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Introduction 

In clinical research, the main objective of survival analysis is
to find factors able to predict patient survival in a particular
clinical situation. Ideally, we should be able to develop an
accurate and precise prognostic model incorporating those
clinical variables that are most important for survival. Survival
methods are very popular among statisticians and clinicians
alike, relatively easy to perform, and available in a variety of
statistical packages. However, we have observed that these
powerful tools are often used inappropriately, perhaps
because most papers or books dealing with statistical meth-
ods are written by statisticians (not surprisingly!), and these
texts could be daunting for clinicians who only wish to know
how to run a particular test and are not particularly interested
in the theory behind it. Ideally, statistical analyses should be
performed by statisticians. But it is not always easy for inves-
tigators to find statisticians with a specific interest in survival
analysis. Consequently, it is advisable to have a sound grasp
of several statistical concepts in case we ever decide to do our
own statistical analysis.
The purpose of this review is to identify mistakes common-

ly observed in the literature and provide ideas on how to
solve them. In order to illustrate some of the ideas presented,
we will use our institution’s database of patients with chronic
lymphocytic leukemia (CLL), which has been prospectively
managed for more than 30 years.1 We will also provide exam-
ples computed using several statistical packages of our liking:
Stata (StataCorp, Texas, USA), SPSS (IBM, New York, USA)
and R software environment. The first two packages are
available in many institutions worldwide, but at a consider-
able cost (even though Stata is relatively inexpensive com-
pared to SPSS). R, on the other hand, is freely available at
www.r-project.org. Of note, R performs many basic statistical
tests and the website provides additional packages for specific
purposes, all of which are also free, but it does require some
basic programming skills.

We are not statisticians but hematologists, and we have
tried to simplify the statistical concepts as much as possible
so that any hematologist with a basic interest in statistics can
follow our line of reasoning. By doing so, we might have
inadvertently used some expressions or mathematical con-
cepts inappropriately. We hope this is not the case, but we
have purposefully avoided the help of a statistician because
we did not want to write yet another paper full of equations,
coefficients and difficult concepts that would be of little help
to the average hematologist. On the other hand, we have a
very high respect for statisticians, present and past, and we
are very grateful to them. We have sought their advice many
times, particularly when dealing with difficult concepts.
However, we are also very realistic and, unfortunately, they
cannot sit beside us every time we want to analyze our data.

ROC curves versus maximally selected rank 
statistics

Very often, an investigator wishes to evaluate the prognos-
tic impact of a continuous variable (e.g. beta2-microglobulin
[b2M] concentration) on the survival of a series of patients
with a particular disease (e.g. CLL), but does not know the
cut-off value with the greatest discrimination power. The
classic approach to this problem would be to plot a receiver
operating characteristic (ROC) curve and then choose the cut-
off value that is closest to the point of perfect classification
(100% sensitivity and 100% specificity). Before doing that,
the investigator needs to transform the time-dependent end
point (survival) into a binary end point that is clinically rele-
vant (e.g. survival at 3 years) and, therefore, only patients
who have minimum of 3 years of follow up or who died
within three years can be used in that analysis. Once the
dataset is ready, we can plot the ROC curve and decide the
most appropriate cut-off point, which is always a trade-off
between sensitivity and specificity since the point of perfect
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classification does not exist in real life.
An interesting alternative is provided by maximally

selected rank statistics.2 This test can be easily applied
using R (maxstat package) and has several advantages.
First, there is no need to transform the time-dependent
end point. Second, the test calculates an exact cut-off
point, which can be estimated using several methods and
approximations, and the discrimination power is also eval-
uated and estimated with a P value (type I error). Once
you get the exact value (e.g. 2.3 mg/L), it is important to
see if it is clinically relevant. For instance, in our institu-
tion, the upper limit of normality (ULN) for b2M is 2.4
mg/L, and we therefore decided to use 2.4 instead of 2.3 in
order to avoid over-fitting the data. The idea behind this

concept is that the investigator should look for a value that
is clinically relevant (e.g. ULN, 2xULN, 3xULN) and easily
applicable to a different patient population, and not the
cut-off point that best describes the investigator’s own
patient cohort.

Kaplan-Meier versus cumulative incidence
curves

Kaplan-Meier (KM) estimates are commonly used for
survival analysis and identification of prognostic factors,
and the reason is that it is possible to analyze patients irre-
spective of their follow up.3-5 Procedures for calculating
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Table 1. Procedures for survival analysis in R, Stata and SPSS.
R (3.0.1) Stata (12.0) SPSS (20.0)

Survival library(survival)
Kaplan-Meier estimates survfit Statistics > Survival analysis Analyze > Survival > Kaplan-Meier

> Graphs > Survivor and cumulative 
hazard functions (sts graph)

Log rank test and others survdiff Statistics > Survival analysis Analyze > Survival > Kaplan-Meier
> Summary statistics, tests, and tables Then click on “Compare factor” and
> Test equality of survivor functions select “Log rank”
(sts test)

