Targeted shRNA screening identified critical roles of pleckstrin-2 in erythropoiesis

Baobing Zhao,^{1*} Ganesan Keerthivasan,^{1*} Yang Mei,¹ Jing Yang,¹ James McElherne,¹ Piu Wong,² John G. Doench,³ Gang Feng,⁴ David E. Root,³ and Peng Ji¹

¹Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL; ²Whitehead Institute for Biomedical Research, Cambridge, MA; ³Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, MA; and ⁴Biomedical Informatics Center, Northwestern University, Chicago, IL, USA

©2014 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2014.105809 Manuscript received on February 12, 2014. Manuscript accepted on April 14, 2014. Correspondence: peng-ji@fsm.northwestern.edu

^{*}BZ and GK contributed equally to this work.

Supplemental Methods

Purification and culture of fetal liver cells for targeted screening

Fetal liver cells were isolated from E13.5 C57BL/6 embryos and mechanically dissociated by pipetting in PBS containing 10% fetal bovine serum (GIBCO). Single-cell suspensions were prepared by passing the dissociated cells through 40 µm cell strainers (BD Biosciences). Total fetal liver cells were labeled with biotin-conjugated anti-TER119 antibody (1:100) (eBioscience), and TER119 negative cells were purified using EasySep column free cell isolation system according to the manufacturer's instructions (Stem Cell Technologies). Purified cells were seeded in round bottom 96 well plates at a cell density of 1x10³ cells/200μl media/well. The purified cells were infected by distinct lentiviruses encoding shRNAs against selected genes in each well of the 96-well plate. The infection strategies were schematically illustrated in Figure 1A. For the discovery of genes important for the early stage of terminal erythropoiesis, the cells after 1-hour spin infection (2000 rpm at 37°C) were cultured in Epo free medium containing 50 ng/ml mouse stem cell factor (SCF), 20ng/ml mouse interleukin-6 and 30ng/ml mouse FLT3 ligand (PeproTech). The cells were cultured for 12 hours followed by medium change to Epo (0.5 unit/ml, Amgen) containing medium and puromycin (1 µg/ml) to select the transduced cells. The cells were continued to culture for 48 hours before flow cytometric analysis. For the discovery of genes important for the late stage of terminal erythropoiesis, the cells after 1-hour spin infection were cultured directly in Epo (0.5 unit/ml) medium for 12 hours followed by puromycin treatment. The cells were continued to culture in Epo medium for 48 hours before enucleation flow cytometric analysis.

Retroviral transduction

For infection of the purified TER119-negative fetal liver cells with retroviruses, $2x10^5$ cells were resuspended in 1 ml viral supernatant containing 10 μ g/ml polybrene (Sigma) and centrifuged at 800 x g for 1 hour 37°C. The cells were then cultured based on Figure 1A for the analysis of the early and late stages of terminal erythropoiesis.

Mass spectrometry analysis

The samples were loaded directly onto a 10 cm long, 75 μ M reversed phase capillary column (ProteoPep(tm) II C18, 300 Å, 5 µm size, New Objective, Woburn MA) and separated with a 70-minute gradient from 5% acetonitrile to 100% acetonitrile on a Proxeon Easy n-LC II (Thermo Scientific, San Jose, CA). The peptides were directly eluted into an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, San Jose, CA) with electrospray ionization at 350 nl/minute flow rate. The mass spectrometer was operated in data dependent mode, and for each MS1 precursor ion scan the ten most intense ions were selected from fragmentation by CID (collision induced dissociation). The other parameters for mass spectrometry analysis were: resolution of MS1 was set at 60,000, normalized collision energy 35%, activation time 10 ms, isolation width 1.5, and the +1 and +4 and higher charge states were rejected. The data were processed using Proteome Discoverer (version 1.3, Thermo Scientific, San Jose, CA) and searched using an in-house MASCOT server. The data were searched against both reviewed and unreviewed sections of Uniprot; Swiss-Prot (version 2011_12) and TrEMBL (version 2011_12). The other parameters were as follows: (i) enzyme specificity: trypsin; (ii) fixed modification: cysteine carbamidomethylation; (iv) variable modification: methionine

oxidation and N-terminal acetylation; (v) precursor mass tolerance was ±10 ppm; and (vi) fragment ion mass tolerance was ±0.8 Da. All the spectra were searched against target/decoy databases and the mascot significance threshold was chosen to achieve a targeted false discovery rate of 1%. The peptide identification was considered valid if its corresponding mascot score was equal to or less then the threshold and any protein identification was deemed valid only if supported by at least one unique peptide.

