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Aplastic Anemia

Introduction

Aplastic anemia (AA) is a rare and life-threatening hetero-
geneous bone marrow (BM) failure disorder characterized by
peripheral pancytopenia and marrow hypoplasia.1,2 The
majority of AA cases are idiopathic with an unknown pri-
mary etiology.1-3 In some patients, a drug or infection is impli-
cated in the etiology of AA although it is unclear why only
some individuals are susceptible.4-7 In ~15% of patients the
disease is inherited or congenital, for example Fanconi ane-
mia.1,3 The main suggested underlying mechanism in AA is a
primary hematopoietic stem cell (HSC) deficiency or a sec-
ondary HSC defect due to an abnormal balance between
HSC death and differentiation.3,8 Importantly, pathological
autoimmune responses also seem to be involved in AA BM
failure, given the good responses to immunosuppressive
treatments.1,9

Mesenchymal stem/stromal cells (MSC) are rare BM multi-
potent cells that constitute a source of progenitors for meso-

dermal tissues.10 MSC have emerged as excellent candidates
for clinical applications thanks to their immunomodulatory
properties and their ability to support hematopoiesis.11-13

Importantly, MSC are an essential component of the BM
hematopoietic microenvironment. The BM hematopoietic
microenvironment regulates the homeostasis of
hematopoiesis through the production and secretion of
cytokines and extracellular matrix molecules.14 Furthermore,
the BM hematopoietic microenvironment plays a role in the
pathogenesis of a variety of hematologic malignances includ-
ing acute lymphoblastic15 and myeloblastic leukemias,16 mul-
tiple myeloma,17 lymphomas,18 chronic myeloid leukemia19

and myelodysplastic syndromes.16,20

Because HSC failure and impaired immune responses
underlie the pathogenesis of AA, it is plausible that BM-MSC
may also contribute, directly or indirectly, to the pathogenesis
of AA. However, there is almost no information on whether
the functional and immunological properties of BM-MSC are
impaired in AA patients or on the potential contribution of
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Aplastic anemia is a life-threatening bone marrow failure disorder characterized by peripheral pancytopenia and
marrow hypoplasia. The majority of cases of aplastic anemia remain idiopathic, although hematopoietic stem cell
deficiency and impaired immune responses are hallmarks underlying the bone marrow failure in this condition.
Mesenchymal stem/stromal cells constitute an essential component of the bone marrow hematopoietic microenvi-
ronment because of their immunomodulatory properties and their ability to support hematopoiesis, and they have
been involved in the pathogenesis of several hematologic malignancies. We investigated whether bone marrow
mesenchymal stem cells contribute, directly or indirectly, to the pathogenesis of aplastic anemia. We found that
mesenchymal stem cell cultures can be established from the bone marrow of aplastic anemia patients and display
the same phenotype and differentiation potential as their counterparts from normal bone marrow. Mesenchymal
stem cells from aplastic anemia patients support the in vitro homeostasis and the in vivo repopulating function of
CD34+ cells, and maintain their immunosuppressive and anti-inflammatory properties. These data demonstrate that
bone marrow mesenchymal stem cells from patients with aplastic anemia do not have impaired functional and
immunological properties, suggesting that they do not contribute to the pathogenesis of the disease. 
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these cells to the pathogenesis of the disease. Here we
report that BM-MSC from AA patients display the same
phenotype and differentiation potential as their counter-
parts from normal BM, support in vitro homeostasis and in
vivo repopulating function of CD34+ hematopoietic stem
and progenitor cells, and fully maintain immunosuppres-
sive and anti-inflammatory properties. These data indicate
that BM-MSC from AA patients do not have impaired
functional and immunological properties, suggesting that
they do not contribute to the pathogenesis of AA.  

Methods

Patients
BM samples from nine newly diagnosed AA patients were stud-

ied. The diagnosis of AA was based on the UK treatment guide-
lines.1 Seven normal BM samples were obtained from healthy vol-
unteers and used as controls. Table 1 summarizes the main hema-
tologic parameters of each group. Extended clinical/biological
information is provided in the Online Supplementary Methods. 

