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Introduction

Our expanding knowledge of the genome and epigenome in
cancer cells has highlighted the central role that aberrant epige-
netic regulation plays in the pathogenesis of many hematolog-
ical malignancies.1-4 The unparalleled view of the epigenetic
landscape provided by new technologies affords us the oppor-
tunity to gain insights into key pathways and nodes of epige-
netic regulation, further enhancing our ability to deliver effec-
tive novel compounds to clinical practice. In this review, we
provide an overview of the major pathways involved in epige-
netic regulation, their aberrant role in myeloid malignancies,
prognostic significance and potential for therapeutic targeting.  

DNA methylation

The regulation and maintenance of DNA methylation is
essential for appropriate embryonic development, cellular dif-
ferentiation and genome stability. In eukaryotes, the catalytic
activity of a family of enzymes known as DNA methyltrans-
ferases (DNMTs) results in the addition of a methyl group to
the five-carbon position of cytosine bases in CpG dinu-
cleotides, yielding 5-methylcytosine (5mC). 
DNA methylation has traditionally been thought to mediate

transcriptional silencing and the formation of repressive chro-
matin states in addition to maintaining gene expression pat-
terns through mitotic cell division.5,6 These functions are
achieved through a variety of mechanisms including the direct
obstruction of transcriptional activators from their cognate pro-
moters and the recognition of 5mC and consequent recruit-
ment of co-repressor complexes by methyl CpG binding pro-
teins (MBP). 
Disruption of methylation profiles and genome wide loss of

epigenetic stability is observed in malignant transformation.
Thus far, research delineating focal methylation changes in
malignancy has centered upon hypermethylation of short
stretches (0.5-4 kb) of CpG rich DNA termed CpG islands.7,8

Although aberrant hypermethylation and silencing of tumor
suppressor genes has been found in almost all forms of cancer,
both hypomethylation and hypermethylation of promoter
CpG islands can affect the expression of protein coding genes
and non-coding RNAs resulting in tumorigenesis.9-12 These
changes are highly disease specific with distinctive methyla-
tion patterns able to distinguish between hematologic malig-
nancies and even subtypes of these malignancies.13

Whilst hypermethylation of CpG islands is one of the best
studied epigenetic features in malignant cells, it is becoming
increasingly apparent that alteration in DNA methylation out-
side the context of CpG islands may have an equal if not more
important role in the initiation and/or maintenance of the
malignant phenotype. Intriguingly, the recent identification of
tissue-specific differentially methylated regions (DMRs) out-
side of CpG islands, which control differentiation and pluripo-
tency, has focused attention on the role of methylation in CpG
island shores and exon bodies.14-16 Although poorly understood,
DMRs in intragenic regions are postulated to control gene
expression via a number of mechanisms including regulation of
transcriptional elongation efficiency,17 determination of alterna-
tive polyA sites,18 tissue-specific selection of alternative pro-
moters19 and regulation of pre-mRNA splicing.20 In particular,
CpG island shores (regions 2kb either side of a CpG island) in
malignant cells demonstrate striking variation in DNA methy-
lation and loss of the normally sharp demarcation of methyla-
tion state between CpG islands and shores.21 This hypervari-
ability is associated with aberrant gene expression and poten-
tially gain of epigenetic plasticity that imparts a survival advan-
tage to malignant cells.22

DNA methyltransferase enzymes
The establishment and maintenance of DNA methylation is

mediated by three main DNMT enzymes. DNMT1, a mainte-
nance methyltrasferase, recognizes hemimethylated CpG sites
and restores symmetry to newly synthesized nucleotides fol-
lowing DNA replication.23 Whilst also capable of mainte-
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nance,24 DNMT3A and DMNT3B function primarily in de
novo methylation during embryogenesis.25 Initial investiga-
tions demonstrated abnormalities in the expression of
DNMTs in a range of solid organ malignancies.26,27
However, it is the finding of DNMT3A mutations in acute
myeloid leukemia (AML) that has generated significant
interest in the hematology community. 
Using emerging high throughput DNA sequencing tech-

niques, recurrent DNMT3A mutations were identified in
approximately 20% of patients with AML.28-30 DNMT3A
mutations are enriched in cytogenetically normal, interme-
diate risk AML and commonly co-occur with mutations in
Fms-Related Tyrosine Kinase 3 (FLT3), Nucleophosmin 1
(NPM1) and isocitrate dehydrogenase (IDH) 1/2.  Although
associated with poorer outcomes overall, modulation of
this association through tailoring of conventional
chemotherapeutic regimens with the addition of high-dose
daunorubicin results in improvement of overall survival
(OS).3,31,32 The impact of DNMT3A mutations in AML on
sensitivity to hypomethylating agents is unclear.
Retrospective examination of small cohorts treated with
varying regimens suggests that hypomethylating agents
abrogate the negative impact of DNMT3A mutations but
further elucidation in prospective clinical trials is
warranted.33,34
Somatic mutations either cause premature truncation of