Immunofluorescence stain

The harvested cells were washed with ice-cold serum free media (IMDM) and plated over a poly-L-lysine coated cover-slips (BD Biosciences) (1x10⁵ cells/80 μl medium/slide). The cells were then incubated at 37°C in a humidified incubator for 5 minutes. Cells attached to the coverslips were washed by ice cold PBS (pH 7.2), fixed by 4% paraformaldehyde for 15 minutes at room temperature and permeabilized by 0.1% Triton-X 100 in PBS for 10 minutes at room temperature. After three times wash in PBS, the cells were blocked by 3% bovine serum albumin in PBS with 0.05% Triton-X 100 for an hour at room temperature. The cells were then stained with respective primary and secondary antibodies for an hour, each followed by three times wash cycles (PBS for 5 minutes). After final wash, the cells were treated with 1 μg/ml DAPI to stain the nucleus followed by PBS wash. The cells were then mounted over a glass slide in Slowfade Antifade reagent (Invitrogen). For the staining of mitochondria, the cells were co-stained with 50 nM MitoTracker Deep Red (Invitrogen) for 15 minutes at room temperature. For the microscopic analysis, Nikon A1R laser scanning confocal microscope was used to acquire confocal images of the stained erythroblasts.

(Objective lens used: Plan Apo TIRF 100X). Nikon N-SIM super-resolution structural illumination microscope was used to acquire super-resolution images of erythroblasts through 100X Apo objective with NA 1.49. The captured images were analyzed using NIS Elements software.

Hemoglobin quantification

Hemoglobin was quantified by lysing 1x10⁶ cells in 200 ml Drabkin's reagent according to the manufacture's instruction (Sigma Aldrich). Spectrophotometric reading was then performed at 540 nm to quantify the hemoglobin concentration.

Protein immunoprecipitation

Endogenous plek2 was immunoprecipitated from 1x10⁷ mouse E13.5 TER119 positive fetal liver cell lysate (~1mg/500 μl) (Lysis buffer: 250 mM NaCl, 50mM HEPES pH 7.0, 5 mM EDTA, 1% NP-40 and protease inhibitors). The purified proteins were separated by SDS-PAGE denaturing gel electrophoresis and silver stained according to the manufacture's instruction (Pierce). The protein bands of interest were excised from silver stained gels and destained using 30mM potassium ferricyanide and 100 mM sodium thisosulfate. After destaining, gel bands were washed followed by in gel digestion with sequencing grade trypsin (Promega Inc., Madison WI).

Supplemental Tables

Table S1. Selected genes for the targeted shRNA screening.

Query Refseq	Gene symbol	NCBI geneId
NM_025912	2010011120Rik	67017
NM_028320	Adipor1	72674
NM_010347	Aes	14797
NM_177275	Amigo3	320844
NM_027144	Arhgef12	69632
NM_024184	Asf1b	66929
NM_001003917	Atg9a	245860
NM_009733	Axin1	12005
NM_080708	Bmp2k	140780
NM_009761	Bnip3l*	12177
NM_007570	Btg2	12227
NM_138678	Butr1	192194
NM_026192	Calcoco1	67488
NM_007652	Cd59a	12509
NM_007656	Cd82	12521
NM_023117	Cdc25b	12531
NM_009895	Cish	12700
NM_007713	Clk3	102414
NM_012000	Cln8	26889
NM_026252	Cpeb4	67579
NM_009975	Csnk2b	13001

NIM 207(77	D 112	(7270
NM_207677	Dedd2	67379
NM_019670	Diap3*	56419
NM_021422	Dnaja4	58233
NM_053246	Dok4	114255
NM_199322	Dot11	208266
NM_008748	Dusp8	18218
NM_145508	Dyrk3	226419
NM_138953	Ell2	192657
NM_010149	EpoR*	13857
NM_007971	Ezh2	14056
NM_013890	Fbxw2	30050
NM_001033301	Fhdc1	229474
NM_019740	Foxo3	56484
NM_172475	Frmd4a	209630
NM_022721	fzd5	14367
NM_026693	Gabarapl2	93739
NM_007836	Gadd45a	13197
NM_008089	Gata1*	14460
NM_010277	Gfap	14580
NM_030258	Gpr146	80290
NM_023168	Grina	66168
NM_008207	H2-T24	100045444
NM_144919	Hdac11	232232
NM_008229	Hdac2*	15182
<u>NM 138753</u>	Hexim1	192231
NM_133662	Ier3	15937