Cox regression coxph (or cph if the rms package Statistics > Survival analysis Analyze > Survival > Cox Regression
is used instead of the survival package) > Regression models > 

Cox proportional hazard models (stcox)
Mantel-Byar test Home-made script available - -

upon request
Landmark analysis Same as Kaplan-Meier after Same as Kaplan-Meier after recalculation Same as Kaplan-Meier after 

recalculation of “time” and of “time” and “status” variables recalculation of “time” and “status”
“status” variables variables

Checking the proportional library(survival) - -
hazards assumption

Schönfeld residuals cox.zph Statistics > Survival analysis > -
Regression models > Test 
proportional-hazards assumption > phtest

Graphical method - - Analyze > Survival > Cox Regression.
Add covariate as stratum and select 
“log minus log” plot type

Time-dependent covariate - Statistics > Survival analysis >   Analyze > Survival >
method Regression models > Cox Cox w/Time-Dep Cov. Then compute

proportional hazard models (stcox) “covariate*LN(T_)”, click on 
“Model” and proceed as usual

Competing risk analysis library(cmprsk) - macro available*
Cumulative incidence cuminc (or CumIncidence if Statistics > Survival analysis > -
estimates and Gray test Dr. Scrucca’s wrapper function is used) Regression models > Plot survivor, hazard, 

cumulative hazard, or cumulative incidence
function (stcurve)

Fine & Gray regression crr Statistics > Survival analysis > -
Regression models > Competing-risks 
regression (stcrreg)

Relative survival library(relsurv) - -
rstrans, rsmul, rsadd strs (after downloading Prof. Dickman’s files) -

*macro created by Dr. Le Cessie (Leiden University) and available at https://www.lumc.nl/con/3020/38285/901050317402510
Despite the fact that most of the statistical methods described in this article can be executed by pressing the corresponding buttons in the software’s menus, we generally advise
against this course of action. Instead, we recommend writing down the whole sequence of commands in executable text files (e.g. ‘.do’ files for Stata, ‘.sps’ files for SPSS, ‘.R’ files for
R) and recording every result in sequential log files. This ensures having full control of how the analysis is performed as well as a complete set of records of both commands and
results that can be modified, if needed, anytime in the future. An additional good habit, often neglected, is to carefully read the help files of any command we wish to use as well as
their syntax extensions and related commands.



KM estimates in R, Stata and SPSS are shown in Table 1.
A very important aspect of these methods is that they
‘censor’ patients who had not experienced the event when
they were last seen. As a result, these tools are appropriate
when we wish to evaluate the prognostic impact of, for
example, the IGHV mutation status on the overall survival
of patients with CLL (Figure 1). They are also appropriate
for other survival end points, such as disease-free or pro-
gression-free survival (Table 2).5 Several tests are available
for comparing different KM estimates, of which the log
rank test is the most popular.6
A disadvantage of these methods is that they only con-

sider one possible event: e.g. death in case of overall sur-
vival, progression or death in case of progression-free sur-
vival, etc. (Table 2). However, in some diseases with an
indolent course, such as CLL, it is not always feasible to
use overall survival (OS) as the end point of the analysis
since the median OS of patients with CLL is approximate-
ly ten years. Accordingly, investigators worldwide have
frequently used other end points such as time to first treat-
ment (TTFT) as a surrogate for disease aggressiveness.7-10
Most investigators calculate TTFT using the inverse of a
KM (1-KM) plot, but a problem arises in those patients
who die before requiring any therapy. Since KM estimates
only consider one possible event, the only option remain-

ing is to censor these patients at the time of death, and this
is never adequate. As a general rule, an observation is cen-
sored when the event of interest is not observed during
the follow-up period, but the patient is still at risk of the
event, which might occur at some unknown time in the
future.5 If we think about the previous example, it is quite
obvious that patients who die before requiring therapy are
not at risk of requiring therapy in the future and are, there-
fore, incorrectly censored. To solve this problem, cumula-
tive incidence curves that account for competing events
are recommended.11 Competing events refer to a situation
where an individual is exposed to two or more causes of
failure. Moreover, the statistical significance of a prognos-
tic factor can be equally calculated, but Gray’s test must be
used instead of the log rank test.12 In the hematology field,
these statistical tools have been developed mostly by
investigators interested in hematopoietic transplantation
because competing events are very common in that clini-
cal scenario. For instance, transplant-related mortality and
disease relapse are competing events that are commonly
evaluated in patients undergoing transplantation. In gener-
al, few statistical packages offer simple ways of plotting
cumulative incidence curves, but R is one of them, thanks
to the cmprsk package (Table 1), which was, by the way,
developed by Gray himself. Moreover, Scrucca et al. have
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Figure 1. (A) Overall, projected survival (± 95% confidence interval) of our population of patients with chronic lymphocytic leukemia estimated
according to Kaplan-Meier actuarial method. (B) Projected, actuarial survival (± 95% confidence interval) according to the IGHV genes muta-
tional status (log rank test; c2 = 58.3; P<0.001). These curves were plotted using Stata (version 11.0).