the protein or affect a single amino acid, R882, resulting in
attenuation of enzymatic activity. Intriguingly, heterozy-
gous mutations are most common with recent data demon-
strating that R882 DNMT3A mutations have a dominant
negative effect through inhibition of DNMT3A oligomer-
ization.35-37 DNMT3Amutations have also been identified in
patients with myelodysplastic syndromes (MDS)38 and
myeloproliferative neoplasms (MPN),39 and are associated
with increased likelihood of progression to AML. Indeed, in
some studies, the same DNMT3A mutation as the
antecedent hematologic disorder is identified in secondary
AML, suggesting that these mutations may be an early
event in malignant clonal evolution.40 This is consistent
with findings in mice where loss of DNMT3A activity in
hematopoietic stem cells leads to a block in differentiation
and an expansion of the stem cell pool without overt
leukemia.41 These observations are further reinforced by
recent findings demonstrating that recurrent DNMT3A
mutations are frequently present in a pool of clonal pre-
leukemic hematopoietic stem cells (HSCs) from which
AML develops.42 These HSCs have a competitive multi-lin-
eage repopulation advantage over wild-type HSCs, and fur-
thermore, are demonstrated to persist following
chemotherapy thereby acting as a reservoir for therapeutic
resistance.42 However, the role of DNMT3A in malignant
transformation is yet to be fully elucidated. Analysis of
global methylation levels by liquid chromatography-tan-
dem mass spectrometry (LC-MS) does not demonstrate a
significant difference in DNMT3Amutant leukemic cells. In
addition, although differential methylation of key promoter
CpG islands is observed, there is a lack of correlation
between methylation changes and differential gene expres-
sion.28,30 

DNA methylation as a therapeutic target in myeloid
malignancies
Emerging therapeutic strategies targeting epigenetic

mechanisms of disease have shown significant promise
with the establishment of DNMT inhibitors as a corner-

stone of management in MDS.43-45 DNMT inhibitors such as
5-azacitadine and 5-aza-2’-deoxycytidine are nucleoside
analogs that covalently trap DNMT1 following incorpora-
tion into DNA resulting in genome-wide hypomethylation
through passive dilution of 5mC. 
The hypomethylating effects of these agents are at non-

cytotoxic dose ranges limiting the severity of side effects.
Interestingly, the effectiveness of these agents is not reliant
in attaining a complete remission, with improved survival,
transfusion independence and reduced hospitalization
observed despite persistent disease.46 Further development
of the treatment paradigm has suggested that less toxic reg-
imens (lower doses with more frequent dosing) and the use
of maintenance DMNT inhibitors as adjunct therapy or in
combination with other novel therapies such as lenalido-
mide may be effective in subsets of patients with high-risk
MDS/AML.47-49 

DNA hydroxy-methylation and the TET enzymes
Though DNA methylation was initially believed to be a

relatively stable DNA modification, genome-wide high res-
olution mapping of 5mC during cellular differentiation and
the recent identification of the Ten-Eleven-Translocation
(TET) enzymes has revealed a more dynamic state of
affairs.15,50,51 The three TET enzymes (TET1-3) are α-ketog-
lutarate (α-KG) and Fe2+-dependent dioxygenase enzymes,
which catalyze the successive oxidation of 5mC to 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-
carboxycytosine.50-53 
Although the exact function of the 5mC derivatives is yet

to be fully established, it is evident that they play an impor-
tant role in transcriptional regulation. They have been
shown to act as essential intermediates in both active and
passive DNA demethylation, to modulate the binding and
recruitment of chromatin regulators including the poly-
comb repressive complexes (PRC), and are involved in in
the reversal of transcriptional silencing.54 Additionally, map-
ping of 5hmC in mouse embryonic stem cells has highlight-
ed its role in the establishment and maintenance of pluripo-
tency through context-dependent promoter hypomethyla-
tion of pluripotency factors or modulation of PRC recruit-
ment.55 
Mutations of TET2 in myeloid malignancies were first

described in MDS and MPN through single nucleotide poly-
morphism (SNP) arrays identifying a minimally deleted
region on chromosome 4q24.56,57 Subsequently, TET2 has
been shown to be mutated in myeloid malignancies includ-
ing AML, MDS and MPN with a high proportion of patients
with MDS and chronic myelomonocytic leukemia (CMML)
harboring mutations.58,59 TET2 mutations are enriched in
patients presenting with a normal karyotype, is associated
with poorer OS in AML and CMML but is not predictive
regarding clinical outcome in MDS and MPN.2,59-61 Although
TET2 mutations do not have a strong predictive correlation
with clinical outcome in MDS, TET2 mutations may inde-
pendently act as a biomarker for response to hypomethylat-
ing agents.62

α-ketoglutarate and the link between metabolism 
and epigenetics 
Recurrent somatic mutation of the cytosolic enzyme

IDH1, or its mitochondrial homolog IDH2, have been iden-
tified in approximately 20% of AML genomes and less
commonly in other hematologic malignancies.1,63 These
abnormalities, in a core cellular metabolic pathway, are
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associated with specific epigenetic signatures.64 IDH1 and
IDH2 normally catalyze the conversion of isocitrate to 
α-KG. However, the most common IDH1 (R132) and IDH2
(R140, R172) mutations result in acquisition of neomorphic
enzymatic activity that generates high intracellular concen-
trations of the aberrant oncometabolite 2-hydroxyglutate
(2-HG).65,66 2-HG, a structural analog of α-KG, results in
competitive inhibition of Fe2+ and α-KG dependent
demethylases including the TET enzymes and JmjC-
domain containing lysine demethylases (KDMs).67
Inhibition results in aberrant DNA and histone methyla-
tion, altered gene expression and impaired lineage specific
differentiation.67,68 Consistent with a common role in AML
pathogenesis, IDH1/2 and TET2 mutations are mutually
exclusive but associated with overlapping specific hyper-
methylation signatures.64 Mice expressing the IDH2 muta-
tions demonstrate an expansion of hematopoietic stem and
progenitor cells. Interestingly, these models were also used
to show co-operation with clinically relevant mutations
such as FLT3-ITD in the development of AML.69,70 
The overall effect of IDH1/2 mutations on clinical out-

