
Recurrent presence of the PLCG1 S345F mutation
in nodal peripheral  T-cell lymphomas 

Peripheral T-cell lymphomas (PTCLs) are a group of non-
Hodgkin lymphomas (NHLs) with heterogeneous clinical
presentation, histology, response to treatment and out-
come, whose genetic background is still poorly understood.
Patients with PTCL are usually treated with CHOP or more
intensive regimens, generally with minimal effectiveness,
thus highlighting the need for new therapeutic strategies.1

Several findings suggest that the survival of normal and,
frequently, neoplastic T cells depends upon T-cell receptor
(TCR) signaling.2 The t(5;9)(q33;q22), which results in an
ITK-SYK fusion transcript, has been described in PTCL and
angioimmunoblastic T-cell lymphoma (AITL). Moreover,
transgenic mice with this translocation display chronic
proximal TCR signaling, culminating in T-cell lymphomas
that could be inhibited by treatment with SYK-inhibitors.2,3

SYK is also over-expressed in almost 90% of nodal-PTCLs
(n-PTCL) and mutated in other PTCL-specific subtypes.4 In
addition, Palomero et al.5 have recently reported activating
mutations in FYN tyrosine kinase, another SRC family
kinase found in T lymphocytes that has an important role
in T-cell activation upon TCR stimulation. Recently, the rel-
evance of several mutated genes (TET2, IDH2, DNMT3A,
RHOA) in T-cell lymphoma pathogenesis has become
apparent.5-7 

Nevertheless, as gene expression array studies have
shown, not all PTCLs depend on TCR signaling.8 De Leval
et al. classified PTCL cases according to gene signatures
associated with CD30 expression or T-cell activation/TCR-
signaling.8 Moreover, several authors have confirmed an
inverse correlation between the levels of expression of
CD30 and TCR genes.9 

The TCR is a multimeric complex that is expressed on
the cell surface in association with four CD3 molecules.
Upon receptor ligation, two tyrosine residues are rapidly
phosphorylated by a member of the src-family protein
tyrosine kinase (PTK), transforming them into high-affinity
ligands for Syk PTKs. The co-ordinated actions of Src and
Syk PTK initiate a cascade of signals that ultimately leads to
cell proliferation, cytokine secretion and effector functions.
Nevertheless, the resulting increase in intracellular calcium
concentration ([Ca2+]i), occurring partly as a result of phos-
phorylating and activating phospholipase C-γ1 (PLCG1),10

is critical for TCR stimulation. Activated PLCG1 generates
the second messenger inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG) from the hydrolysis of phosphati-
dynositol-4,5-bisphosphate (PIP2). Whereas IP3 mediates
the elevation of [Ca2+]i, which is essential for activating the
nuclear factor of activated T cells (NFAT),11 DAG activates
the Ras-ERK pathway12 and protein kinase C (PKC), which
mediates the activation of NF-kB.13

A recurrent mutation in the PLCG1 gene encoding a pro-
tein with p.Ser345Phe alteration (S345F) has recently been
identified that affects the PLCx protein catalytic domain in
approximately 20% of cutaneous T-cell lymphomas
(CTCLs),14 and a similar finding has been reported for one
AITL case.15 Functional studies showed that PLCG1
mutants could increase NFAT activity and were highly sen-
sitive to calcineurin inhibitors.14

Due to the importance of the TCR pathway in PTCL,
and because PLCG1 is a critical mediator of TCR signaling,
we decided to explore the frequency and biological rele-
vance of this PLCG1-S345F mutation in n-PTCL patients.
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Table 1. Statistical analysis of the clinical and molecular parameters
and the mutational status of the PLCG1 gene in the cohort of 101
patients with PTCLs.