Table 2. Survival end points. 
Endpoint Description

Overall survival Time from diagnosis (or entry onto the clinical trial) until death of any cause. 
Progression-free survival Time from study entry until disease progression or death of any cause.  Progression-free survival is particularly useful

after therapy.
Event-free survival Time from study entry until any treatment failure including disease progression, discontinuation of treatment for any

reason (e.g. toxicity, patient preference, initiation of new treatment) or death.  Treatment failures should always be
pre-defined.

Disease-free survival Time from attainment of a complete remission to disease recurrence or death. This end point only applies to patients
who achieve a complete remission after therapy.

Time to next treatment Time from the end of primary treatment until the institution of the next therapy. This end point is particularly useful in
CLL or indolent lymphoma because there is usually a gap between disease progression and subsequent therapy.

0 2 4 6 8 10 12 14 16 18 20 22
Years from diagnosis

0 2 4 6 8 10 12 14 16 18 20 22
Years from diagnosis

Actuarial survival (95% CI) Mutated Unmutated

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Pr
ob
ab
ili
ty

Pr
ob
ab
ili
ty

A B



published a highly recommended ‘easy guide’ that is not
only useful for analyzing competing events or plotting
cumulative incidence curves, but also as an initial intro-
duction to R for investigators who have never used it
before.13 The authors also wrote an R function called
CumIncidence.R that can be freely downloaded from the
University of Perugia’s website
(http://www.stat.unipg.it/luca/R) and simplifies the analysis
even further. 
In the following example, we show how these different

statistical tools could give different results. In our CLL
database, we estimated the TTFT at five and ten years of
our patient population according to age at diagnosis. Using
the KM method, TTFT at five years was 53% for patients
under 70 years of age and 38% for patients aged 70 years
or older. When we considered death before therapy as a
competing event, the results for patients younger and
older than 70 years were 52% and 34%. The difference
was negligible in younger patients (53 vs. 52%), but slight-
ly higher for older patients (38 vs. 34%), the reason being
that CLL-unrelated deaths were significantly more com-
mon in older patients. At ten years, however, the differ-
ence was higher because the degree of overestimation in
older patients was significantly higher (51% by KM, 42%
by cumulative incidence) compared to younger patients
(64% vs. 62%). The final result is that in our patient pop-
ulation, there was a significant difference in 10-year-TTFT
across both age groups: 13% using KM and 20% using
cumulative incidence (P<0.001 for both tests) (Figure 2).
A second example comes from a different area of hema-

tology: thrombosis and hemostasis. Since venous throm-
boembolic events are clearly associated with cancer, there
is considerable interest in defining risk factors for throm-
bosis and the role of anticoagulants in the management of
cancer patients.14 However, a significant proportion of
patients analyzed in these studies eventually die of their
underlying malignancy before experiencing any throm-
boembolic event. A large number of clinical trials, some of
them published in very prestigious journals,15,16 have tradi-

tionally evaluated these cohorts using KM estimates, thus
failing to account for deaths unrelated to thrombosis as a
competing risk. Campigotto et al. analyzed these studies
and concluded that KM analysis was inappropriate
because the incidence of thrombosis was clearly over-esti-
mated.17 Fortunately, things are changing in this field as
well, and researchers participating in a more recent ran-
domized trial used cumulative incidence instead of KM
estimates.18

Evaluating covariates in survival analysis: 
don’t forget to set the clock on time!
Whenever we evaluate survival it is important to pay

attention to the moment when we initiate follow up. As a
general rule, the start time (time zero) is the first occasion
when the patient is at risk for the event of interest. In
transplant studies, this moment is usually the date of
transplantation (i.e. hematopoietic cell infusion), while in
clinical trials it is the date of study inclusion. In other cir-
cumstances, however, time zero is the date of diagnosis.
Be that as it may, it is essential that any analysis only uses
the information known at time zero, and not any informa-
tion which may become available in the future.
For example, imagine that we would like to compare

survival between patients with CLL who responded 
versus those who did not respond to front-line therapy,
and we also wish to perform a multivariate analysis incor-
porating other well-established prognostic factors, such as
ZAP70 expression or cytogenetics. The first thing to do is
select the appropriate group of patients for our analysis,
which in this particular case should be “patients with CLL
who have received therapy”. The second step should be to
decide the start time of our study, which in our example
must be the time of disease evaluation after therapy (not
time of CLL diagnosis) since we would like to include the
covariate “response to therapy” in our survival analysis.
Once these adjustments are made, we can proceed with
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Figure 2. (A) Time to first treatment in patients according to age (< 70 vs. ≥ 70 years) calculated using 1-KM curves (log rank test, c2 14.1,
P<0.001); and (B) cumulative incidence curves (Gray’s test, P<0.001). In panel B, deaths before therapy are considered as a competing risk.
These curves were plotted using Stata (version 11.0).
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our survival analysis as usual. This method is considered
adequate, but it also has its detractors, particularly when
the covariate evaluated is “response to therapy”.19,20
Indeed, this analysis is intrinsically biased because the
length of survival influences the chance of a patient being
classified into one group (responders) or the other (non-
responders). In other words, patients who will eventually
respond to therapy must survive long enough to be evalu-
ated as responders, and patients who die before the first
response evaluation are automatically included in the
“non-response” group.