come in AML is still unclear, as the prognostic impact
appears to be dependent on the mutant allele present in the
context of other co-existing molecular abnormalities.
Multiple studies have identified NPM1 mutations and an
intermediate karyotype as significant associations.71-75 No
consistent independent association with overall or event-
free survival is observed.71,72 However, IDH1/2mutations are
demonstrated to modulate the outcome of patients defined
as molecular low-risk (NPM1-mutant/FLT3-ITD negative)
where IDH1-R132 and IDH2-R172 mutant alleles are asso-
ciated with impaired outcome and IDH2-R140 mutations
are associated with favorable outcomes.73-75 Recently, a
number of novel small molecule inhibitors targeting the
aberrant gain-of-function consequent to mutant IDH alleles
have demonstrated promising specific in vitro potency
through induction of differentiation and apoptosis in IDH
mutant leukemia cell lines.76,77 This has led to the initiation
of early phase clinical trials targeting specific IDH1/2
mutants (Table 1). 

Histone modifications

The post-translational modification of histone tails by
chromatin modifying enzymes has significant impact on
intra- and inter-nucleosomal interactions. A considerable
number of histone residues can be modified and the diver-
sity of modifications result in highly complex and orches-
trated chromatin environments that are dynamically altered
in specific cellular contexts. These modifications not only
have the ability to regulate the binding of effector molecules
essential to DNA processes including transcription, repair
and replication, but also the ability to regulate higher order
chromatin structure and stability.78 Therefore it is not sur-
prising that many chromatin modifying enzymes are
deranged during malignant transformation. 
Chromatin-modifying enzymes are often found in multi-

protein complexes, which serve to modulate substrate
specificity, enzyme activity and recruitment to target loci.
Further layers of complexity and control are introduced
through crosstalk between different histone and DNA
modifications. In this situation, one modification may influ-
ence the deposition, removal or interpretation of another
chromatin modification on a separate site. This may occur

through the obstruction of binding to target substrates by
the presence of an adjacent modification, competitive
antagonism of modification pathways for the same sub-
strate, dependence of a chromatin-modifying enzyme on
the presence of another modification, or co-operation
between modifications to recruit specific factors.79 
Critical protein-protein interactions and essential co-fac-

tors for enzymatic activity have been identified as viable
therapeutic targets and demonstrate significant promise in
the treatment of malignancies arising from abnormalities in
epigenetic regulation.80 Although much progress has been
made in demystifying the ‘epigenetic landscape’, the mech-
anisms by which histone modifications and chromatin-
modifying enzymes exert their influence still has to be fully
elucidated. We present a summary of the key histone mod-
ifications and the chromatin-modifying enzymes responsi-
ble for writing, reading and erasing them (Figure 1). 

Acetylation 
Histone acetylation, one of the best studied histone mod-

ifications, is dynamically controlled by two opposing fami-
lies of enzymes: lysine acetyltransferases (KATs) and his-
tone deacetylases (HDACs).81
The catalytic activity of KATs result in transfer of an acetyl

group from the common co-factor acetyl CoA to the ε-amino
group of lysine side chains in histones.82 Consequent neutral-
ization of the positive charge weakens interactions between
histones and negatively-charged DNA. This results in open
chromatin conformations thereby facilitating access of chro-
matin-associated proteins and is functionally consistent with
the identification of KATs as transcriptional co-activators.
KATs are subdivided on the basis of intracellular localization
into predominantly nuclear (type A) or cytoplasmic (type B)
subtypes. Enzymes found in the CBP/p300, MYST and
GNAT families are type A KATs. 
Recurrent mutations in CBP and p300 are noted in a range

of hematologic malignancies, especially the lymphoid neo-
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Table 1. Current development of targeted epigenetic therapies.
Target enzyme Disease type Current stage 

of development

Writers

Acetylation CBP/p300 AML, Ovarian, Colon, Melanoma Pre-clinical
PCAF Ovarian, Colon Pre-clinical

Methylation DOT1L MLL-r leukaemia Clinical
EZH2 NHL, advanced solid tumors Clinical

Phosphorylation JAK2 MPN FDA approved
Aurora kinase NHL, CML, ALL Clinical

Erasers
Acetylation HDACi CTCL FDA approved
Methylation LSD1/KDM1A AML Clinical

UTX/JMJD3 Inflammatory response Pre-clinical
Readers

Acetylation BET Haematological malignancies, Clinical
NUT midline carcinoma

DNA Methylation

DNMT MDS FDA approved
IDH inhibitors AML, glioblastoma Clinical

MLL-r: mixed lineage leukemia rearranged; NHL: non-Hodgkin lymphoma; MPN: myeloprolifera-
tive neoplasms; CML: chronic myeloid leukemia; ALL: acute lymphoblastic leukemia; CTCL: cuta-
neous T-cell lymphoma; AML: acute myeloid leukemia; MDS: myelodysplastic syndrome.   
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Figure 1. Epigenetic writers, readers and erasers mutated or translocated in hematologic malignancies. Epigenetic writers catalyze the chem-
ical modifications of amino acids on histones or the cytosine base of DNA. Epigenetic erasers catalyze the removal of these modifications
and epigenetic readers recognize these modifications and recruit larger macromolecular complexes to the chromatin template. A number of
epigenetic writer and erasers also have domains that allow them to function as epigenetic readers (highlighted in the overlap shaded areas).
*ASXL1 and ASXL2 have a PHD domain that may allow them to function as epigenetic readers; however, there is still no conclusive evidence
for this.  