Clinical and molecular parameters
N. of cases (%)   WT MUT P

N 101 88 13
DX 101 88 13 0.662
AITL 60 (59.4%) 53 (60.2%) 7 (53.8%)
PTCL-NOS 41 (40.6%) 35 (39.8%) 6 (46.2%)
Sex 98 85 13 0.525
Male 60 (61.2%) 51 (60%) 9 (69.2%)
Female 38 (38.8%) 34 (40%) 4 (30.8%)
Age at diagnosis 96 83 13 0.212
<60 years 30 (31.2%) 24 (28.9%) 6 (46.2%)
≥60 years 66 (68.8%) 59 (71.1%) 7 (53.8%)
IPI 87 74 13 0.829
Low risk 28 (32.2%) 23 (31.3%) 5 (38.5%)
Low-intermediate risk 22 (25.3%) 19 (25.7%) 3 (23.1%)
High-intermediate risk 21 (24.1%) 19 (25.7%) 2 (15.4%)
High risk 16 (18.4%) 13 (17.6%) 3 (23.1%)
PIT 76 64 12 0.504
Low risk 11 (14.5%) 10 (15.6%) 1 (8.3%)
Low-intermediate risk 28 (36.8%) 25 (39.1%) 3 (25%)
High-intermediate risk 22 (28.9%) 18 (28.1%) 4 (33.3%)
High risk 15 (19.7%) 11 (17.2%) 4 (33.3%)
ECOG 83 70 13 0.346
<1 60 (72.3%) 52 (74.3%) 8 (61.5%)
≥1 23 (27.7%) 18 (25.7%) 5 (38.5%)
Treatment 85 75 10 0.278
CHOP/CHOP-LIKE 63 (74.1%) 57 (76%) 6 (60%)
Others 22 (25.9%) 18 (24%) 4 (40%)
Response 81 69 12 0.280
CR 51 (63%) 45 (65.2%) 6 (50%)
PR 16 (19.8%) 14 (20.3%) 2 (16.7%)
No response 14 (17.3%) 10 (14.5%) 4 (33.3%)
Recurrence 75 64 11 0.644
No 50 (66.7%) 42 (65.6%) 8 (72.7%)
Yes 25 (33.3%) 22 (34.4%) 3 (27.3%)
Patient status 93 80 13 0.212
Dead 57 (61.3%) 47 (58.8%) 10 (76.9%)
Alive 36 (38.7%) 33 (41.2%) 3 (23.1%)
NFATc1 95 83 12 0.754
Negative 28 (29.5%) 24 (28.9%) 4 (33.3%)
Positive 67 (70.5%) 59 (71.1%) 8 (66.7%)
P50 98 85 13 0.027
Negative 24 (24.5%) 24 (28.2%) 0 (0%)
Positive 74 (75.5%) 61 (71.8%) 13 (100%)
P52 97 84 13 0.294
Negative 35 (36.1%) 32 (38.1%) 3 (23.1%)
Positive 62 (63.9%) 52 (61.9%) 10 (76.9%)
P-ERK 102 89 13 0.975
Negative 71 (69.6%) 62 (69.7%) 9 (69.2%)
Positive 31 (30.4%) 27 (30.3%) 4 (30.8%)
CD30 94 81 13 <0.001
Negative 77 (81.9%) 71 (87.7%) 6 (46.2%)
Positive 17 (18.1%) 10 (12.3%) 7 (53.8%)
Ki67 100 87 13 0.148
Negative 78 (78%) 70 (80.5%) 8 (61.5%)
Positive 22 (22%) 17 (19.5%) 5 (38.5%)
CD3 94 81 13 0.148
Negative 6 (6.4%) 4 (4.9%) 2 (15.4%)
Positive 88 (93.6%) 77 (95.1%) 11 (84.6%)
DX: diagnosis; AITL: angioimmunoblastic T-cell lymphoma; PTCL-NOS: peripheral T-cell lym-
phoma not specified; WT: wild type; MUT: mutated; IPI: International Prognostic Index; 
PIT: Prognostic Index for PTCL; ECOG: Eastern Cooperative Oncology Group; CHOP:
cyclophosphamide, vincristine, doxorubicin, prednisone; CR: total response; PR: partial
response.



We first examined the presence of the PLCG1-S345F
mutation in a series of 101 formalin-fixed, paraffin-embed-
ded (FFPE) PTCLs samples including 60 AITL and 41
peripheral T-cell lymphoma not otherwise specified (PTCL-
NOS). Clinical data for the patients and some mutational
and GEP data have been reported in two previous studies6,9

(see Online Supplementary Appendix for further information). 
First, DNA was extracted from tumor from the FFPE sam-

ples of this group of patients. The PLCG1-S345F mutation
was analyzed using two independent techniques, as previ-
ously reported14 (Online Supplementary Appendix). Only
those cases found to be positive by both techniques were
considered as mutated. All experiments were carried out
blinded with respect to the clinical data. 

