay and plot-
ted against relative hepcidin mRNA
measured by quantitative real-time PCR
(B, D, F and H). Ratios are expressed ±
SEM. P values were calculated using the
Student t-test. ****P<0.001,
***P<0.005 and **P<0.01.
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but C-ELISA measurements correlated better than qPCR
with both transferrin saturation and non-heme liver iron
(Figure 6G,H). As in all murine hereditary hemochromato-
sis models, hemoglobin and hematocrit were elevated in
mice lacking either Hfe or Hjv or both proteins (Online
Supplementary Figure S5A-C).

Discussion 

We have developed and comprehensively validated a
sensitive, robust C-ELISA to accurately measure serum
hepcidin-1 in 2.5-10.0 mL of murine serum and urine with
no cross-reactivity with mouse hepcidin-2. The assay has
high sensitivity with a LLOD of 3.6 ng/mL and a wide

dynamic range – up to 6666 ng/mL using a 5 mL serum
sample (5% serum). With 5% serum and urine, mean
recovery of spiked synthetic hepcidin-1 peptide was
100% and 99% (range, 93-107%), respectively. Spike
recovery of synthetic hepcidin-1 in 5% serum yielded an
average recovery of 93% at a serum hepcidin concentra-
tion of 1.4 ng/mL. Decreasing sample volume to 2.5%
decreased the sensitivity of the assay at the lowest con-
centrations (LLOD 7.2 ng/mL), while 10% serum greatly
increased the assay’s sensitivity (LLOD 1.8 ng/mL) but
introduced some interference that affected spike recovery
at concentrations below 4 ng/mL. The C-ELISA allows
accurate, linear hepcidin-1 quantitation in a range of sam-
ple volumes with 5% serum being optimal.

In both serum and urine, the average values of the CV of
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Figure 3. Comparison of hepcidin measured
by C-ELISA and qPCR in mouse models of
thalassemia intermedia and hereditary
hemochromatosis. (A-D) Mouse models of
thalassemia-intermedia (Hbbth3/+) and hered-
itary hemochromatosis (Hfe-/-) were treated
with lipid nanoparticle formulated Tmprss6
siRNA (LNP-Tmprss6) or a luciferase control
(LNP-Luc) as published previously (n=5 for
each treatment group).33 (A,C) Serum hep-
cidin-1 was measured with the murine
immunoassay. (B,D) Total mRNA was har-
vested from liver and hepcidin-1 assessed by
quantitative real-time PCR, normalized to β-
actin (Actb) and plotted versus serum hep-
cidin. (E) Serum hepcidin-1 was measured in
wild-type (WT), Tfr2-/-, HfeWT transgenic or
Tfr2-/- HfeWT transgenic livers (n=6 for each
genotype)35 and (F) total mRNA was harvest-
ed from liver and compared as above. (G)
Serum and quantitative real-time PCR
measured hepcidin-1 levels were compared
to % serum transferrin saturation and (H)
non-heme liver iron (mg/g wet weight).
Ratios are expressed ± SEM. P-values were
calculated using the Student t-test. ****P<
0.001, ***P<0.005 and **P<0.01. 
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precision were under 6%, an accepted norm for diagnostic
assays.19 Although we did not systematically assess plas-
ma as a substrate, based on past experience with compa-
rable human C-ELISA data and limited preliminary data,
the assay should perform well in lithium heparin prepared
plasma (TBB, unpublished data). Nevertheless, we will have
to evaluate this biological matrix more systematically. The
results from a broad range of murine models exhibiting
dysregulated iron homeostasis demonstrate that the C-
ELISA is sensitive and robust with a broad reportable
range in singleton assays employing 5% serum or urine
(i.e., 1:20 dilutions). The small sample volumes of serum or
urine required for hepcidin measurement using the C-
ELISA permits serial sampling with minimal secondary
physiological effects, enabling true longitudinal assess-

ment of individual mice, and reducing the numbers of ani-
mals required to perform experiments examining serum
hepcidin concentrations over hours or months. This also
has the important added benefit for pre-clinical research of
mitigating the biological variability inherent in current
“longitudinal” PCR experiments involving cohorts of ani-
mals killed at serial time points for determination of liver
mRNA.

