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The CD34-positive cell: definition and
morphology

Cellular expression of the CD34 antigen iden-
tifies a morphologically and immunologically
heterogeneous cell population that is function-
ally characterized by the in vitro capability to
generate clonal aggregates derived from early
and late progenitors and the in vivo capacity to
reconstitute the myelo-lymphopoietic system in
a supralethally irradiated host."?

Immunohistech emical studies have demon-
strated that the CD34 antigen is stage but not
lineage specific. In fact, independently of the
differentiative lineage, it is expressed only by
ontogenetically early cells.’ For years a major
obstade to the morphological identification of
putative hematopoi etic stem cell has been the
difficulty in separating them from their direct
progeny. The use of CD34 and other suitable
cell surface markers (i.e. CD33, CD38, HLA-DR
antigens) in fluorescence-activa ted cell - sorting
techniques or other cell separation methods has
allowed considerable progress in this field.

Positively selected, lineage committed CD34*
cells and more immature, lineage negative
CD34" CD33" HLA-DR- cells are shown in
Figure 1 and Figure 2, respectively. On May -
Griinwald-Giemsa stained preparations, CD34*
cells are medium sized cells having large nuclei,
eccentrically surrounded by narrow rims of
deep blue cytoplasm occasionally containing
cytoplasmic granules. Some normal CD34" cell
nuclei show one or more pale blue nucleoli.

Taken together, these findings reflect the het-
erogeneous proliferative status and protein syn-
thesis of this cell population. Conversely, earlier
hematopoietic progenitors, identified as CD34*
CD33" HLA-DR’, seem to be more homoge-
neous in size (small lymphocyte-like cells) and
lack cytoplasmic granules and prominent
nucleoli. Again, the morphology of this cellular
population appears to reflect the functional
characteristics of these cells (e.g. low protein
synthesis, very low proliferative activity with
predominantly G, phase).

Several mon oclonal antibodies (MY10, 12.8,
B1-3C5, 115.2, ICH3, TUK3, etc.) raised
against the leukemic cell lines KG1 or KGla and
an anti-endothelial cell antibody (QBEND10)
assigned to the CD34 cluster have been shown
to identify a transmembrane glycoproteic anti-
gen of 105-120 kD expressed on 1-3% of nor-
mal bone marrow cells, 0.01-0.1% peripheral
blood cells and 0.1-0.4% cord blood cells.’
Different antibodies recognize distinct epitopes
of the same antigen. CD34 antigen expression is
associated with concomitant expression of sev-
eral other markers that can be classified as lin-
eage non-specific markers (Thyl, CD38, HLA-
DR, CD45RA, CD71) and lineage specific
markers, including T-lymphoid (TdT, CD10,
CD7, CD5, CD2), B-lymphoid (TdT, CD10,
CD19), myeloid (CD33, CD13) and megakary-
ocytic (CD61, CD41, CD42b) markers.” The
expression of lineage non-specific markers
allows the heterogeneous CD34" population to
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Figure 1. May-Griinwald-Giemsa (MGG) staining of cytospin preparation of
enriched CD34+ cells, highly purified by avidin-biotin immunoaffinity.

be divided into two distinct subpopulations
characterized, respectively, by low or high
expression of Thyl, CD38, HLA-DR, CD45RA,
CD71. These two cell subpopulations contain
early and late hematopoietic progenitor cells,
respectively.*®

In addition to conventional immunological
markers dassified on the basis of their assigna-
tion to specific clusters of differentiation,
CD34 cells express receptors for a number of
growth factors. Two distinct families of relatad
receptors have been identified: (i) tyrosine
kinase receptors, including the stem cell factor
receptor (SCF-R, CD117) and the macrophage
colony-stimulating factor receptor (M-CSF-R,
CD115); (ii) hematopoietic receptors not con-
taining a tyrosine kinase domain, such as the
granulocyte-macrophage colony-stimulating
factor receptor (GM-CSF-R, CDw116).>

The identificati on of new markers sel ectively
expressed on primitive lymphohematopoietic
cells (CD34" CD38") represents a stimulating
research field. In this context, stem cell tyrosine
kinase receptors (STK), such as STK-1, a human
homologue of the murine Flk-2/Flt-3, are of
particular relevance."'” The ligands for these
receptors might represent new factors able to
sel ectively con trol stem cell self- ren ewal, prolif-
eration and differentiation.”"