Mantel-Byar test
A valid way of tackling this problem was described in

1974 by Mantel and Byar.21 Using their method, time starts
at the moment of therapy initiation, and all patients begin
in the “non-response” arm. Those who eventually respond
to therapy enter the “response” state at the time of
response and remain there until death or censoring, and
those who do not respond always remain in the “non-
response” arm. This method removes the bias as patients
are compared according to their response status at various
periods during follow up. At our institution, one of us (CR)
developed a program for this purpose more than 30 years
ago that has been recently translated into R code and is
available upon request (Table 1). To the best of our knowl-
edge, the only statistical package currently able to com-
pute the original Mantel-Byar results (observed and
expected numbers for both responders and non-respon-
ders) is SAS, but using a macro created by Alan Cantor.22
Despite being an old and almost forgotten method,

many researchers believe that the Mantel-Byar method is
appropriate in some specific situations. For instance, in
studies comparing allogeneic hematopoietic transplanta-
tion with conventional chemotherapy as consolidation
therapy for patients with acute myeloid leukemia,
researchers have usually resorted to a “donor” versus “no
donor” analysis for the reason mentioned above: a direct
comparison is always biased because patients must sur-
vive long enough to be eligible for transplantation, while
those who die during the induction period are always
counted in the non-transplant arm.23,24 However, there is
increasing awareness that “donor” versus “no donor” com-
parisons are not really accurate. As such, these studies
assume that if a sibling donor was identified the transplan-
tation actually occurred, which may not be the case. On
the other hand, patients who do not have a sibling donor,
but have an unrelated donor, are always allocated to the
“no donor” group. It is precisely in this kind of situation
when the Mantel-Byar test may be useful.25

Landmark analysis
An alternative to the Mantel-Byar test is the landmark

analysis.19,26 In this method, time starts at a fixed time after
the initiation of therapy. This fixed time is arbitrary, but
must be clinically meaningful. For instance, if therapy usu-
ally lasts six months and disease response is usually eval-
uated three months after the last course of therapy, then a
possible landmark point could be nine months after thera-
py initiation. Moreover, the transplant literature has estab-
lished Day 100 as a demarcation point for distinguishing
early from late transplant-related events, and this is often
the basis for landmark analyses in transplantation.
Patients still alive at that landmark time are separated

into two response categories according to whether they

have responded before that time, and are then followed
forward in time to evaluate whether survival from the
landmark is associated with patients’ response. Patients
who die before the time of landmark evaluation are
excluded from the analysis, and those who do not respond
to therapy or respond after the landmark time are consid-
ered non-responders for the purpose of this analysis. The
advantages of this method over the Mantel-Byar test are:
1) it has a graphical representation, which is a Kaplan-
Meier plot calculated from the landmark time; and 2) it
can be performed in any statistical software, only requir-
ing recalculation of the “time” and “status” variable for
each patient. Sometimes it becomes more complicated,
because the time point cannot be pre-defined. For exam-
ple, we were interested in the impact of acquired genomic
aberrations (clonal evolution) on patients’ outcome.18 For
this purpose, we chose a cohort of patients who had two
cytogenetic tests, and compared those who acquired
genomic aberrations with those who did not. The prob-
lem arose because the time from the first test and the sec-
ond was not constant among patients and we believe that
this time could be of interest (i.e. the longer the follow up,
the higher the risk of clonal evolution). In this situation,
you cannot simply choose the date of the first cytogenetic
test as time zero, because you do not know at that time if
the patient will develop clonal evolution or not in the
future, and you cannot set the clock on the date of the sec-
ond cytogenetic test because by doing so you would neg-
lect important follow-up information. The appropriate
solution to this problem would be to select the date of the
first cytogenetic test as time zero and include “clonal evo-
lution” as a time-dependent covariate in a Cox regression
model. We will discuss the different properties of this
regression model in a separate section of this manuscript. 