At present, the standard method to detect changes in
hepcidin expression relies on qPCR of liver extracts.13 Like
the C-ELISA, mass spectrometry measurements from
mouse17 and human tissue culture cells38 have shown high
degrees of correlation with liver transcripts. However,
contrary to our observations, in these mouse studies, there
was no correlation with serum iron. Furthermore, one

Murine hepcidin-1 ELISA
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Figure 4. Phenotypic analysis of Tfrc+/- Hfe-/-

mice. Analysis of (A) serum transferrin (Tf)
saturation (%), (B) non-heme liver iron and
(C) spleen iron (μg/g wet weight). Results for
WT (n=5), Tfrc+/- (n=9), Hfe-/- (n=11), and
Tfrc+/- Hfe-/- (n=11) animals are depicted.
Total mRNA was harvested from livers (n=5
or 6 for each genotype) and hepcidin (Hamp)
mRNA (D) was assessed by quantitative real-
time PCR, and normalized to β-actin (Actb).
Serum hepcidin-1 (E) was measured by
murine immunoassay and plotted against
(F) relative hepcidin mRNA measured by
quantitative real-time PCR. (G) Serum and
quantitative real-time PCR measured hep-
cidin-1 levels were compared to % serum
transferrin saturation and (H) non-heme liver
iron (mg/g wet weight). Ratios are expressed
± SEM. P values were calculated using the
Student t-test. ****P<0.001, ***P<0.005,
**P<0.01 and *P<0.05.

A B

C D

E F

G H

100
80
60
40
20
0

1000

750

500

250

0

2.5
2.0
1.5
1.0
0.5
0.0

1250
1000
750
500
250

0

400

300

200

100

0

400

300

200

100

0

500

400

300

200

100

0

500
400
300
200
100

0

3

2

1

0

3

2

1

0

Tf
 s

at
ur

at
io

n 
(%

)
No

n-
he

m
e 

sp
le

en
 ir

on
(m

g/
g 

w
et

 w
ei

gh
t)

No
n-

he
m

e 
liv

er
 ir

on
(u

g/
g 

w
et

 w
ei

gh
t)

Se
ru

m
 h

ep
ci

di
n 

(n
g/

m
L)

Se
ru

m
 h

ep
ci

di
n 

(n
g/

m
L)

Re
la

tiv
e 

he
pc

id
in

 R
NA

Re
la

tiv
e 

he
pc

id
in

 R
NA

Re
la

tiv
e 

he
pc

id
in

 R
NA

Se
ru

m
 h

ep
ci

di
n 

(n
g/

m
L)

Se
ru

m
 h

ep
ci

di
n 

(n
g/

m
L)

WT
Tfr

c+
/-

Tfr
c+

/- Hfe
-/-

Hfe
-/-

0 1 2 3
Relative hepcidin RNA

40 50 60 70 80 90 100

40 50 60 70 80 90 100 0 500 1000 1500 2000
Non-heme liver iron
(mg/g wet weight)

0 500 1000 15002000

P<0.001
r=-0.668

P<0.001
r=-0.664

WT
Tfrc+/-

Hfe-/-

Tfrc+/- Hfe-/-

WT
Tfrc+/-

Hfe-/-

Tfrc+/- Hfe-/-

WT
Tfrc+/-

Hfe-/-

Tfrc+/- Hfe-/-

P<0.01
r=-0.532

P<0.001
r=-0.643

P<0.001
r=-0.801

Tf saturation (%)