The PLCG1-S345F mutation was found in 12.9% of the
patients (13 of 101 PTCLs), comprising 11.7% (7 of 60) of
AITL and 14.6% (6 of 41) of PTCL-NOS patients (Table 1),
of whom 1 of 6 showed AITL-features. Interestingly, no
correlation was found between the presence of RHOA and
PLCG1 mutation in this series (data not shown). 

We analyzed the association of PLCG1 mutation with
clinical data, and found no clear association between the

PLCG1 mutation and overall survival (OS) or other prog-
nostic factors in the whole series; however, we found that
PLCG-mutated PTCL-NOSs showed a lower OS (log rank
χ2=3.81; P=0.05) (Figure 1). There was also an association
with response to treatment (P=0.08) that narrowly failed to
reach statistical significance, probably as a consequence of
the small sample (Online Supplementary Tables S1 and S2).

Tissue micro arrays (TMA) were also constructed from
FFPE samples and TMA sections were stained by the
Endvision method with a heat-induced antigen-retrieval
step for CD3, CD30, NFATc1, Ki67, p-ERK antibodies and
NF-KB subunits for the classic and alternative NF-KB path-
ways, p50 and p52, respectively. Cases were considered
positive for each marker following previously reported cut-
off values for each.6,9,14 Reactive tonsil tissue was included as
a control. The primary antibodies were omitted to provide
negative controls (Online Supplementary Appendix and Online
Supplementary Table S3). 

Immunohistochemical studies revealed positivity for
CD3 in 87.1% (88 of 101), CD30 in 16.8% (17 of 101) and
Ki67 in 21.8% (22 of 101) of the cases. Nuclear immunos-
taining for NFATc1, p-ERK, p50 and p52 was found in
66.3% (67 of 101), 29.7% (30 of 101), 73.3% (74 of 101)
and 61.4% (62 of 101) of the cases, respectively. 

No significant correlation was found between the pres-
ence of the PLCG1-S345F mutation and NFATc1 expres-
sion, although 66.7% of the mutated cases (8 of 12) were
positive. This figure is lower than the 81.8% previously
reported for CTCLs. Overexpression of NFAT in non-
mutated cases could be explained by the presence of a pre-
served TCR/CD3 pathway in this subgroup of tumors. On
the other hand, a direct statistically significant relationship
was found between the presence of the PLCG1-S345F
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Figure 1. Kaplan-Meier survival curves for PLCG1 mutated and
wild-type patients. (A) Whole cohort of nodal-PTCL. (B) PTCL-NOS
subgroup.

Figure 2. Representative images corresponding to a PLCG1-mutat-
ed (A-C) and a non-mutated (D-F) case, respectively. (A and D) H&E
staining. (B and E) CD30 IHC detection showing positivity in the
mutated case (B) versus the lack of expression in the tumoral cells
in the PLCG1-wt case. Scarce CD30-positive blasts could be seen
(E). (C and F) p50 immunoreactivity. p50 shows a clear nuclear
expression in the mutated case (C) whereas its expression is
restricted to the cytoplasm in the non-mutated case (F).
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mutation and both CD30 [7 out of 13 mutated cases
(53.8%) expressed CD30 vs. 10 out of 81 [(12.3%) of the
non-mutated cases; P<0.001)] and p50 [(13 out of 13
mutated cases (100%)] showed p50 nuclear expression;
P=0.027)]  (Table 1 and Figure 2). Analyzing this in greater
depth, with respect to the histological type diagnosed, we
found that the statistical relationship with CD30 was main-
tained in the PTCL-NOS and AITL groups (Online
Supplementary Tables S1, S2 and S4). Increased signaling
from mutated PLCG1, associated with increased NF-kB
activity and CD30 expression, could theoretically replace
the survival signaling from T-cell receptor. These data are
consistent with previously published data showing that
CD30 and TCR signaling are mutually exclusive in PTCL.8,9 

These findings are of potential therapeutic relevance,
since PLC and NF-kB inhibition and CD30-targeted treat-
ments could be explored for PLCG1-mutated cases, there-
by contributing to the selection of targeted treatment based
on the molecular features of the tumors. 
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