Relative survival

We must always remember that people with hemato-
logic malignancies can die of a variety of reasons apart
from the malignancy itself, particularly because they tend
to be of advanced age.27,28 Moreover, it is well known that
patients with CLL and other lymphoid malignancies, even
those who have never received therapy, have an increased
risk of developing a second primary malignancy.29,30 As a
result, a significant proportion of patients with hematolog-
ic malignancies die of causes that are unrelated to the dis-
ease, and the investigator could be interested in dissecting
the mortality that is truly attributable to the disease from
the observed crude mortality. One way of doing this could
be through a cumulative incidence analysis considering as
events only those deaths that are clearly related to the dis-
ease, and as competing events the remaining disease-unre-
lated deaths (please, do not use 1-KM curves and censor
patients who die of unrelated medical conditions!!!).
However, this approach is problematic because it is not
always easy to decide if the cause of death of a particular
patient is related or not to the disease under study.
Continuing with the example of patients with CLL: are all
infectious deaths CLL-related, even if the patient never
received therapy? What about patients who died of lung
cancer or myocardial infarction but whose CLL was
“active” at the time of death? How should we define
“active” or “inactive” CLL?
There is, however, a very interesting alternative, which
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is to calculate the relative survival of our patient cohort.
This method circumvents the need for accurate informa-
tion on causes of death by estimating the excess mortality
in the study population compared to the general popula-
tion within the same country or state.31 As such, mortality
estimates are generally taken from national life tables
stratified by age, sex and calendar year, and these life
tables are readily available free of charge at the Human
Mortality Database (www.mortality.org) and other websites.
The relative survival ratio is defined as the observed sur-
vival of cancer patients divided by the expected survival of
a comparable group from the general population (Figure
3A). In other words, the expected survival rate is that of a
group similar to the patient group in such characteristics as
age, sex and country of origin, but free of the specific dis-
ease under study.32 It could be argued, however, that in
reality, the population mortality estimates will also con-
tain a proportion of deaths caused by the disease under
study,33 but this proportion is negligible when we are eval-
uating relatively uncommon diseases such as hematologic
malignancies.34
In order to compare relative survival across categories of

patients and identify prognostic factors, we assume that
the number of failures per period of time (e.g. excess
deaths per year) follows a Poisson distribution, and then
check the goodness of fit by estimating the deviance,
which is a measure of how much our data depart from the
theoretical distribution. Interestingly, a feature of Poisson
distribution is that mean and variance (“dispersion”) are
required to be the same. In real-life data, however, this
condition is rarely met because dispersion often exceeds
the mean, a phenomenon referred to as “overdispersion“.
Overdispersion can result from the own nature of the sur-
vival data themselves, because a relevant covariate (e.g.
stage or histology) has been omitted from the analysis, or
because a strong interaction between variables has not
been considered (e.g. age and tolerance to
chemotherapy).35 In cases where the deviance is too high,
we can assume that the variance is proportional to the
mean, not exactly equal to it, and include in the model a
‘scale parameter’ that bears this proportional factor. If the
deviance is still large after such adjustment, we can try
using a different distribution such as the negative binomi-
al. Stata and R provide a number of generalized linear
models that allow these kinds of analyses, but a relatively
high degree of statistical expertise is required.
Paul Dickman’s website (www.pauldickman.com) pro-

vides detailed commands for estimating and modeling
relative survival in Stata or SAS.35 We used his method to
evaluate whether the 5-year relative survival of our
patients with CLL had significantly improved from the
1980-1994 to the 1995-2004 period.1 Recently, we evalu-
ated the impact of age at diagnosis (70 years or younger
vs. older than 70 years) on the survival of our CLL cohort.
If we had simply used the KM method, we would have
concluded that older patients with CLL have a much
shorter survival and, therefore, a more aggressive disease
than younger patients (log rank test, c2 147.1; P<0.0001)
(Figure 3B). In contrast, when we estimated the relative
survival of both cohorts, we realized that these differ-
ences were much less important (Poisson regression,
P=0.02) (Figure 3C).
We have recently evaluated the relsurv package (R) and

believe that it could be a suitable alternative for those
investigators with no access to Stata or SAS. Life tables

generally available at the human mortality database can be
easily adapted into the R format as well, and several
papers from Pohar et al. can be of considerable help.36,37 We
shall not debate its strengths or weaknesses, about which
some discrepancies have appeared in recent literature.38,39
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Figure 3. (A) Relative survival as the quotient of observed survival
and predicted survival in the general population matched to the
patients by age, sex and year of diagnosis. (B) Actuarial survival
(Kaplan-Meier) and (C) relative survival according to age at diagnosis
(70 or younger vs. older than 70). These curves were plotted using
Stata (version 11.0).
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In our experience, it is easy to learn and use. Five fitting
models are presented, three of the additive type
(Hakulinen-Tenkanen method, the generalized linear
model with Poisson error structure and the Estève
method), the Andersen multiplicative method and the
transformation method. The possibility of testing the ade-
quacy of fit of both individual variables and the whole
group by means of Brownian bridge is very attractive (see
below). This graphical method is accompanied by a math-
ematical analysis and the application of all five methods
gives a very clear summary. In conclusion, our own
impression of this software is also very positive.