plasms.83,84 Similarly, chromosomal translocations involving
KATs (e.g. MLL-CBP85,86 and MOZ-TIF287) are found in
myeloid malignancies. In particular, the KAT domain and
bromodomain of CBP were demonstrated to be essential
for leukemic transformation following an initial myelopro-
liferative phase in murine models of MLL-CBP leukemia.88
Similarly, the MOZ-TIF2 fusion protein is sufficient for
leukemic transformation through its ability to bind nucleo-
somes and recruit CBP to aberrant sites, resulting in the acti-
vation of a self-renewal program and the acquisition of
stem cell properties.89,90
The acetyltransferase activity of KATs is not limited to

histone substrates and can regulate protein-protein interac-
tions and the activity of target non-histone proteins. For
example, acetylation of the leukemic fusion protein AML1-
ETO by KAT3B (p300) has been demonstrated to be essen-
tial for conferring self-renewal ability and leukemogenicity.
Pharmacological inhibition of KAT3B leads to improved
survival in a murine AML1-ETO model.91 
In general, therapeutic targeting of KATs has thus far been

hampered by their low substrate specificity and broad
involvement in multi-protein complexes that define their
molecular activity. Interestingly, a recent structure based in-
silico approach has identified a commercially available, small
molecule p300/CBP inhibitor, C646.92 C646 resulted in

selective in vitro inhibition of primary human AML bearing
the AML1-ETO translocation through cell cycle arrest and
apoptosis. This was associated with a dose-dependent
reduction in global histone H3 acetylation and decreased
expression of c-kit and bcl-2.93
HDACs reverse lysine acetylation restoring the positive

charge and, consistent with their predominant role as tran-
scriptional repressors, result in the stabilization of local
chromatin architecture.94 Eighteen human iso-enzymes of
HDACs have been identified and are grouped into four
classes on the basis of sequence homology. Similar to KATs,
HDACs can target both histone and non-histone proteins
with substrate specificity determined by the members of
component protein complexes.79 
Notably, recurrent mutations of HDAC’s are not

observed in cancer genomes yet HDAC inhibitors have
broadly been trialed in a range of malignancies. This is pri-
marily because they are aberrantly recruited by various
oncoproteins to inappropriately initiate or maintain malig-
nant gene expression programs. For instance, the leukemic
fusion proteins PML-RARα and PZLF-RARα have been
shown to recruit HDAC containing repressor complexes
resulting in aberrant gene silencing.95-98 In murine models of
APML, the use of HDAC inhibitors (HDACi) is effective in
potentiating or restoring the retinoid-induced differentia-
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Figure 2. MLL fusion proteins as targets for small molecule inhibition. Schematic diagram of wild-type MLL illustrating the various specialized
domains and the protein-protein interactions mediated by them. Also illustrated are the purported MLL-fusion protein complexes. Following
translocation, a fragment of the N-terminal portion of MLL is fused in frame with a translocation partner leading to the formation of novel
MLL-fusion protein complexes including the SEC and DOT1L complex. It is unclear whether these are separate entities or co-exist as one large
complex. Highlighted are various small molecules that have been developed to target the leukemogenic capacity of either wild-type MLL or
MLL-fusion proteins. BCR: breakpoint cluster region; HBM: host cell factor binding motif; TAD: transactivation domain. 

tion of retinoic acid sensitive and resistant tumors resulting
in improved survival.99 
The efficacy of HDACi in the treatment of cutaneous T-

cell lymphoma has been established. However, the broader
application of this class of therapies in other hematologic
malignancies is yet to be clinically proven.94 HDACi pre-
dominantly function by specifically blocking the entry of
required co-factors to the active site.100 A myriad of cellular
responses, including modulation of pathways involved in
cell cycle progression, differentiation, angiogenesis,
immune function and apoptosis, result in malignant cell
death. Although initially regarded as straightforward activa-
tors of transcription through direct histone hyperacetyla-
tion, a greater appreciation of the non-histone effects of
HDACi on proteins such as p53 and key members of the
proteasome/aggresome pathways, HSP90 and tubulin have
emerged.101 Indeed, recent mechanistic insight into the anti-
leukemic activity of HDACi in t(8;21) AML demonstrates
the induction of terminal myeloid differentiation following
HDACi mediated proteasomal degradation of the
AML1/ETO9a fusion protein.102
Acetylation of lysine residues is primarily recognized by

protein-binding motifs named bromodomains. Over 40
bromodomain containing proteins in eight subfamilies with
functionally diverse roles such as chromatin remodeling,
post-translational histone modification and transcriptional
co-activation have been identified. The activity of bromod-
omain containing proteins is not limited to histone targets
with binding to non-histone targets such as the NF-κB sub-
unit RelA and GATA1 described.103,104 Whilst critical residues