WT
Tfr

c+
/-

Hfe
-/-

Tfr
c+
/- Hfe

-/-

WT
Tfr

c+
/-

Hfe
-/-

Tfr
c+
/- Hfe

-/-

WT
Tfr

1+
/-

Hfe
-/-

Tfr
1+

/- Hfe
-/-

WT
Tfr

c+
/-

Hfe
-/-

Tfr
c+
/- Hfe

-/-



mass spectrometry assay failed to detect hepcidin-1 in
mouse urine.39 In contrast, our C-ELISA clearly demon-
strates the presence of hepcidin-1 present in murine urine
under steady state and pro-inflammatory conditions. It is
possible that pre-analytical peptide enrichment steps
required for the mass spectrometry assay may selectively
isolate hepcidin-1 or hepcidin-2 in a matrix-dependent
manner.17 As such, this is the first report of concordance
between murine serum and urinary hepcidin-1 levels,
comparable to that observed using C-ELISA20 or mass
spectrometry methodologies in humans.21,22 Overall, we
observed a correlation coefficient of r = 0.69 for serum and
urinary hepcidin-1 from combined gender sample sets.
Taken separately, male and female mice also had similar
degrees of correlation (data not shown). However, a more

complete understanding of effects of gender and genetic
background is required to fully appreciate the interplay
between serum and urinary hepcidin, an avenue of inquiry
now easily permitted by the availability of this assay.

Using this assay, we have reaffirmed several key princi-
ples of hepcidin regulation in mice based purely on mRNA
expression data. For example, changes in erythropoietic
activity have been shown to modulate liver hepcidin
mRNA expression during anemia in an erythropoietin-
and bone marrow activity-dependent manner.40-42

Phlebotomy-induced acute anemia reduced hepcidin-1
liver mRNA.4 Concordant with these data, our immunoas-
say measured a 2.3- to 3.6-fold decrease in hepcidin-1 in
males and females, in serum and urine 3 days after blood
collection. Furthermore, as a type II acute-phase protein
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Figure 5. Phenotypic analysis
of Tfr2-/- Hjv-/- mice. Analysis of
(A) serum transferrin saturation
(%), (B) non-heme liver iron and
(C) spleen iron (mg/g wet
weight). WT (n=8), Tfr2-/- (n=7),
Hjv-/- (n=8) and Tfr2-/- Hjv-/- (n=8)
are depicted. Total mRNA was
harvested from livers (n=5 for
each genotype) and hepcidin
(Hamp) mRNA (D) was
assessed by quantitative real-
time PCR, and normalized to β-
actin (Actb). Serum hepcidin-1
(E) was measured by murine
immunoassay and plotted (F)
against relative hepcidin mRNA
measured by quantitative real-
time PCR. (G) Serum and quan-
titative real-time PCR meas-
ured hepcidin-1 levels were
compared to % serum transfer-
rin saturation and (H) non-
heme liver iron (mg/g wet
weight). Ratios are expressed ±
SEM. P values were calculated
using the Student t-test. .
****P<0.001, ***P<0.005,
**P<0.01 and *P<0.05.
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responsive to interleukin-6,5,43 hepcidin increased 4-fold
following LPS injection as measured by northern blot
analysis of liver RNA.3 With 10-times the LPS dosage, we
observed a hepcidin-1 increase of 46-fold in serum from
males and 20-fold in serum from females and urine from
animals of both genders. 

We previously demonstrated that suppression of
Tmprss6 mRNA in rodent models of β-thalassemia inter-
mediate (Hbbth3/+) and classical hereditary hemochromato-
sis (Hfe-/-) enhances hepatic hepcidin expression and ame-
liorates the thalassemia and hemochromatosis pheno-
types.33 Although qPCR analysis of liver mRNA demon-
strated a significant increase in hepcidin expression in both
models, there was considerable variability, especially at the
lower values measured in Hfe-/- animals. However, C-ELISA
analysis of hepcidin in Hfe-/- serum samples demonstrated a

greatly increased significance between treatment groups.
We also showed that transgenic overexpression of Hfe,
even in animals with a truncated, non-functional Tfr2,35

leads to overexpression of hepcidin and hypochromic,
microcytic anemia. In this case, qPCR analysis of liver hep-
cidin showed a downward trend of expression in Tfr2-/-