NM_010587	Itsn1	16443
NM_153128	Klhl12	240756
NM_010697	Ldb1*	16825
NM_201519	Map4k5	399510
NM_010773	Mbd2	17191
NM_020007	mbnl1	56758
NM_134163	mbnl3	171170
NM_172424	Med13l	76199
NM_025569	Mgst3	66447
NM_010751	Mxd1	17119
NM_016662	Mxd3	17121
NM_175441	Mylk3	633594
NM_001033988	Ncoa4	27057
NM_172495	Ncoa7	211329
NM_008692	Nfyc	18046
NM_008774	Pabpc1	18458
NM_026018	Pdzk1ip1	67182
NM_008842	Pim1	18712
NM_008846	Pip5k1b	18719
NM_139269	Pla2g16	225845
NM_011116	Pld3	18807
NM_013738	Plek2	27260
NM_022318	Popdc2	64082
NM_008911	Ppox	19044
NM_008975	Ptp4a3	19245
NM_133717	Rab43	69834

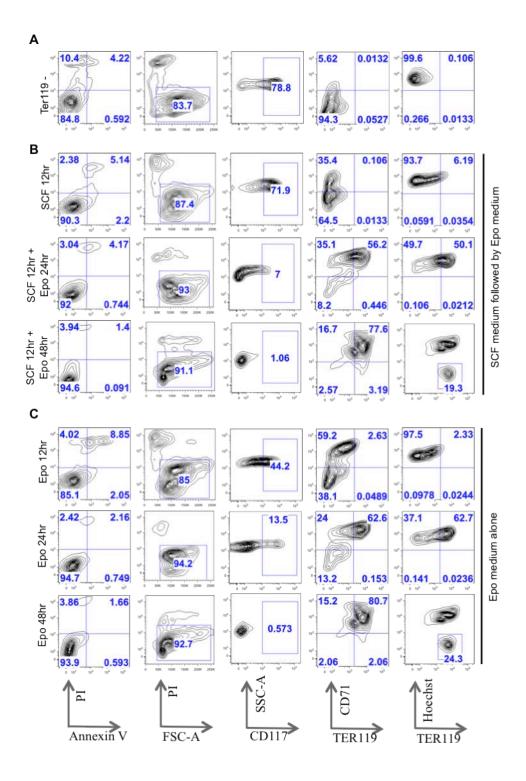
NM_023130	Raly	19383
NM_019547	Rbm38	56190
NM_009069	Rit1	19769
NM_011882	Rnasel	24014
NM_009822	Runx1t1	12395
NM_021372	Sertad2	58172
NM_133210	Sertad3	170742
NM_030241	Setd8	67956
NM_022432	Sirt2	64383
NM_153056	Sirt7	209011
NM_009193	Slbp	20492
NM_026542	Slc25a39	68066
NM_008135	Slc6a9	14664
NM_026912	Snx15	69024
NM_178362	Sorbs1	20411
NM_178362	Sorbs1	20411
NM_172656	Stradb	227154
NM_199196	Suz12	52615
NM_181546	Syt14	329324
NM_173038	Tbcel	272589
NM_178874	Tmcc2	68875
NM_023440	Tmem86b	68255
NM_021883	Tmod1	21916
NM_178931	Tnfrsf14	230979
NP_081568.1	Tpso2	70026
NM_172406	Trak2	70827

XM_908452	Trim33	2137357
NM_146010	Tspan8	216350
NM_177545	Vangl1	229658
NM_175231	Whsc1	107823
NM_023045	Xpo7	65246
NM_026417	Yipf4	67864

^{*} Positive control genes.

Table S2. List of hit genes that affect enucleation when down regulated in the late stage of terminal erythropoiesis.

Enucleation index (EI) indicates the percentage of enucleated cells (TER119 high, Hoechst low) analyzed by flow cytometry. The shRNA sequences were listed.