required for the recognition of acetylated lysines within the
hydrophobic binding pocket of bromodomains are highly
conserved, considerable variation of residues at the opening
of the pocket allows for variability in the specificity of indi-
vidual bromodomains. This also provides the opportunity
to develop specific small molecule inhibitors targeting cer-
tain families of bromodomains.  
For example, highly specific small molecule inhibitors tar-

geting the protein-protein interactions of the Bromodomain
and Extra Terminal (BET) proteins (BRD2, BRD3, BRD4 and
BRDt) have emerged as promising therapeutic avenues in
inflammation and cancer.80,105,106 BET proteins are a family of
chromatin readers containing tandem N-terminus bromod-
omains and an extra-terminal domain at their C-terminus.
Whilst the BET proteins do not possess enzymatic activity
at chromatin, following bromodomain-mediated localiza-
tion to acetylated histones, the extra-terminal domain acts
as a scaffold for the recruitment of general transcription fac-
tors or chromatin-modifying enzymes. 
Indeed, determination of the complete BET protein inter-

actome, utilizing a novel tripartite proteomic approach,
prominently identifies components of core transcriptional
regulatory machinery, in particular, the polymerase-associ-
ated factor complex (PAFc) and super elongation complex
(SEC),80 which are essential to the pathogenesis of the most
common mixed lineage leukemia (MLL) translocated
leukemias (see below). Pharmacological BET inhibition
shows remarkable efficacy in vitro and in vivo against MLL
fusion leukemia through rapid induction of cell cycle arrest
and apoptosis.80,107 



Broader extension of pharmacological BET inhibition to
other genetically distinct AML subgroups results in the
identification of a core transcriptional program including
critical oncogenic targets such as BCL2 and C-MYC. This
suggests a role for BET proteins as a common terminal
effector of malignant transcription and is supported by the
efficacy of BET inhibition in NPM1c mutant leukemia.108
Originally identified in the BET interactome, wild-type
NPM1 is demonstrated to exert a repressive effect on BRD4
binding to target loci resulting in decreased transcription.
Loss of inhibition resulting from mislocalization of NPM1c,
consequent to gain of an aberrant NPM1 nuclear export sig-
nal, results in release of BRD4 repression and activation of
aberrant transcription.108 
Downregulation of the core transcriptional program

underlies sensitivity to BET inhibition in AML and may
serve as biomarkers of response to BET inhibitors.
Interestingly, many of the genes identified are associated
with super-enhancers, large enhancer regions containing
high levels of BRD4 and mediator that are exquisitely sen-
sitive to BET inhibition.109 
The efficacy of BET inhibition has been replicated in a

broad range of hematologic malignancies including multi-
ple myeloma,110 non-Hodgkin lymphoma111  and ALL.112
These serve as proof of principle for epigenetic targeted
therapies directed against protein-protein interactions, and
have formed the basis for the initiation of early phase clin-
ical trials. 

Methylation
Histone methylation occurs predominantly on lysine and

arginine residues and is mediated by lysine methyltrans-
ferases (KMTs) and protein arginine methyltransferases
(PRMTs).113 Lysine residues can be mono-, di- or tri- methy-
lated whereas arginine can be mono-, symmetrically or
asymmetrically di-methylated. Histone methylation does
not alter the charge on histone tails but influences the affin-
ity of reader proteins to methylated residues. KMTs and
PRMTs are highly substrate specific and transfer methyl
groups from S-adenosyl methionine (SAM) to target amino
acid residues.
The vast majority of KMTs contain a conserved SET cat-

alytic domain, a sequence of approximately 130 amino
acids initially characterized as a common motif in drosophi-
la Suppressor of position-effect variegation [Su(var)],
Enhancer of Zeste [E(z)] and Trithorax genes. The only
exception is the catalytic domain of the H3K79 methyl-
transferase, KMT4/DOT1L (disruptor of telomeric silencing
1-like), which more closely resembles that of PRMTs. The
degree of lysine modification is determined by key residues
within the SET domain.114 In addition to the SET domain,
KMTs have I-SET, pre-SET and post-SET domains which
vary in sequence and are present in different combinations.
These domains serve as a scaffold for substrate and co-fac-
tor interaction and determine substrate specificity.115 
The functional impact of histone methylation is contex-

tual and can lead to both transcriptional activation and
repression. The best-characterized sites of histone lysine
methylation include H3K4, H3K9, H3K27, H3K36, H3K79
and H4K20. These modifications are associated with both
actively transcribed genes in euchromatin (H3K4, H3K36
and H3K79) and silenced genes in heterochromatin (H3K9,
H3K27 and H4K20).116 Adding to the complexity, the
methylation state of individual histone residues also influ-
ences functional relevance. For example, monomethylation

of H3K9 is associated with active transcription whereas
trimethylation is associated with repression116 and, whilst
H3K4me2/3 is associated with TSS of active genes,117
H3K4me1 is associated with active enhancers.118
Furthermore, although H3K79me has been predominantly
associated with actively transcribed genes, the functional
role of this modification in negative regulatory contexts has
been highlighted.119 
Aberrant methyltransferase activity resulting in alter-

ations to the location and amplitude of histone methylation
can play a critical role in malignant transformation. Key
examples in hematologic malignancies include abnormali-
ties in the MLL and enhancer of zeste homolog 2 (EZH2)
genes. Abnormalities in both result in the misappropriation
of key components of gene regulatory machinery.  