Clonogenic and biologic activity
The structural and functional integrity of the
hematopoi etic system is maintained by a rela-

Figure 2. MGG staining of cytospin preparation of enriched CD34* CD33-
HLA-DR- cells. The CD34+ cell fraction was further depleted of CD33* HLA-
DR* cells by immunomagnetic separation.

tively small population of stem cells, located
mainly in the bone marrow, that can (i) under-
go self-ren ewal to produce more stem cells or
(ii) differentiate to produce progeny which are
progressively unable to self-ren ew, irreversibly
committed to one or another of the various
hematopoietic lineages, and able to generate
clones of up to 10° lineage-restricted cells that
mature into specialized cells."""

The decision of a stem cell to either self-
renew or differentiate and the selection of a
specific differentiation lineage by a multipotent
progenitor during commitment are intrinsic
properties of stem cell progenitor cells and are
regulatel by stochastic mechanisms.” Survival
and amplification of hematopoietic progenitors
are controlled by a number of regulatory mole-
cules (hematopoietic growth factors) interact-
ing according to complex modalities (syner-
gism, recruitment, antagonism)."” A further
level of hematopoietic control is exerted by
nudear transcription factors that activate lin-
eage-specific genes regulating growth factor
responsiveness and/or the proliferative capacity
of hematopoietic cells.””

Detection of the most primitive hematopoiet-
ic cell types is now possible due to the tech-
nique of long-term bone marrow culture. In the
case of human bone marrow, a 5- to 8-week
time period between initiating cultures and
assessing clonogenic progenitor numbers allows
quantification of a very primitive cell in the
starting population, the so-called long-term cul-
ture-initiating cell (LTC-IC).”" Committed prog-
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enitors of the various hematopoietic cell classes
can be quantitated by a number of short-term
culture clonogenic assays.”” CD34 antigen
expression associated with low CD38 and
CD45RA expression and variable HLA-DR
expression is a typical feature of LTC-IC, CFU-
Blast, CFU-T, CFU-B. In contrast, CD34 anti-
gen expression associated with CD38 and HLA-
DR expression is a typical feature of multipo-
tent (CFU-GEMM) and lineage-restricted
(CFU-GM, CFU-G, CFU-M, BFU-E, CFU-E,
BFU-Meg, CFU-Meg) hematopoietic progeni-
tor cells’ (Figure 3). Recently reported data have
shown that low or absent expression of the
Thy1 or SCF receptor can be efficiently used to
enrich primitive hematopoietic progenitors
from the heterogeneous CD34" cell popula-
tion.”” Although the CD34 antigen is virtually
expressed by all progenitor cells, the percentage
of CD34" cells with assayable in vitro clono-
genic activity ranges from 10 to 30%. The prob-
lem of non-clonogenic CD34" cells is still open
and not adequately explained by the presence of

[Mik13

CD33

HLA-DR

Co38

CD45RA

Figure 3. Cellular organization of the hematopoietic system.

lymphoid progenitors which are not assayable
with current in vitro systems. Non-proliferating
CD34" cells might represent a subpopulation
that is not responsive to conven ti onal myeloid
hematopoi etic growth factors. The non - prolif-
erating CD34" subset might require the pres-
ence of co-factors, such as the ligand of STK-1
or the hepatocyte growth factor, able to activate
stem cell-specific genes whose expression is a
prerequisite for acquiring responsiveness to
conventional growth factors.'**

In lethally irradiated non-human primates,
both autologous and all ogeneic CD34" cells have
been shown to have the capacity to reconstitute
the myelo-lym ph opoietic sys tem, thus suggest-
ing that the stem cell responsible for hem a topoi-
etic reconstitution is CD34".** It has also been
shown that human CD34* HLA-DR" cells trans-
planted in utero in the fetus of sheep initiate
and sustain a chimerichematopoiesis producing
human progenitor cells of all differentiative lin-
eages.” Autologous CD34" cells enriched by
avidin-biotin columns have been shown to be
able to reconstitute myelo-lymphopoiesis in
patients receiving high-dose chemoradio-
therapy.” The results of studies using CD34*
bone marrow cells in the all ogeneic setting in
patientsreceiving both rel a ted as well as unrelat-
ed allogeneic marrow transplants will soon be
available.” In addition, trials are planned that
will use allogen eic peri ph eral bl ood CD34" cells
eitheralone or with marrow.”