Cox proportional hazard regression (I): 
how can we do it?
Once we have finished our univariate evaluation of a

number of covariates it is appropriate to analyze whether
these covariates have independent predictive value by fit-
ting a Cox proportional hazard regression model (Table
1).40 If the outcome does not have competing events (e.g.
OS), the implementation of a Cox proportional hazard
regression model is quite straightforward using either
SPSS, Stata or R, and is very popular for various reasons.
First, it is possible to evaluate continuous covariates (e.g.
age) with no need to convert them into a categorical as
you would be forced to do when using the KM method.
Second, it allows you to evaluate covariates whose value
is unknown at time zero by including them as time-depen-
dent. In a previously mentioned example, we wished to
evaluate the impact of “clonal evolution” on the survival of
a group of CLL patients and we performed a Cox regres-
sion model in which “clonal evolution” was included as a
time-dependent covariate.41 Another typical example
would be to evaluate the impact of graft-versus-host dis-
ease (GvHD) on the survival of patients undergoing allo-
geneic transplantation. By definition, you never know at
time zero (the time of stem cell infusion) if a patient will
or will not develop GvHD and, therefore, you should
never evaluate GvHD as a conventional (time-fixed)
covariate.
In general, we prefer SPSS for modeling a Cox propor-

tional hazard regression, and use the following routine.
1. Select the appropriate time zero for the analysis.
2. Calculate the “time” variable in months or years, and

not days or weeks, which could lead to computational
errors, even in the most recent version of SPSS (20.0). This
is not a problem when using Stata or R.
3. Introduce the “status” variable, which is always codi-

fied as “1” for the event (e.g. death) and “0” for censoring
(i.e. absence of the event the last time the patient was
seen).
4. Introduce the “covariates” in the box provided. SPSS

gives you the option to specify if a given covariate is cate-
gorical or not, but we would recommend the reader to
obviate this option if the covariate is dichotomous (e.g.
presence vs. absence of TP53 mutation). In contrast, if the
covariate is categorical but has three or more possible
results (e.g. Binet stage A vs. B vs. C) it is compulsory to
define it as categorical. The great advantage of SPSS over
other statistical packages is that, in the situation of a cate-
gorical covariate that has three or more possible results,
SPSS will automatically generate a number of ‘dummy’
covariates (number of possible options minus 1) that are
necessary for the adequate evaluation of the covariate in
the regression model.

5. Select the Wald stepwise method among the options
provided. Theoretically, all methods should yield similar
results, but this is the one we prefer.

Cox proportional hazard regression (II): 
what happened to the proportional hazards 
assumption?
At this point, we would like to emphasize that the Cox

proportional hazard regression model assumes that the
effects of risks factors (covariates) are constant over time.40
Ten to 20 years ago, it was rare to see a publication includ-
ing a Cox model that did not allude to the fact that the
proportional hazards (PH) assumption was or was not
met. However, things have changed substantially and,
nowadays, most authors neglect to check the assumption,
perhaps because it is easy to run a Cox regression model,
while checking the assumption is not.
Various approaches and methods for checking the PH

assumption have been proposed over the years.4 The eas-
iest way in SPSS is, in our opinion, to define the covariate
of interest as time-dependent [covariate*LN(T_)] and then
introduce both the time-fixed covariate and the recently
computed time-dependent covariate  (T_COV_) in the
Cox regression model. If the time-dependent covariate is
not statistically significant (P>0.05), the PH assumption is
maintained. This procedure should be repeated for every
covariate we wish to introduce in the Cox model. Another
simple method is to plot the data and see if the survival
curves cross. To do this in SPSS, we recommend introduc-
ing the covariate of interest as a stratum and not in the
“covariates” box (as we would normally do). Then, the
reader should click on “Plots” and select the “log minus
log” plot type. If the curves do not cross, the PH assump-
tion holds, but if they cross, this would suggest that the
PH assumption is violated.
Alternatively, we could plot scaled Schönfeld residuals

against time using the cox.zph function provided by the
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Figure 4. Plot of Schönfeld residuals against time in a Cox regression
model evaluating the impact of sex on the overall survival of patients
with CLL. The constant mean of residuals across time confirms that
the proportional hazard assumption holds for this covariate. This plot
was performed using R (version 3.0.1).
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survival package (R).42 Using this simple command you
can plot the residuals along with a smooth curve that
helps with the interpretation of the result and a statistical
test (rho) with a P value. Moreover, you can test the PH
assumption for all covariates incorporated in the Cox
model simultaneously. A typical plot is seen in Figure 4,
where the mean of residuals remains constant across time.
The rho value (or Pearson product-moment correlation
between the scaled Schönfeld residuals and log(time)) was
0.0119 (P=0.917), also showing that the PH assumption
holds for this covariate. Stata, on the other hand, incorpo-
rates several methods for checking the PH assumption,
including Schönfeld residuals as well. In case of analysis of
relative survival analysis, we would recommend a similar
approach called a Brownian bridge or process (Figure 5).
All in all, the interpretation of Schönfeld residuals is some-
times difficult and, when in doubt, we tend to use the
other two methods.
Imagine now that one or more of your covariates vio-

lates the PH assumption. What can you do? Throw your
results in the waste bin? Well, there are several ways of
solving this problem in SPSS.
1. Introduce all covariates that meet the PH assumption

in the model and leave out the covariate that does not
meet the assumption. Alternatively, this covariate could
be evaluated as a “stratum”. If the reader chooses to do it
this way, SPSS will run two different regression models
and give back a single result. Unfortunately, this result will
not include any information regarding the “significance” of
the stratum.
2. Include the covariate that does not meet the PH

assumption in the model as time-dependent, which
should be defined as “covariate+T_”. Please note the dif-
ference with the prior definition, the covariate is added
and not multiplied, and no logarithmic transformation is
required. Using this method, we would get information
about the significance of the original time-fixed covariate
through its time-dependent transformation.