MLL leukemia as a model for therapeutic targeting 
of disordered epigenetic regulation 
Wild-type MLL (WT-MLL) plays an integral role in nor-

mal embryogenesis and hematopoiesis.120 It is a 430 kDa
protein post-translationally cleaved into N-terminal and C-
terminal fragments which re-associate to form the MLL
complex.121 The C-terminal fragment contains a SET
domain, which methylates H3K4. WT-MLL also has 3
HMG-like AT hooks that bind AT rich DNA; a CxxC
domain, four Plant Homeo-Domain (PHD) fingers, a bro-
modomain, host cell factor binding motif and transactiva-
tion domain mediate interactions with several protein com-
plexes (Figure 2A). 
Translocations involving this essential epigenetic regula-

tor account for the vast majority of infantile and approxi-
mately 10% of adult leukemias.122 MLL leukemias follow an
aggressive clinical course with poor response to conven-
tional chemotherapy and frequent early relapse. The break-
point cluster region in virtually all MLL translocations is
located between the CxxC domain and the PHD fingers
resulting in fusion proteins that lack the SET domain.123
More than 70 MLL translocation partners have been identi-
fied, many of which are members of multi-subunit protein
complexes that alter the structure and function of chro-
matin.124 The 5 most common MLL fusion partners
(AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10 and
ELL, accounting for approx. 80% of MLL rearrangements)
are components of the SEC or DOT1L complex (Figure 2B).
These complexes, in association with the PAFc, play a cen-
tral role in the regulation of transcriptional elongation.125,126 
The functional integrity of the SEC and DOT1Lc are crit-

ical for MLL-FP mediated malignant transformation and
offers a rational target for epigenetic therapies with com-
pounds directed against various components of these com-
plexes.127-129 In addition to the BET proteins as described ear-
lier, attention has focused upon targeting KMT4 (DOT1L)
and the menin-MLL interaction (Figure 2C). The direct or
indirect recruitment of KMT4 (DOT1L) is frequently linked
with leukemogenic MLL translocations.130-133 
DOT1L, the only human H3K79 methyltransferase, plays

a central role in normal hematopoiesis134-136 and has been
reported to be involved in a variety of cellular processes
including telomeric silencing, cell cycle progression, DNA
repair and replication and transcriptional control.126 Much of
the emphasis in studying the role of DOT1L in leukemia
has centered on understanding the transcriptional programs
controlled by this methyltransferase. Misdirected H3K79
methylation has been shown to sustain the expression of
key pro-leukemic genes such as the HOXA genes and
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MEIS1.137,138 Moreover, the disruption of DOT1L function
by genetic means or a selective small molecule inhibitor
blocks cellular H3K79 methylation, abrogates malignant
gene expression signatures and has in vivo efficacy in MLL
xenograft models. This pre-clinical data has led to the initi-
ation of early phase clinical trials with DOT1L
inhibitors.139,140 
Other therapeutic avenues currently being explored in

MLL-FP leukemia includes the disruption of the menin-
MLL interaction.141 Menin, which directly binds the N-ter-
minal fragment of MLL retained in all MLL-FP, is an essen-
tial oncogenic co-factor required for the leukemogenic
activity of MLL-FP.142,143 Novel small molecules identified
using high throughput screening and structure-based design
has led to a refinement of selectivity in targeting critical
residues in the large binding site. Interruption of the menin-
MLL interaction results in selective induction of apoptosis
and differentiation, a block in proliferation and reversal of
malignant gene expression signatures in cell lines bearing
MLL-FP.141,144 Finally, whilst a selective inhibitor to the cat-
alytic activity of MLL1 has been developed,145 the role of the
SET domain of wild-type MLL1 in the initiation and main-
tenance of leukemia is not fully resolved.146 

The role of the polycomb group proteins in hematological
malignancy
Polycomb group (PcG) proteins are transcriptional repres-

sors, which are crucial for the regulation of genes involved
in cell fate decisions.  Two distinct complexes, PRC1 and
PRC2, work in concert to establish specific post-translation-
al histone modifications resulting in the initiation and stable
maintenance of transcriptional silencing. PRC2 consists of
the core components EZH1/2, EED and SUZ12. EZH2, and
the closely related EZH1, are H3K27 methyltransferases,
which form the enzymatic core of PRC2. Subsequent recog-
nition of H3K27 methylation by PRC1 occurs through com-
ponent chromobox (Cbx) family members that target the
complex to specific loci.147 PRC1-mediated H2AK119 ubiq-
uitylation and chromatin compaction follows, resulting in
transcriptional silencing.148,149 
EZH2 is the most frequent PcG member implicated in the

pathogenesis of malignancy. Enzymatic hyperactivity of
EZH2 has been linked to aberrant repression of tumor sup-
pressor genes in diverse cancers, including germinal center
B-cell lymphomas.150,151 In particular, recurrent mono-allelic
somatic mutations observed in lymphoma at Y641 of the
SET domain confers enhanced catalytic activity and a pref-
erence for di- and tri-methylation of H3K27.152 Selective
small molecule inhibition of EZH2 is effective in inhibiting
the proliferation of EZH2 mutant lymphoma cell lines and
mouse xenografts.153 
Intriguingly, loss of function mutations of EZH2 predom-