Characterization and function of the CD34
cell surface molecule

The CD34 cell surface molecule has been bio-
chemically characterized and both the human
cDNA and gene have been cloned and sequenc-
ed in the last few years.””

CD34 is a one-pass type [ trans mem brane gly-
copro tein with a molecular weight of 105-120
kDs in ether the redu ced or unreduced form*
(Figure4). CD34 protein is not homologus to
any other known protein. The minimum size of
the CD34 protein is 354-amino acids and con-
tains nine sites for N-glycosylation and a several
for O-glycosylation that are essential consti-
tuents of the three epitopes of the molecule; this
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Figure 4. Schematic representation of the CD34 cell surface molecule.

moleaile is also rich in sialic acid. Its biochemi-
cal composition su ggests a mucin-like stru cture
and in some respects resembles leucosialin
(CD43). Sequ en ce comparisons bet ween human
and mouse CD34 show a very low level of iden-
tity in the glycosylated region, 70% identity in
the globular domain, and 92% in the trans-
membrane and cytoplasmic regi ons.

Using a KG1 cell line library, it has been

Epitope class Clones

shown that the human CD34 gene is located on
chromosome 1, and recent studies with in situ
hybridization have assigned its localization to
band 1932, in close proximity to other genes
that en code growth factors or function mole-
cules such as CD1, CD45, TGF2, laminin,
LAM/GMP, etc.”®

Seven CD34 monocl onal anti bodies (MoAbs)
were clustered at the 4th Workshop on Leuko-
cyte Differentiation Antigens (Vienna, 1988),"
and another 15 Mo Abs were verified as recog-
nizing the CD34 molecule during the 5th
International Worksh op on Leukocyte Differen-
tiation Antigens (Boston, 1983), the most direct
eviden ce being reactivity with cells transfected
with CD34 ¢cDNA and binding to CD34
protein.”>” The epitope specificity of the CD34
antibodies was classified into three distinct
groups according to the sensitwity of the epi-
topes to enzymatic cleavage (which was per-
formed using neu raminidase, chymopapain and
glycoprotease from Pasteurella haemolytica),
re activity with fibroblasts and high endothelial
venules, and cross bl ocking ex periments (Table
1).*** We know, in fact, that glycoprotease from
Pasteurella haemolytica specifically cleawes only
proteins containing sialylated O-linked gly-
cans.* Based on these data, it can be further
postulated that class Il ep i topes are more proxi-
mal to the extracellular side of the cell mem-
brane than class I and class Il epitopes.

Furthermore, for most CD34 MoAbs (with
few excepti ons) cross bl ocking ex periments are

|. Sensitive to neuraminidase (from Vibrio 14G3, BI3C5, My10,* 12.8,*
cholerae), chymopapain, glycoprotease (from ICH3,*
Pasteurella haemolytica) Immu-133, Immu-409

Il Resistant to neuraminidase. Glycoprotease
and chymopapain sensitive

43A1, MD34.3,
MD34.1, MD34.2, QBend10,
4A1, 9044, 9049

IIl. Resistant to neuraminidase, chymopapain
and glycoprotease

CD34 9F2,HPCA2,
581, 553.563, Tuk 3, 115.2

CD34 reactivity
paraffin frozen western
section section blotting
positive negative positive
positive positive positive
Table 1. Epitope specificity of CD34
negative  positive negative MoAbs as assessed by their differential

sensitivity.

*Incomplete digestion by neuroaminidase.
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in agreement with the classification based on
enzymatic cleavage of the CD34 protein. In
other words, using a cocktail of CD34 MoAbs,
CD34 reactivity is bl ocked only in the case that
MoAbs belon ging to the same CD34 epitope are
simultaneously employed. On the contrary, the
combineduse of MoAbs recognizing class II and
III or class T and II or class I1I epitopes does not
affect cell reactivity. Moreover, CD34 MoAbs
defining class III epitopes are unable to react
with CD34 glycoprotein in Western blots
because this epitope is sensitive to denaturation.