Isolation and expansion of bone marrow mesenchymal
stem/stromal cells  

Mononuclear cells from BM were isolated by Ficoll-Paque and
seeded at 3x104 cells/cm2. After 24 h, non-adherent cells were dis-
carded and fresh medium added. When cultures achieved >85%
density, adherent cells were trypsinized and replated at 5x103

cells/cm2.15,21

Characterization of mesenchymal stem/stromal 
cell cultures

The flow cytometry immunophenotype and osteogenic and
adipogenic differentiation of BM-MSC was analyzed as previously
described.21-24 

Cord blood collection and CD34+ cell isolation 
Cord blood (CB) units from healthy neonates were obtained

from local hospitals following approval from our local Ethics
Board Committee. Mononuclear cells were isolated using Ficoll-
Hypaque and CD34+ cells purified using the CD34 MicroBead kit
and the AutoMACSPro. The purity was consistently >95%.25-27 

Co-culture of bone marrow mesenchymal stem/stromal
cells and cord blood CD34+ cells and in vitro analyses
of CD34+ cell homeostasis

CD34+ cells were co-cultured on irradiated BM-MSC from nor-
mal subjects or patients with AA on serum-free media supple-
mented with stem cell factor, FLT3 ligand and interleukin-3. In vitro
analyses were performed with CD34+ cells without MSC co-cul-
ture, as a baseline control for CD34-MSC co-cultures. Growth
kinetics, CD34 phenotype, apoptosis, cell cycle analysis and
clonogenic progenitor assays were performed, as detailed.26,28,29

Mice xenotransplantation and analysis of engraftment
NOD/LtSz-scidIL2Rγ−/− mice (NSG) were housed under sterile

conditions. The Animal Care Committee of our University
approved animal protocols. Mice at 8-12 weeks of age were sub-
lethally irradiated before intra-BM transplantation.26,30 CD34+ cells
(1x105) that had been cultured on normal or AA BM-MSC were
transplanted. CD34+ cells not cultured with MSC were transplant-
ed as a control for CD34-MSC co-cultures. Mice were killed 7
weeks after transplantation and human chimerism was analyzed
by flow cytometry in the injected and contralateral tibiae, spleen,
liver and peripheral blood.26,29

Assessment of the immunosuppressive response 
in human T cells

Peripheral blood mononuclear cells were isolated from healthy
volunteers. To establish mixed lymphocyte cultures, responder
peripheral blood mononuclear cells (1x105) from donor A were
incubated with 1x105 allogeneic HLA-mismatched mitomycin C-
treated stimulator peripheral blood mononuclear cells from donor
B in the presence or absence of 2x104 normal BM-MSC or AA BM-
MSC. Cells were pulsed with 2.5 mCi/well [3H]-thymidine for the
last 12 h and harvested onto membranes; proliferation was deter-
mined by measuring [3H]-thymidine uptake. After 48 h, inter-
leukin-2, tumor necrosis factor-α and interferon-γ were deter-
mined by enzyme-linked immunoassay (ELISA).13

Determination of anti-inflammatory activity
Synovial membrane cells were obtained from patients with

rheumatoid arthritis. These cells (2x105) were stimulated with
tumor necrosis factor-α (20 ng/mL) for 24 h in the presence or
absence of 1x105 normal BM-MSC (n=7) or AA BM-MSC (n=7).13

Extracellular matrix-degrading activities were determined as
described elsewhere.13 The MMP1 content was determined in
supernatants by ELISA. Synovial membrane cells were stimulated
with lipopolysaccharide 1 µg/mL in the presence or absence of
1x105 normal BM-MSC (n=7) or AA BM-MSC (n=7). After 48 h,
culture supernatants were assayed for tumor necrosis factor-α by
ELISA.

Results

Bone marrow mesenchymal stem/stromal cells from
patients with aplastic anemia have a normal phenotype
and differentiation potential 

MSC cultures were successfully established and expand-
ed from the BM of nine patients with AA and seven age-
matched healthy donors for further investigations. Table 1
presents the main biological and hematologic features of
both groups. Established AA BM-MSC cultures were con-
sistently devoid of contaminating hematopoietic cells,
being negative for CD45, CD34, HLA-DR, CD19 and
CD14 but expressed common MSC markers including
CD90, CD73, CD105 and CD44 (Figure 1). They had typ-
ical fibroblastoid morphology (Figure 2). To further char-
acterize MSC from AA patients, adipogenic and osteoblas-
tic differentiation assays were performed at early MSC
passages (p3-p5) (Figure 2A).15,31 The efficiency of
osteoblastic and adipogenic differentiation was similar to
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Table 1. Main biological and hematologic parameters of AA patients
and healthy donors.
                                               Aplastic anemia                Healthy BM 
                                                     patients                          donors