inate in myeloid malignancies.154,155 Prognostically, these
mutations portend a poorer OS in CMML, MDS and pri-
mary myelofibrosis.2,156-158 The biological implications of
inactivating EZH2 mutations in hematopoiesis are unclear.
Inactivating mutations of other core PRC2 components in
myeloid malignancies are less common suggesting that
EZH2 plays an important non-redundant role in
hematopoiesis.159,160 Nonetheless, the dichotomous role
played by EZH2 as both an oncogene and tumor suppressor
in the development of malignancies highlights the tissue-
specific role of H3K27 methylation. Recent data have also
linked inactivating ASXL1 mutations to loss of PRC2-medi-
ated H3K27 methylation.161 Mutations have been identified

in a wide range of myeloid malignancies, most commonly
in patients with CMML, MDS or MPN, and are biomarkers
of adverse outcome.2,3,162 Although ASX, the ortholog of
human ASXL1 in D. Melanogaster, has been demonstrated
to function as part of the polycomb-repressive deubiquity-
lase complex, no significant changes in H2AK119 ubiquity-
lation are observed in human ASXL1 mutant cells.161,163
Instead, ASXL1 mutations resulted in global decrease of
H3K27 methylation and upregulation of transcriptionally
poised genes normally bivalently marked with H3K27me3
and H3K4me3. This, coupled with identification of a direct
interaction between ASXL1 and EZH2 through co-
immunoprecipitation assays and the loss of EZH2 occupan-
cy at HOXA genes highlight the specific role of ASXL1 in
epigenetic regulation of gene expression by facilitating the
recruitment/stabilization of PRC2 at target loci.161 
Other PcG proteins that have also been demonstrated to

play important roles in hematopoiesis are members of
PRC1 and include the cbx family and BMI-1. Target selec-
tivity of the PRC1 complex is dependent upon the sole
constituent cbx family member. In HSCs, cbx family
members cbx7 and cbx8 have been demonstrated to medi-
ate the balance between self-renewal and differentiation
through co-regulation of a set of common genes.147 Cbx7
overexpression in murine models results in enhanced self-
renewal and induction of leukemia whereas cbx8 overex-
pression is associated with lineage commitment and HSC
exhaustion. Similarly, BMI-1 is critical for both
hematopoietic and leukemic stem cell self renewal.164,165 It
is an interchangeable subunit of PRC1 which is specifically
expressed in immature hematopoietic cells and enhances
the H2AK119 ubiquitin ligase activity of the core mem-
bers, RING1A and RING1B.166,167 Increased expression of
BMI-1 is associated with impaired survival in CML,168
MDS169 and AML170 and may be a useful prognostic marker
in myeloid malignancies.

Demethylation 
Analogous to DNA methylation, the discovery of

enzymes capable of reversing lysine methylation has high-
lighted the dynamic nature of histone modifications. Two
classes of KDMs have been identified. Class one enzymes
are amine oxidases consisting of only two members includ-
ing the first identified KDM, lysine-specific demethylase 1
(LSD1) or KDM1A.171 The second, more expansive class of
KDMs, contain a Jumonji domain (JmjC) which functions as
a Fe2+ and α-KG dependent dioxygenase. 
Aberrant regulation of KDMs has been linked to malig-

nant progression; however, compared to the extensively
studied KMTs, very little is known about how histone
demethylation results in abnormal gene expression pat-
terns. UTX/KDM6A was the first mutated KDM to be
linked to malignant transformation.172 Deletions or loss-of-
function point mutations occurring within the JmjC domain
of UTX inactivate the H3K27 demethylase activity and
have been identified in a wide variety of cancers, including
multiple myeloma and acute lymphoblastic leukemia.172,173
The development of specific UTX/JMJD3 inhibitors
through rational, structure-guided and chemoproteomic
approaches, has served to highlight the critical role of
KDM6 family members as determinants of pro-inflamma-
tory gene activation in macrophages.174 However, the
potential application of these small molecule inhibitors as
potential anti-cancer therapy is yet to be established. 
Two recent publications have demonstrated the impor-
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tance of KDMs in facilitating malignant gene expression in
AML and highlighted the potential role of KDM1A inhibi-
tion as a therapeutic strategy.175,176 KDM1A has a dual role in
normal cells as both a transcriptional activator and repressor
through interactions with multiple protein complexes. High
expression of KDM1A is observed in patients with AML177
and is thought to perturb this balance.178 In MLL-FP models,
KDM1A is required for leukemia stem cell function with
pharmacological inhibition resulting in induction of differ-
entiation and loss of colony forming ability in both murine
and primary human MLL-FP cells.175 In cell line models of
other subtypes of AML, pharmacological inhibition of
KDM1A in combination with ATRA results in reactivation
of ATRA-dependent differentiation pathways.176 These
effects were associated with gene-specific, selective increas-
es in H3K4me2 and were respectively associated with
downregulation of genes bound by MLL-FP and upregula-
tion of genes associated with myeloid differentiation. 