The pattern of expression of CD34 antibodies
exhibited by CD34" acute leukemias is partially
in accordance with that derived from epitope
mapping based on the differential sensitivity of
CD34 to enzymatic treatment. However, about
one third of CD34 MoAbs do not seem to
bel ong to any of these subgroups and for this
peculiar pattern of expression are referred to as
atypical CD34 reagents. The widest variation in
CD34 MoAD reactivity has been demonstra ted
in acute myeloid leukemia (AML) samples,
allowing us to postulate the occurrence of aber-
rant antigens or of distinct epitopes in sub-
groups of leukemias. Alternatively, it can be
hypothesized that the expression of different
antibodies could reflect the degree of matura-
tion of leukemic cells. The presence of new, dis-
tinct non overlapping epitgpes could be pro-
posed on the basis of the data published so far
in the literature. As far as the expression of
CD34 in normal and leukemic cells is con-
cerned, it has been calculated by flow cytometry
that the number of molecular equivalents of
soluble fluorochrome (MESF) expressed by
leukemic and normal progenitors ranges from
18,200 to 322,000 and from 8,000 to 124,000,
respectively.

Recent data colleted by Lanza et al. seem to
indicate that class I-type MoAbs are more sensi-
tive to freezing procedures than class II and III
MoAbs, since the epitgpe is not identifiable fol-
lowing a frozen/thawed meth odology.

The function of CD34 surface glycoprotein in
hematopoietic stem and progenitor cells is still
the object of debate. In light of recent fndings,
it would seem to play a rel evant role in modu-
lating cell adhesion.” Furthermore, it has been

demonstrated that CD34 probably acts as an
adhesive ligand for L-selectin. It has been fur-
ther postulatel that the CD34 molecule could
play a protective role against proteolytic
enzyme-mediated damage due to its high num-
ber of O-glycosylation sites. The cytoplasmic
domain contains two sites for protein kinase C
phosphorylation and one for tyrosine phospho-
rylation.”

Given the discordant reactivity of these mole-
cules, the choice of the CD34 MoAb to employ
may be important when analyzing cell positivi-
ty for the CD34 molecule in both leukemic and
normal samples, and may be responsible for the
differen ces reported by various authors in the
literature concerning the prognostic role played
by this antigen in acute myeloid leukemias.”’
The type of CD34 MoAb used to enumerate
progenitor cells is probably relevant in the
peripheral blood stem cell autograft setting as
well, since both early and late engraftment fol-
lowing transplantation are, to some extent,
related to the number of hemopoietic stem cells
collected at the time of blood or bone marrow
harvests, and to the degree of progenitor cell
maturation related to the expression of lineage
markers such as HLA-DR, CD71, CD38, CD33,
and myeloperoxidase.

Techniques for CD34" cell separation

A number of different techniques have been
proposed for separating CD34" cells. The com-
mon aim is to produ ce a cell population with
optimal purity and viability by means of a low
cost, rapid and simple separation technique.
The first separation techniques exploited para-
meters such as size and cell density and were
represented by Ficoll-Hypaque and Percoll den-
sity gradients. In the last two decades, the
development of monoclonal antibodies has
allowed a more specific and careful cell selec-
tion by identifying surface antigens used as tar-
gets for cell separation (Table 2).

FACS (Fluorescence Activated Cell Sorter)

Flow cytometry is able to physically separate
different populations after incubation of cells
with fluorochrome-conjugated monoclonal
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antibodies. This cell sorting technique can yield
a highly purified (>98%) cell population. In
addition, the use of electronic gates allows
selection and recovery of several subpopula-
tions according to antigenic expression and dif-
ferent characteristics such as size and cytoplas-
mic granularity. This technique has been very
useful for studying CD34* sub-populations but
cannot be employed to select large numbers of
cells due to its complexity and low recovery.
The recent development of high-speed cell sort-
ing, however, might allow clinical utilization of
this technique.