Gene	ID	Target Sequence	EI	Description
Symbol			(%)	
Ezh2	14056	ACTTGCCCACCTCGGAAATTT	7.1	Enhancer of zeste
		AGTCGCCTCGGTGCCTATAAT	5.6	homolog 2
		TTGAGTACTGTGGGCAATTTA	11.9	
		CGGCTCCTCTAACCATGTTTA	9.2	
HDAC11	232232	TGGTCCGAGCCCATGATATAC	13.4	Histone deacetylase 11
		TTGGCTTACTTCCTCACTTTA	10.3	
		GCCACCATCATTGATCTCGAT	18.1	
		CATGGGTGACAAGCGAGTATA	14.9	
		AGAGTCGTTTGCTGTTCATAT	1.6	
Dyrk3	226419	GCGGGTAGTTAACCCTACAAA	8.1	Dual-specificity tyrosine-
		CAAGCGCTGAAGCAGTATAAA	7.8	(Y)-phosphorylation
		AGACCTGTATGAGCTTATTAA	8.9	regulated kinase 3
PLEK2	27260	AGGATGACACACACTATTATA	8.2	Pleckstrin 2
		CCAGCTTTCCTGCACTACTAT	14.8	
		GCATCGAATTGTGGACAAGAT	18.4	
SERTAD2	58172	TCCCTTATGAAACTGTATAAC	17.8	SERTA domain-
		TTGCAGAAGACTGTCTTAATT	18.8	containing protein 2
		ACCTTACAGCGCCAGACTATC	9.1	2.1
Pdzk1ip1	67182	TCTACAGGAATCTACTGAAAC	16.4	PDZK1 interacting protein
•		GATGGCAGATACTCCTCAATG	12.1	1
		GGAGCACAGTGATGATCATTG	10.1	

Mxd1	17119	CTGTGCCTAGAGAAGCTAAAG	5.5	MAX dimerization protein
		AGTAGCAGATCAACTCACAAT	7.5	1
		GCACCAGTAGCAGATCAACTC	13.3	
Whsc1	107823	AGAGCTGACTTTCAACTATAA	7.8	Wolf-Hirschhorn
		CATAGACAAGGACCGCATAAT	15.8	syndrome candidate 1
		CTGTGAGAGAAGAGGATATTC	12.7	•
		CTGATGGTGCAGGCTTCTATT	15.2	
Rbm38	56190	GCCATGTCCTGCTGGGAATTT	13.7	RNA binding motif
		TGCCAAGCCTAGGAGCTTACA	13.7	protein 38
		GCTGTTGGTGTGCAGCAACTA	8.9	-
		CCTCGCCCTACCTTGAGTATA	15.8	
Itsn1	16443	TAGACTACTTGGCCTATAATA	9.6	Intersectin 1 (SH3 domain
		GATACTCAGTGACCAGTTAAA	6.3	protein)
		TGAAGCCGATAGCGGGATTTA	10.9	•
CD59a	12509	CGGAATGCAAGTGTATCAAAG	13.8	CD59a antigen
		CGGTGGTTTCTTCATGCAATA	6.2	_
		GGTGGTTTCTTCATGCAATAT	5.1	
Setd8*	67956	AGGCATGAAGATTGATCTAAT	15.4	SET domain containing
		AGGAACACCGGGAACGTTATA	13.8	(lysine methyltransferase)
		TGGCTGCTACATGTACTATTT	8.2	8
02074		TGAAGCCGATAGCGGGATTTA CGGAATGCAAGTGTATCAAAG CGGTGGTTTCTTCATGCAATA GGTGGTTTCTTCATGCAATAT AGGCATGAAGATTGATCTAAT AGGAACACCGGGAACGTTATA	10.9 13.8 6.2 5.1 15.4 13.8	CD59a antigen SET domain containing (lysine methyltransferas

^{*} Setd8 functions solely in late erythropoiesis/enucleation

Hit genes that lead to increased enucleation index after knockdown

Fhdc1	229474	CCGGCAATGCCGTAGGATTTA AGTATGAACATTGGCATATTT	54.8 53.1	FH2 domain containing protein 1
EpoR	13857	GCATCTCAACAGATTACAGTT	56.5	Erythropoietin receptor
		CGCATCATCCATATCAATGAA	47.2	

Supplemental Figures

Figure S1. Characterization of the culture system that dissects the early and late stages of terminal erythropoiesis.

(A) TER119 negative mouse fetal liver erythroblasts were purified from E13.5 fetus. Flow cytometric analysis was performed on these cells for apoptosis using Annexin V and propidium iodine (PI), progenitor status using CD117, differentiation using TER119 and CD71, and enucleation using Hoechst 33342 and TER119. (B) Cells from A were cultured in SCF medium for 12 hours followed by Epo medium culture for additional 48 hours. Flow cytometric analysis was performed as in A. For the purpose of demonstrating the culture system, puromycin was not added at 12 hour in culture in B and C. (C) Cells from A were cultured directly in Epo medium for 60 hours. Flow cytometric analysis was performed as in A.