Methyl-binding proteins and readers of histone
methylation
More distinct recognition motifs are able to recognize

lysine methylation than any other modification and are
broadly divided into two families, the Royal Family [Tudor
domains, chromo domains and malignant brain tumor
(MBT) domains] and plant homeo domain (PHD) fingers.
Akin to abnormalities in methyllysine writers and erasers,
aberrant function of methyllysine readers are causally
linked to the pathogenesis of hematologic malignancy.
For example, leukemogenesis of a subset of NUP98

translocated AML is dependent on the retained function of
H3K4me3 reader PHD finger located in the C-terminal por-
tion of translocation partners JARID1A and PHF23. The
aberrant function of these fusion proteins results in upregu-
lation of many critical oncogenes such as HOXA9 and
MEIS1 through the blockade of PcG-mediated H3K27me3
deposition.179 Although functional compensation through
the substitution of other PHD fingers is possible, these
recognition motifs specifically require H3K4me3 binding
ability. The specificity of this protein-protein interaction
resulting in malignant transformation makes methyllysine
readers an attractive therapeutic target.

Phosphorylation
Kinases and phosphatases control the addition and

removal of phosphate groups on serine, threonine and tyro-
sine residues of component histone proteins. Transfer of a
phosphate group from ATP to the hydroxyl group of target
amino acids results in the addition of a significant negative
charge. Histone phosphorylation results in gross changes in
chromatin structure and has been implicated in the regula-
tion of gene transcription, DNA repair and chromatin con-
densation. 
Aberrant kinase activity is one of the most commonly

observed processes in malignant transformation.180 Whilst
attention has focused upon the cytoplasmic role of these
master regulators of intracellular signal transduction, it has
recently been recognized that some kinases may also have
critical nuclear functions including histone phosphoryla-
tion.181 
Constitutive activation of JAK2, a non-receptor tyrosine

kinase crucial for cytokine signaling in normal
hematopoiesis, commonly occurs in MPN. JAK2 is demon-
strated to specifically phosphorylate H3Y41 within the
nucleus, resulting in the exclusion of transcriptional repres-

sor HP1α from chromatin and the activation of hematopoi-
etic oncogenes such as LMO2.182 Jak2 nuclear activity is
closely correlated with levels of H3Y41ph. Interestingly,
genomic profiling of H3Y41ph demonstrates that only a
small subset of genes are uniquely heavily blanketed with
this histone modification.183 Several genes marked with
H3Y41ph are also bound by members of the STAT family
suggesting that the functional interaction with JAK kinases
and STAT family members may not be confined to the
cytoplasm but may extend all the way to the chromatin
interface. 
Aberrant JAK2 function also has indirect effects at chro-

matin. The most common mutation, JAK2 V617F, interacts
with PRMT5 in the cytoplasm and nucleus of hematopoiet-
ic cells. This interaction results in a novel gain of function
whereby JAK2 phosphorylates PRMT5.184 Abrogation of
histone methyltransferase activity ensues with global
decrease of H2/H4 R3 methylation and altered gene expres-
sion. Inhibition of PRMT5 activity results in promotion of
progenitor cell proliferation and erythrocytosis. 
The identification of multiple pathogenic consequences

of aberrant signaling kinase activity at chromatin broadens
the therapeutic scope of kinase inhibitors currently in clini-
cal development. Several kinase inhibitors result in global
reduction of histone modification laid down by target
enzymes (e.g. JAK2 and Aurora kinase inhibitors) and thus
can be considered as potential epigenetic therapies. 

Conclusions

The increasing availability of high-throughput genomic
technologies in clinical settings allows for more accurate
diagnostic and prognostic information, which may in turn
guide therapeutic choices and make personalized medicine
a reality. However, taking full advantage of these advances
requires clarification of molecular mechanisms underlying
malignant transformation. Although highly heterogeneous
in nature, aberrant regulation of epigenetic processes has
emerged as a prominent unifying theme in hematologic
malignancies. Thus, the hematologic malignancies serve as
effective models to investigate key epigenetic pathways
and nodes of regulation in the ongoing quest for more effec-
tive therapies. 
Already, the incorporation of genomic mutational analy-

sis into prognostic algorithms is able to stratify outcomes
and allows for tailoring of existing conventional chemother-
apeutic regimens.2-4 Somatic alterations of epigenetic regula-
tors such as DNMT3A,28 TET2,56 IDH2,185 MLL,3 EZH2 and
ASXL1186 have prospective prognostic value in AML and
MDS and can also modulate the outcomes consequent to
mutations found in cell signaling pathways such as 
FLT3-ITD.3 Therapies directed against epigenetic mecha-
nisms of disease have also entered widespread clinical prac-
tice with resultant improvement in clinical outcomes.
Furthermore, targeted epigenetic therapies are taking shape
as effective therapies in advanced pre-clinical and early clin-
ical development. 
Epigenetic regulators provide an attractive target for

directed small molecule inhibition. Proteins involved in epi-
genetic regulation often depend on critical protein-protein
interactions within macromolecular complexes for appro-
priate function, and also require essential co-factors for
enzymatic activity. Nevertheless, achieving inhibitor speci-
ficity is challenging. Ubiquitously expressed epigenetic reg-
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ulators participate in both normal and malignant processes.
Moreover, histone-modifying enzymes also have non-his-
tone targets. Therefore, the rational use of targeted epige-
netic therapies will require a thorough understanding of the
underlying mechanisms and key interactions resulting in
malignant transformation driven by aberrant epigenetic reg-
ulators. This knowledge will also allow us to mitigate the
pervasive issues of drug resistance and adverse side effects

by developing effective drug combinations either with
existing conventional therapies or even dual-targeted epige-
netic therapies.
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