Panning

Anti-CD34 mon ocl onal anti bodies bound to
one of the surfaces of cell culture flasks were
recently used to select CD34" cells. When a cell
suspension is introduced into the flask, the pos-
itive population is bl ocked on the plastic sur-
face, while CD34 negative cells remain in sus-
pension and can be easily eliminated. Adherent
cells should contain the CD34* population with
a viability >90%.*

Immunomagnetic systems

Immunomagnetic beads are uniform, super-
paramagnetic, polystyrene beads with affinity
purified anti-mouse Ig covalently bound to the
surface. They are equally suited for negative
and positive cell separation; the rosetted target
cell can easily be isolated by applying a magnet
on the outer wall of the test tube for 1-2 min-
utes. Immunomagnetic beads coupled with
CD34 monodonal antibodies can be utilized
for positive selection of CD34" cells to obtain a
population with >80% viable CD34" cells.”
Similarly, immunomagnetic beads can be
employed for negative depletion with mono-
cl onal anti bodies binding lineage - s pecific anti-
gens.

High-affinity chromatography based on biotin-
avidin interaction

This meth od is based on an imnmunoadsorp-
tion technique that relies on the high affinity
interaction between the protein avidin and the
vitamin biotin. Avidin-biotin immunoadsorp-
tion has been em ployed for both positive sel ec-

Table 2. Recovery of CD34-positive cells after different separation tech-
niques.

Enrichment Recovery Large-scale
separation
(% CD34+ (% CD34+
in the recovered  of the original

population) sample)
Negative depletion
by immunomagnetic 20-60 30-60 no
beads
Positive selection by
immunomagnetic 60-80 30-60 yes

beads

Fluorescence activated

cell sorter (FACS) >95 30-50 time consuming
Panning 50 - 80 30-60 yes
Ceprate SC® 50 - 80 40-70 yes

tion and depletion of specific cell populations.”
The instrument includes a set of non-reusable
products including biotinyl a ted anti CD34 anti-
body, plastic bags, filters and a column of
avidin-biotin be ads. An automated version con-
trolled by a com p uter which guarantees repro-
ducibility of operation and reduces risks of
opera tor errors has been devel oped for dinical
use. Its capacity has recently been increased so
that a single column can process more than
50x10" bone marrow or peri ph eral bl ood cells
in 1-2 hours and sustain bone marrow engraft-
ment in pati ents submitted to autograft.”

CD34-positive subpopulations: phenotypic
and functional analysis

The normal CD34" cell population likely con-
tains progenitors of all human lympho-
hematopoietic lineages, including stem cells
capable of hematopoietic reconstitution after
bone marrow transplantation.' Levels of CD34
expression decline with differen tiati on; conse-
quently, the earliest clonogenic cells (CFU-
blast, LTC-IC, etc.) express the highest levels of
CD34, while the most differentiated (CFU-G,
CFU-M, CFU-E, CFU-Meg) express only low
levels of CD34 (Figure 5). The CD34 antigen
has been used to identify, enumerate and isolate
cells from different lympho-hematopoi etic lin-
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eages, as well as develop in vitro tests for indi-
rect evaluation of cells with different functional
and clonogenic capacity.”

Pre-clinical studies

Several animal-human systems have been cre-
ated to utilize chimeras for the study of lym-
pho-hematopoiesis in vivo. The first experi-
ments demonstrated the feasibility of trans-
planting human fetal stem cells to sheep fetuses;
the postnatal presence of human cells in the
sheep was documented at several points in
time.” Furthermore, some early CD34" sub-
populations were able to repopulate sheep bone
marrow; animals were transplanted in utero
with CD34'/DR" cells and the presence of a
chimeric population with the functional char-
acteristics of hemopoietic progenitors was
demonstrated in the marrow and peripheral
blood in a percentage of cases.*” Berenson et al.”
also showed how hematopoietic progenitors
(positive for the Ia antigen and subsequently for
the CD34 antigen) could reconstitute the mar-
row of lethally irradiated dogs. Of the seven

animals treated, all showed complete marrow
engraftment after reinfusion of Ia-positive cells;
only one dog died from infection.” Similarl,
marrow cells from 5 primates (baboons) were
treated in vitro with a biotinylated anti-CD34
antibody and then passed through a column of
avidin; after autograft, all the animals showed
marrow engraftment followed by hematological
reconstitution comparable to that of control
animals.” Furthermore, the demonstration that
allogeneic CD34" cells can reconstitute the he-
matopoietic system in lethally irradiated
baboons confirmed that this cell population
includes pluripotent stem cells.”