3. Evaluate the interaction between the covariate that
violates the PH assumption and the others by multiplying
them (>a*b>). By doing this, you could generate new
“combined” covariates that could meet the assumption
and even have a higher statistical significance than both
covariates separately. 
Finally, we would like to end this section by emphasiz-

ing that the Cox proportional hazard regression model is
just that, a model. It serves its purpose very well, which is
to simultaneously explore the effects of several covariates
on survival, but always under a proportional hazards
assumption. Since all statistical packages offer the option
of plotting ‘fitted’ data, some researchers elect to plot ‘fit-
ted’ rather than ‘actual’ data because survival curves look
nicer, usually more proportional than they actually are
(not surprisingly!!). Please do not make that mistake!
Fitted data should never be presented in a paper and, if for
some reason you elect to do so, make sure the actual data
are plotted too!

Competing risk regression models

As shown above, KM and Cox regression methods are
appropriate when evaluating survival, but less so when we
are interested in other end points that express competing
events. For instance, in a recent paper, we were interested
in evaluating the cumulative incidence of Richter’s trans-
formation in our cohort of patients with CLL. For this
analysis, we had to consider as competing events all
deaths that occurred in patients without Richter’s transfor-
mation.43 After evaluating each covariate separately using
Gray’s test and plotting their cumulative incidence (not
the complement of the KM curve), we then proceeded to
perform a multivariate analysis.
Regression modeling in the context of competing events

has been extensively reviewed over the last decade. Both
non-parametric and regression methods exist, of which
two are frequently used: the cause-specific relative hazard
method of Kalbfleisch and Prentice,44 and the subdistribu-
tion relative hazard method of Fine and Gray.45 The latter
method is our favorite and is, indeed, the method we
applied in our previous example, where we found that
both NOTCH1 mutations and IGHV mutational status
were independent predictors of Richter’s transformation
in our cohort.43 A second paper published by Scrucca et al.
explains how to implement the Fine and Gray method
using R,46 but this method is also included in Stata (Table
1). These methods depend upon the PH assumption
which, in this particular situation, is slightly more time-
consuming to check, but that can be easily done following
Scrucca’s guidelines.46 More recently, two alternative
methods have been proposed, one by Klein and
Andersen47 which is, perhaps, a bit too complicated, and
the so-called “mixture” model. This last method was ini-
tially proposed by Larson and Dinse48 and has been exten-
sively developed and evaluated by Lau et al.49,50 The advan-
tages of the “mixture” model are that it does not rely on
the PH assumption and that, by being parametric, it tends
to have a higher statistical power that semi- or non-para-
metric methods. This model requires some programming
within SAS (NLMIXED procedure), but we have achieved
nearly identical results in R (cmprsk package) simply by
coding “failures” and “censors” in a slightly different way
(Table 3).
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Figure 5. Brownian bridge depicting the constant effect of age on the
relative survival of patients with CLL, thus validating the results
observed in Figure 3. The proportional hazard assumption is met
when the curve never crosses the horizontal lines up and above it (as
in the example). This plot was performed using R (version 3.0.1).
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Multiple imputation

As already stated, Cox models are very popular because
they allow investigators to quantify the effects of a num-
ber of prognostic factors (covariates) while adjusting for
imbalances that may be present in our patient cohort.
Unfortunately, missing data are a common occurrence for
most medical studies, and the fraction of patients with
missing results could be relatively large in some of these
studies. Moreover, it may happen that you have 15%
missing results for covariate A, 15% missing results for
covariate B, 20% missing results for covariate C, and 20%
for covariate D. If all four covariates have a significant
impact on survival by univariate analysis and you wish to
fit a Cox proportional hazard regression model, any statis-
tical software (SPSS, Stata or R) will only use those
patients who have results for all four covariates, which
could be only 40-50% of your patient cohort. As such, the
more covariates you evaluate, the smaller the population
and, therefore, it becomes progressively difficult to draw
meaningful conclusions from your study. Consequently,
omission of participants with missing values (also called
complete case analysis) can have a big impact on the sta-
tistical power of your analysis and may lead to inadequate
conclusions.51-53
There are several methods for dealing with missing