Age (years)                                      52±20 (9-72)                     54±10 (42-65)
WBC (x109/L)                               1.39±0.4 (0.5-1.7)              9.1±0.7 (7.7-10.5)
Neutrophils (x109/L)                  0.69±0.2 (0.28-1)               5.5±0.7 (4.1-6.3)
Reticulocytes (x109/L)                  13.3±4 (3-17)                    71±31 (41-89)
Hemoglobin (g/dL)                       7.9±0.5 (7-8.5)              12.3±4.2 (10.1-13.5)
Platelet count (x109/L)                 29±13 (10-47)                 213±47 (174-249)
% CD34+ cells in BM                0.12±0.1 (0.08-0.19)          0.72±0.4 (0.19-1.37)

Range is shown in brackets. WBC: white blood cell counts; BM: bone marrow.



that of normal BM-MSC (Figure 2A). Osteoblastic and adi-
pogenic differentiation potential was further analyzed by
quantitative reverse transcriptase polymerase chain reac-
tion. Upon osteogenic differentiation, the expression of
the master osteogenic markers, osteocalcin, alkaline phos-
phatase and osterix, was almost identical in normal BM-
MSC and AA BM-MSC. Similarly, upon adipogenic differ-
entiation, the expression of the late adipogenic transcrip-
tion factors, PPAR and CEBPα, was similar between nor-
mal BM-MSC and AA BM-MSC (Figure 2B). Thus, BM-
MSC derived from AA patients are phenotypically and
functionally similar to those from healthy donors.

Bone marrow mesenchymal stem/stromal cells from
patients with aplastic anemia support the in vitro
homeostasis and the in vivo repopulating function 
of cord blood CD34+ cells 

Whether AA BM-MSC can maintain the homeostasis of
purified CB-CD34+ cells was analyzed in vitro by co-cultur-
ing CB-CD34+ cells with early passage (p4-p8) BM-MSC.
CB-CD34+ cells expanded equally in BM-MSC cultures
from AA patients or healthy donors (Figure 3A). In the
absence of MSC support, CD34+ cells grew slightly slower
(Figure 3A). There were no differences in apoptosis (~2-
6%; Figure 3B) or cycling status (~50%; Figure 3C) of CB-
CD34+ cells when co-cultured on BM-MSC from either
normal subjects or from patients with AA, supporting a
similar expansion of CB-CD34+ cells in any of the BM-
MSC co-cultures (Figure 3A). In contrast, the slower
growth of CD34+ cells maintained in the absence of MSC
was accompanied by a higher apoptotic rate (~18% by
day 12; Figure 3B). We then analyzed the in vitro differen-
tiation kinetics of CB-CD34+ cells by tracing the loss of the
CD34 antigen, and found that CD34+ cells progressively
disappeared within ~23 days on either normal or AA BM-
MSC co-cultures (Figure 3D). Interestingly, in the absence
of MSC support the differentiation of CD34+ cells was
more pronounced. We next tested whether co-culture of
CB-CD34+ cells with AA BM-MSC affects their
hematopoietic progenitor cell and/or HSC function. We
utilized in vitro clonogenic colony-forming unit (CFU)
assays as a read-out for hematopoietic progenitor cell
function. Equal numbers of CB-CD34+ cells that had been
cultured for 2 or 4 days with normal or AA BM-MSC were
plated in CFU assays and hematopoietic colonies were
counted after 14 days (Figure 3E,F). Scoring the CFU
revealed that co-culture with AA BM-MSC did not influ-
ence either the clonogenic ability or the colony phenotype
of CB-CD34+ cells. The CFU capacity of CD34+ cells that
had not been previously cultured on MSC was slightly
diminished (P>0.05).

Xenotransplantation assays into NSG mice were under-
taken as an in vivo read-out for SCID-repopulating HSC
function. CB-CD34+ cells (1x105) that had been cultured
for 4 days with normal or AA BM-MSC were transplanted
intratibia and mice were sacrificed 7 weeks later for
chimerism analysis in multiple hematopoietic organs.
Human multilineage reconstitution was determined by
flow cytometry using anti-CD45, anti-HLA-ABC, anti-
CD19, anti-CD33 and anti-CD34 (Figure 4A). CD34+ cells
co-cultured on either normal or AA BM-MSC displayed
similar levels of engraftment (54% versus 61%; P>0.05.
Figure 4B). The migratory ability of CD34+ cells was
assessed by analyzing the level of chimerism in the inject-
ed tibiae, contralateral tibiae, spleen, liver and peripheral
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Figure 1. Immunophenotypic profile of BM-MSC from AA patients
analyzed by flow cytometry. Filled lines represent the control iso-
types. Empty lines show antibody-specific staining.
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blood (Figure 4B). Co-culture with either normal or AA
BM-MSC did not influence the migratory capacity of CB-
CD34+ hematopoietic stem and progenitor cells as demon-
strated by the similar capacity to colonize other
hematopoietic tissues in all the animals (Figure 4B). We
next characterized the engraftment composition, and
found a very similar multilineage composition in all tissues
reconstituted with CB-CD34+ cells that had been co-cul-
tured with either normal or AA BM-MSC (Figure 4C). The
engraftment and multilineage reconstitution were very
similar between CD34+ cells cultured alone or with MSC
(Online Supplementary Figure S1). Taken together, these
findings indicate that BM-MSC from AA patients support
the in vitro homeostasis and the in vivo repopulating func-
tion of CB-CD34+ cells.