Lymphoid precursor cells

The CD34" cell compartment contains all the
cells ex pressing terminal deoxynudeotidyl trans-
ferase (TdT), which is an intranucdear enzyme
expressed in early lymphoid cells undergoing
immunoglobulin or T-cell receptor gene
rearrangement. Flow cytometry has shown that
the great majority of TdT* cells in the marrow
coex press CD34, CD19 and CD10 (B-cell pre-
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cursors), as well as T-cell differentiation anti-
gens such as CD7, CD5 and CD2. A small pro-
portion of CD34*/TdT" cells coexpress CD10,
which might represent a common lymphoid
progenitor for both B and T lineages.” Recently
Miller et al. reported that CD34" cells may also
generate NK cells in vitro.*

Granulocyte-macrophage precursors

Marrow erythroid progenitors lack specific
markers and therefore are difficult to identify.
Glycophorin A-directed monodonal antibodies
recognize all hem ogl obinizedcells, but this mol-
ecule is expressedin only a small proporti on of
CD34" cells and is absent in d on ogenic cells.”

High levels of CD45 are present on BFU-E,
but this antigen is lost by the CFU-E stage;*
however, the CD45RO isoform is well repre-
sented on eadier erythroid progenitors, while
the CD45RA isoform is present on committed
myeloid progenitors. The expression of CD71
(transferrin receptor) is currently considered to
be the specific antigen for the CD34" erythroid
population. CD71 is present at high levels on
erythroid progenitor cells and at very low levels
in all the other progenitor cells.” Expression of
CD71 increases from stem cells to BFU-E, then
declines during erythroid maturation. In addi-
tion, marrow CD34" erythroid cells might
express IL-3, GM-CSF (CD116) and erythro-
poietin receptors, based on the action of these
growth factors on CFU-erythroid cells.”

Myeloid precursor clonogenic cells (CFU-
GM, CFU-G, CFU-M, CFU-MK) coexpress
CD34, HLA-DR, CD117 (c-kit), CD45RA,
CD33 and CD13; CD15 is present at low levels
on CFU-G, while CFU-M specifically express
CD115 (M-CSF receptor). CFU-MK are the
only CD34" cells which express the platelet gly-
coproteins identified by the CD61, CD42 and
CD41 monocl onal antibodies.” Dendritic cells
also originate from bone marrow, but the con-
ditions that direct their growth and differentia-
tion are still poorly characterized. GM-CSF
stimulates the growth of dendritic cells from
mouse peripheral blood; however, it was
recently reported that CD34" cells may give rise
to dendritic/Langh erans cells after stimulation
with GM-CSF and tumor necrosis factor-a..”

Multilineage progenitors and stem cells

CFU-GEMM contain precursor clonogenic
cells of both myeloid and erythroid lineages
and express CD34, HLA-DR, CD38, CD117
and CD45RA. They also express low amounts
of CD33, but not CD13. In a hypothetical dif-
ferentiation scheme involving pluripotent stem
cells, the lympho-hemopoietic compartment is
the next cell type and can be identified in vitro
with CFU-Blast and LTC-IC.