mice and a trend toward increased expression in Hfe trans-
genic animals. By contrast, C-ELISA analysis of these same
cohorts of animals revealed unequivocally diminished hep-
cidin expression in animals lacking Tfr2 and elevated serum
hepcidin in transgenic Hfe mice. Furthermore, comparison
of serum hepcidin concentration to both transferrin satura-
tion and non-heme liver iron revealed a close correlation
between hepcidin production and metrics of iron metabo-
lism; correlations between qPCR of liver hepcidin mRNA
and these parameters are less informative. Taken together,
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Figure 6. Phenotypic analysis
of Hfe-/- Hjv-/- mice. Analysis of
(A) serum transferrin (Tf) sat-
uration (%), (B) non-heme
liver iron and (C) spleen iron
(mg/g wet weight). WT (n=7),
Hfe-/- (n=8), Hjv-/- (n=8) and
Hfe-/- Hjv-/- (n=10) animals are
depicted. Total mRNA was
harvested from livers (n=6
for each genotype) and hep-
cidin (Hamp) mRNA (D) was
assessed by quantitative
real-time PCR, and normal-
ized to β-actin (Actb). Serum
Hepc-1 (E) was measured by
murine immunoassay and
plotted against (F) relative
hepcidin mRNA measured by
quantitative real-time PCR.
Serum and quantitative real-
time PCR measured hep-
cidin-1 levels were compared
to serum transferrin satura-
tion (G,%) and non-heme liver
iron (H, mg/g wet weight).
Ratios are expressed ± SEM.
P values were calculated
using the Student t-test
****P<0.001, ***P<0.005,
**P<0.01 and *P<0.05.
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these retrospective analyses demonstrate that this hepcidin
C-ELISA is a more sensitive, accurate and precise method
that permits the distinction of finer differences in serum
hepcidin concentrations otherwise not detected by mRNA
expression analyses.

In support of the prevailing hypothesis that Tf-Fe2 dis-
places HFE from TFRC to positively regulate hepcidin
expression, we previously demonstrated that mutations
in TFRC leading to constitutive association with or disas-
sociation from HFE lead to hepcidin-related iron over-
load and anemia, due to hepcidin suppression or expres-
sion, respectively.36 Similarly, we demonstrate that loss of
one allele of Tfrc leads to elevated serum hepcidin and
red blood cell parameters compatible with cellular iron
deficiency. Whether this is a primary defect in hepatocel-
lular hepcidin regulation or a secondary effect from
defective red blood cell precursor iron uptake (or a com-
bination of both) is uncertain. However, since concomi-
tant homozygous loss of HFE and heterozygous loss of
TFRC (Hfe-/- Tfrc+/- genotype) leads to iron overload and
similarly iron-deficient red blood cell parameters and
anemia, at least part of the effect is intrinsic to the red
cell precursor. 

Furthermore, it has been postulated that HFE and TFR2
function in a complex with HJV to modulate hepcidin

expression.37 To explore the interrelationship of HJV, HFE
and TFR2 with hepatic hepcidin expression, we bred Tfr2-

/- and Hfe-/- lines to Hjv-/- animals. We reaffirmed the finding
that loss of HJV leads to greatly diminished hepcidin
expression and iron overload.44 More importantly, we
show here that loss of Hfe or Tfr2 in combination with
loss of Hjv does not make the iron-loading phenotype
more severe, further cementing the hypothesis that HFE
and TFR2 function upstream of HJV to regulate hepcidin
expression and, subsequently, iron metabolism. We clearly
showed a significant decrease of serum hepcidin in Tfr2-/-

Hjv-/- double nulls compared to Tfr2-/- single null animals
using this C-ELISA assay, an effect that was not observed
by qPCR. These data collectively demonstrate the value of
assessing serum hepcidin with this C-ELISA compared to
qPCR. The C-ELISA can distinguish small differences in
hepcidin mRNA expression by detecting low nanogram
concentrations and changes in hepcidin-1, permitting
more subtle interpretations of results in mouse models of
hepcidin dysregulation. 
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