Bone marrow mesenchymal stem/stromal cells from
patients with aplastic anemia maintain 
immunosuppressive and anti-inflammatory properties

Human BM-MSC display robust immunomodulatory
and anti-inflammatory properties. Because an impaired
immune response is suggested to be at the origin of the
BM failure in AA we investigated whether the capacity of
BM-MSC from AA patients to inactivate T-cell responses
and to inhibit inflammatory responses is impaired. The
addition of BM-MSC to mixed lymphocyte cultures of
peripheral blood mononuclear cells from different donors

significantly reduced the proliferative response (Figure 5A)
and the production of Th1 cytokines (interferon-γ, inter-
leukin-2 and tumor necrosis factor-α) by responder T cells
(Figure 5B). The immunomodulatory activity of AA BM-
MSC was comparable to that observed for normal BM-
MSC (Figure 5A,B). Moreover, BM-MSC isolated from AA
patients were very efficient at inhibiting the inflammatory
response of resident cells of the synovial membrane in
patients with active rheumatoid arthritis. BM-MSC isolat-
ed from AA patients or healthy subjects similarly inhibited
the production of pro-inflammatory cytokines (tumor
necrosis factor-α) and matrix-degrading enzymes
(MMP1/MMP8/MMP13 type I collagenase and MMP2
gelatinase and type IV collagenase activities) by activated
synovial membrane cells (Figure 5C). These data indicate
that BM-MSC from AA patients fully retain their
immunomodulatory capacities.

Discussion

AA is a rare, heterogeneous disorder in which the major-
ity of cases are idiopathic, because the primary etiology is
unknown.1-3 In a subset of patients, a drug or infection has
been implicated in the etiology, although it is unclear why
only some individuals are susceptible.4-7 AA is generally
considered as an immune-mediated BM failure syndrome

BM-MSC in aplastic anemia
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Figure 2. Differentiation capacity of BM-MSC
from AA patients compared to healthy donors.
(A) Phase contrast morphology (left), oil red
staining indicative of adipogenic differentiation
(middle), and alizarin red staining revealing
osteogenic differentiation (right). Original mag-
nification is indicated. (B) Gene expression
measured by quantitative reverse transcriptase
polymerase chain reaction of osteogenic (left)
and adipocytic (right) markers comparing the
differentiation potential of BM-MSC from
donors and AA patients (n=3).
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with defective HSC.3,32 Previous studies demonstrated the
defective HSC as well as aberrant T-cell immunity in
AA.3,33-35 Immunosuppressive therapy and allogeneic BM
transplantation are the initial treatments of choice for
newly diagnosed patients with severe AA.1,36 On the one
hand, the good responses to immunosuppressive treat-
ments such as antithymocyte globulin and cyclosporine A
support the belief that pathological T-cell-mediated
autoimmune responses are a cause of the BM failure in
AA.1,34,36 On the other hand, several studies have shown
that co-transplantation of allogeneic BM- or CB-derived
MSC and HSC enhances hematopoietic engraftment and
also improves stromal function in patients with AA,37-40

suggesting a potential underlying role of the BM microen-

vironment in the pathogenesis of AA. In fact, AA patients
have a hypocellular BM which is “physiologically”
replaced by fatty BM, likely of mesenchymal origin, fur-
ther supporting a potential contribution of the BM
microenvironment to the pathogenesis of AA.41 MSC have
robust immunomodulatory and anti-inflammatory prop-
erties11-13 and are an essential component of the BM
hematopoietic microenvironment, which regulates the
homeostasis of hematopoiesis through the production and
secretion of cytokines and extracellular matrix molecules.14