data: multiple imputation, maximum likelihood, fully
Bayesian, weighted estimated equations, etc, but in this
review we will only discuss multiple imputation. This
method is becoming very popular and involves creating
multiple complete data sets by filling in values for the
missing data and analyzing these as if they were complete
data sets. Then, all filled-in datasets are combined into one
result by averaging over the filled-in datasets. We would
like to emphasize that the purpose of multiple imputation
is not to ‘create’ or ‘make up’ data but, on the contrary, to
preserve real, observed data. We have evaluated three dif-
ferent R packages available for that purpose: Hmisc, mi
and Amelia, of which Amelia (also known as Amelia II) is
our favorite, because it is fast and relatively easy to use.54
Moreover, for those who dislike the R software environ-
ment, this package incorporates AmeliaView, a graphical
user interface that allows the user to set options and run
Amelia without any prior knowledge of the R program-
ming language. The newer versions of Stata also include
some different methods for performing multiple imputa-
tion, but we have no experience with them.
Multiple imputation has, nevertheless, several draw-

backs. One is that it produces different results every time

you use it, since the imputed values are random draws
rather than deterministic quantities. A second downside is
that there are many different ways to do multiple imputa-
tion, which could easily lead to uncertainty and confusion.
In a recent article, a group of researchers used multiple
imputation to handle missing data and found (shockingly!)
that cholesterol levels were not related to cardiovascular
risk.55 When asked about this by Prof. Peto, a revered stat-
istician,56 the authors performed a complete case analysis
and found a clear association between cholesterol and car-
diovascular risk, which was subsequently confirmed
when the multiple imputation procedure was revised.57 It
is thus important to be aware of the problems that can
occur with multiple imputation, which is why there is still
much controversy around the issue and many statisticians
question its basic value as a statistical tool.58,59
Finally, we would not want to suggest that researchers

could put less effort into collecting as many data as possi-
ble, or that multiple imputation could be a substitute for a
carefully designed study or trial,60 or that imputed results
could be used to plot a survival curve. As stated above,
survival curves should only plot actual data, never ‘imput-
ed’ nor ‘modeled’ data.
However, every researcher faces the problem of missing

values, irrespective of these efforts. To ‘provide’ data
according to the strict methodology of multiple imputa-
tion seems a better alternative than to give up valuable
observed data. Unfortunately, multiple imputation
requires modeling the distribution of each variable with
missing values in terms of the observed data, and the
validity of results depends on such modeling being done
adequately. Consequently, multiple imputation should not
be regarded as a routine technique to be applied “at the
push of a button”.59 Indeed, whenever possible, specialist
statistical help should be sought and obtained. Multiple
imputation should be handled with care!

Conclusions

We would like to end our review with the following
self-evaluation. When performing a survival analysis ask
yourself the following questions.
1. Am I studying survival, or any other end point? Are

there any competing events? Are all censored patients at
risk of having the event in the future? If the answer to this
last question is “no", then you should consider calculating
cumulative incidence and not KM curves.
2. Are all my covariates known at time zero? If not, con-

sider changing the moment when you set the clock, or
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Table 3. Fine and Gray method versus parametric mixture model. Effect of history of injection drug use on the proportion and timing of incident
HIV, treatment use, and incidence of AIDS or death (Women’s Interagency HIV Study, 1995-2005, United States). For the purpose of this compar-
ative analysis, we have used the database provided by Lau et al.40 The Fine and Gray method results were obtained using the R cmprsk package
by modifying the failcode (fc) and cencode (cc) as follows: *fc=2, cc=0; **fc=2, cc=1; ***fc=1, cc=0; ****fc=1, cc=2.

History of injection drug use History of injection drug use 
cause-specific relative hazard subdistribution relative hazard

Estimate 95% confidence interval Estimate 95% confidence interval

Time to treatment initiation prior to AIDS/death
Fine and Gray method 0.71 0.59-0.85**** 0.60 0.50-0.71***
Parametric mixture model 0.71 0.59-0.85 0.60 0.50-0.71
Time to AIDS/death prior to treatment initiation
Fine and Gray method 1.76 1.41-2.20** 2.01 1.61-2.51*
Parametric mixture model 1.77 1.40-2.27 2.02 1.62-2.59



using time-dependent covariates, or even the Mantel-Byar
test or a landmark analysis.
3. Can we attribute a significant proportion of the

observed mortality to natural causes and not only to the
disease of interest? If the answer is “yes”, consider esti-
mating the relative survival adjusting your results accord-
ing to your own national mortality tables.
4. Have I checked the proportional hazard assumption

in my Cox regression model? If not, now you know how
to do it!
We hope we have achieved our goal, which was to pro-

vide some basic concepts of survival analysis and also
made some specific recommendations about how and
when to perform each particular method. All the exam-
ples provided were computed using SPSS, Stata and R,
because these are the statistical packages we like best.
SPSS and Stata are available in many institutions world-
wide, but they are also expensive. In contrast, R is avail-
able for free, so there is virtually no excuse for not doing

the statistical method or test that is appropriate for each
specific situation. 
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