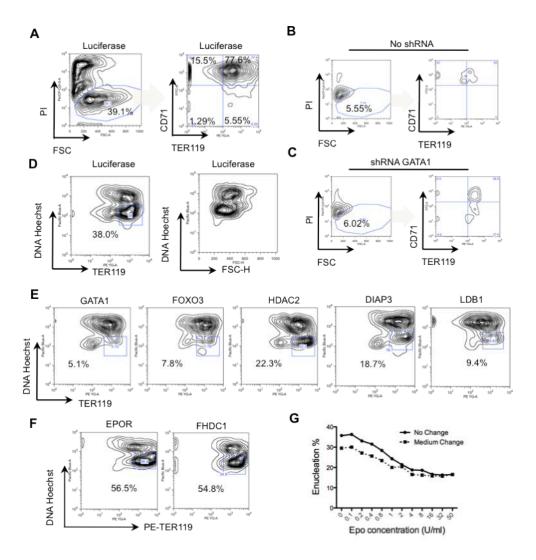


Figure S2. Validation of the targeted shRNA screening system.

(A) The TER119 negative mouse fetal liver erythroblasts were purified. $1x10^3$ cells in each well of a 96-well plate were infected with 10 μ l lentiviruses encoding shRNA against luciferase. The cells were cultured in SCF medium for 12 hours followed by puromycin treatment to select the transduced cells. The cells were continued to culture for 48 hours in

Epo medium followed by flow cytometric analysis of apoptosis and differentiation using PI and forward scatter (FSC), and CD71 and TER119, respectively. (B-C) Same as A except a mock shRNA infection in B, and a shRNA against GATA1 in C, were used. (D) The TER119 negative mouse fetal liver erythroblasts were purified and infected with lentiviral shRNA against luciferase. The cells were directly cultured in Epo medium for 12 hours followed by puromycin selection. The cells were then continued to culture for 48 hours in Epo medium followed by flow cytometric analysis of enucleation using Hoechst and TER119 (left panel). Forward scatter (FSC) was used to compare the size of the enucleated reticulocytes with immature erythroblasts (right panel). (E) Same as D except shRNAs targeting genes that play well-known functions in terminal erythropoiesis were used. The percentages of enucleation are presented. (F) Flow cytometric analysis of hit genes that promoted enucleation when knocked down by shRNA. (G) The percentages of enucleation in different concentration of Epo. TER119 negative erythroblasts were purified from E13.5 mouse fetal liver. The cells were cultured in different concentration of Epo as indicated for two days. Enucleation rate was determined by flow cytometry using Hoechst and TER119. The dashed and solid lines indicate culture with or without medium change on day one of culture, respectively.

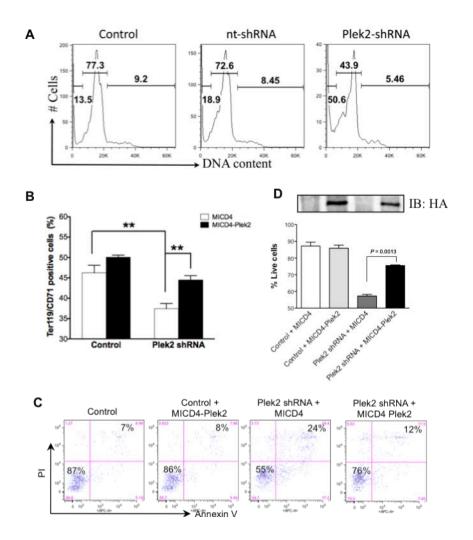


Figure S3. Knockdown of plek2 in the early stage of terminal erythropoiesis blocks cell differentiation and induces cell death.

(A) The cells were the same as Figure 2C. The cells were harvested and cell cycle was analyzed using flow cytometry of cells stained with propidium iodide. (B-D) Over-expression of wild type plek2 rescued early stage erythroblasts differentiation inhibition and apoptosis induced by plek2 knockdown. The TER119 negative mouse fetal liver erythroblasts were purified and infected with indicated retroviruses. MICD4 and MICD4 Plek2 indicate MSCV-

IRES-CD4 vector and MSCV-IRES-HA-Plek2, respectively. For the rescue experiments, the cells were infected simultaneously with two retroviruses as indicated. The cells were cultured for 12 hours in SCF medium followed by 24-hour culture in Epo medium. The cells were then harvested followed by flow cytometric analysis of apoptosis (C-D) and differentiation (B) using PI and Annexin V, and CD71 and TER119, respectively. ** P <0.01.