The lack of expression of CD38 is the most
important characteristic of these early progeny,
which represent 1% of CD34 and less than
0.01% of mononuclear cells. The lack of CD38
allows separation of committed progenitors
(CD34%/CD38*) from earlier compartments
(CD34'/CD38") by a single marker combina-
tion.™

Furthermore, the earliest CD34" cells coex-
press low levels of CD45RO° and are nega tive
for staining with the fluorescent dye rhodamine
123. The role of HLA-DR in defining earlier cell
types is still controversial; a series of evidence
indicates that the stem cell compartment has
the CD34*/CD38 /HLA-DR" phenotype.®*
Recent works, however, have not found HLA-
DR in the earliest cells.” These data were con-
firmed by the possibility that HLA-DR expres-
sion may discriminate the Ph-positive leukemic
compartment (HLA-DR") from normal resid-
ual cells (HLA-DR") in chronic myeloid
leukemia.*®

Adhesion molecules and cytokine receptors

A number of molecules within the integrin
family have been shown to mediate interactions
between early CD34-positive cells and bone
marrow stromal cells. These include VLA-
4/VCAM-1, VLA-5/fibronectin, LFA-1 or
ICAM, and several others. Each adhesion mole-
cule appears to mediate a specific cell interac-
tion. Hematopoietic growth factors may be
active in a soluble form or in a membrane-
anchored form; adhesion molecules may be
crucial for allowing anchored growth factors to
bind the target cell. Table 3 lists the main adhe-
sion molecule and growth factor receptors
expressed on CD34-positive cells.
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Table 3. Adhesion molecule and growth factor receptors expressed on
CD34-positive cells.

Antigen name ch Ligand
GlyCAM-L/selectin none adhesion molecule
ICAM1,2,3 CD11a/CD18 adhesion molecule
H-CAM CD44 adhesion molecule
VLA-4 CD49d/CD29 adhesion molecule
VLA-5 CD49d/CD29 adhesion molecule
FGF-R none growth factor
M-CSF CD115 growth factor
GM-CSF-R CD116 growth factor

SCF (c-kit) CcD117 growth factor
Interferon y-R CD119 growth factor
IL7-R CcD127 growth factor

CD34 expression on normal and neoplastic cells
It has been known that CD34 monoclonal
antibodies bind specifically to vascular endo-
thelium ever since a 110 kd pro tein extracted
from freshly isolated umbilical vessel endotheli-
um was identified with CD34 antibodies in
Western blots and in Northern blot analysis.”*
CD34 molecules have a striking ultrastructural
localization on endothelial cells: they are con-
centrated primarily on the luminal side, in par-
ticular on membrane processes, many of which
interdigitate between adjacent endothelial
cells.””* Since this region is an important site
for leukocyte adhesion and transendothelial
traffic, in contrast to previous experiences,” it
has been hypothesized that CD34 may be
antagonistic or inhibitory to the adhesive func-
tions of vascular endothelium. This was sup-
ported by the demonstration that CD34 gene
expression at the mRNA level is reciprocally
down-regulated when adhesion molecules
ICAM-1 and ELAM-1 are up-regulated by IL-1
during inflammatory skin lesions associated
with leukocyte infiltration.”>* Furthermore,
additioml studies conducted on both paraffin
embedded and cryopreserved secti ons demon-
strated that fibroblasts also react with anti-
CD34 Mo Abs.® However, it should be noted
that while CD34 MoAbs reacted with all classes

of epitopes on cryopreserved secti ons, class III
epitopes were not recognized by specific anti-
CD34 MoAbs on paraffin embedded sections.
Levels of CD34 expression, highest in immature
hematopoietic precursor cells, decrease pro-
gressively with cell maturation.

Regarding hematologic malignancies, CD34 is
expressed in a large percentage of ac ute leuke-
mias.®’ The fluorescence intensity of CD34
expressionis variable and higher in acute lym-
phoblastic (ALL) than in acute myeloblastic
leukemia (AML). In these latter patients, the
CD34 anti gen is found on 40-60% of leukemic
blasts and is most frequently associated with
MO, M1 and M4 FAB cytotype, secondary
leukemias, karyotypic abnormalities involving
chromosomne 5 or 7, P170 expression and poor
prognosis.®* Thus, CD34 expression may be
consideed the most predictive nega tive factor in
AML pati ents strictly correlated with intensity
of expression.”* In ALL, CD34 is expressed in
70% of pati ents, particulary in those with a B-
lineage phenotype. In these patients, unlike
AML cases, the clinical relevance of CD34
ex pressionis controversial; however, according
to the findings of a Pediatric Oncology Group,”
its expressionin B-lineage cases was associated
with hyperdiploidy, lower frequency of initial
central nervous sys tem (CNS) leukemia and a
favorable prognosis. In T-cell ALL cases, on the
other hand, CD34 expressionshowed a positive
correlationwith initial CNS leukemia and CD10
nega tivity, but not with any presenting favor-
able-risk characteristics.”