Importantly, the BM hematopoietic microenvironment
has been shown to play a role in the pathogenesis of a
variety of hematologic malignances including acute lym-
phoblastic15 and myeloblastic leukemia,16 multiple myelo-
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Figure 3. BM-MSC from AA patients support in vitro homeostasis of CB-CD34+ hematopoietic stem and progenitor cells (HSPC). (A) In vitro
expansion of CD34+ HSPC co-cultured on BM-MSC from healthy donors (n=5) and AA patients (n=7). (B) Proportion of apoptotic CD34+ cells
(annexin V+) measured at days 4 and 12 of CD34/BM-MSC co-cultures (n=2). (C) Proportion of cycling CD34+ cells measured at day 12 of
CD34/BM-MSC co-cultures (n=2). (D) Loss of CD34 antigen over time in co-cultures of CD34+ HSPC with BM-MSC from healthy donors and AA
patients (n=6). (E) Clonogenic potential (colony-forming units) of CD34+ HSPC previously co-cultured for 2 or 4 days with BM-MSC from healthy
donors or AA patients (n=6). (F) Scoring of CFU obtained in (E). All the assays were also performed with CD34+ cells not previously cultured on
MSC (n=4), as a baseline control for CD34-MSC co-cultures. Because CD34+ cells differentiate into CD34- cells after a few days in culture, we
refer to them as “non-adherent cells” rather than “CD34+ cells”.
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ma,17 lymphomas,18 chronic myeloid leukemia19 and
myelodysplastic syndromes.16,20 We, therefore, hypothe-
sized that BM-MSC may contribute, directly or indirectly,
to the pathogenesis of AA. 

There are limited studies with conflicting results on the
properties of BM-MSC in AA patients.8,41-48 These studies
mainly claim that AA BM-MSC have aberrant morpholo-
gy, impaired adipogenic and osteogenic potential, changes
in gene expression, and a reduced ability to support
hematopoiesis in vitro. However, to the best of our knowl-
edge, no study so far has prospectively addressed in depth
the ability of AA BM-MSC to maintain hematopoietic
homeostasis and progenitor function in vitro, their in vivo
repopulating function in xenotransplant models, or the
immunosuppressive and anti-inflammatory properties on
these cells. We comprehensively analyzed whether the
functional and immunological properties of BM-MSC are
impaired in AA patients and the potential contribution of
these cells to the pathogenesis of the disease. We report
that BM-MSC from AA patients have the same phenotype
and differentiation potential as their counterparts from

normal BM, support in vitro homeostasis and in vivo repop-
ulating function of CD34+ hematopoietic stem and pro-
genitor cells, and fully maintain immunosuppressive and
anti-inflammatory properties. Our data indicate that BM-
MSC from AA patients do not have impaired functional
and immunological properties and retain the ability to
support hematopoiesis, suggesting that they do not con-
tribute to the pathogenesis of the disease. Interestingly, it
has been reported that BM-MSC from AA patients over-
express membrane-bound interleukin-15 which may indi-
rectly participate in the T-cell-mediated autoimmune
attack of HSC in AA patients by recruiting T cells to the
BM and stimulating them in situ.46 Our data are in partial
disagreement with those of other studies suggesting that
AA BM-MSC are aberrant.8,41,42,44,46,48 From a methodological
point of view, we assessed the features of AA BM-MSC
beyond morphology, gene expression, differentiation
potential and proliferation by analyzing the cells’ ability to
support hematopoiesis in vitro and in vivo and their
immune properties. Biologically, all our patients, but one,
were elderly patients while other studies focused on chil-
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Figure 4. BM-MSC from AA patients do not impair in vivo multilineage repopulating function of CB-CD34+ hematopoietic stem and progenitor
cells (HSPC). (A) Representative flow cytometry analysis of the graft. The human graft is identified as the CD45+HLA-ABC+ fraction. The CD45+

human graft comprises B-lymphoid cells (CD19+), myeloid cells (CD33+) and immature cells (CD34+). (B) Long-term (7 weeks) hematopoietic
reconstitution of NSG mice (n=20) after intra-BM injection of CD34+ HSPC co-cultured for 4 days in BM-MSC from normal donors versus AA
patients. Each dot represents an individual mouse and the horizontal line indicates the mean of each experimental cohort. The table shows
the levels of human chimerism in the distinct hematopoietic tissues analyzed. (C) Multilineage and multiorgan human chimerism in the inject-
ed tibia (IT), contralateral tibia and femur (CL), spleen, liver, and peripheral blood (PB) demonstrating migration of human cells from the IT.
No differences in graft composition were found between CD34+ HSPC co-cultured with BM-MSC from normal donors versus AA patients.
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dren/young adults with AA.41,42 Importantly, there are also
several degrees of severity of AA. Our patients were diag-
nosed as having moderate-severe AA while other studies
analyzed patients with very severe AA. In brief, further
studies involving larger numbers of AA patients are neces-
sary to unravel whether age at diagnosis and disease sever-
ity are key factors determining the homeostasis and func-
tion of the BM microenvironment in patients with “de
novo” AA. 
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