Lastly, CD34 and HLA-DR expression may be
very useful in discriminating bet ween the very
few benign primitive hematopoietic progenitors
and their malignant counterparts in patients
with chronic myeloid leukemia (CML). In fact,
it has been demonstrated that normal progeni-
tor cells are CD34" and HLA-DR", while malig-
nant progenitor cells, which exhibit Ph and
bcr/abl rearrangement, express HLA-DR anti-
gens.*

Positive and negative regulators of hematopoi-
etic progenitor cells
The hematopoietic stem cell is defined by its
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extensive self-renewal capacity, multilineage
differentiation potential and capacity for of
long-term reconstitution of normal marrow
function in lethally irradiated animals.®
Transplantation of retrovirally marked murine
stem cells has shown that only a few multilin-
eage progenitor cells induce the repopulation of
engrafted hematopoietic tissue,” suggesting
that hematopoiesis may be supported by a suc-
cession of short-lived clones. Moreover, experi-
mental evidence indicates that the processes of
self-renewal, differentiation and selection of
lineage potentials are intrinsic properties of the
stem cells and occur according to a stochastic
(random) model.” In the ste ady state, most of
the stem cells are quiescent (G, phase) and
begin active cycling randomly.”" Conversely,
survival and proliferation of hematopoietic
progenitors are regulated by cytokines, which
also act in preventing apoptosis.”” According to
this model, the induction of differentiation by a
cytokine may be considered as the consequence
of the proliferation of a specific population
stimulated by that factor. The broad term
cytokines includes growth factors such as fibrob-
last growth factor, colony stimulating factors
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acting growth factors for the production of
more mature cells,”® as well as with the
cytokines capable of triggering stem cell
cycling. On their own, they act as survival fac-
tors for stem cells and appear to stimulate early
hematopoietic precursors only after their exit
from G,,.”

Several cytokines have recently been identi-
fied for their capacity to stimulate the prolifera-
tion of the earliest hem a topoi etic cells. Ma pp-
ing studies of normal blast cell colony forma-
tion from single progenitors have shown that
IL-6, G-CSE IL-11, stem cell factor (SCF), IL-12
and leukemia inhibitory factor (LIF) recruit dor-
mant stem cells into the cell cycle that are then
able to respond to additional growth factors.”
Whereas the permissive factors retain limited
proliferative potential by themselves, they
strongly enhance the stimulatory activity of IL-
3, GM-CSF, G-CSF and EPO on CD34* and
more immature CD34" lineage-progenitors.” In
addition to positive interaction with intermedi-
ate-and late-acting growth factors, SCF syner-
gistically or additively augments the colony-
forming ability of other early-acting growth
factors, such as IL-11, IL-12 and IL-6, on
myeloid and bilineage (i.e. lymphomyeloid)
primitive cells.” Recently, the ligands for the
STK-1 or FLT3 receptor, and the hepatocyte
growth factor were shown to be able to stimu-
late very primitive hematopoietic progenitor
cells. However, their biological activity is still
under investigation.

The main sources of both positive and nega-
tive regulatay pro teins are accessory myeloid
cells and the stromal com ponent of the bone
marrow. In general, microenvironment cells do
not constitutively produce cytokines, rather
transcription and/or translation processes are
rapidly induced by cytokines such as IL-1, TNFE.
The extracellular matrix also participates in the
regulation of hematopoiesis by binding growth
factors and presenting them in a biologically
active form to bone marrow progenitor cells.”

Most data suggest that stem cells ex press low
levels of growth factor receptors and require
multiple proliferative stimuli to enter into the
cell cycle, while committed progenitor cells can
be effectively stimulated by individual cyto-

kines.” Combinations of two or more growth
factors® can stimulate hem a topoi etic cells either
by amplifying the progeny cell production of
singleprecursors (synergy) or by inducing addi-
tional clonogenic cells to proliferate (recruit-
ment). Examples of these two types of enhance-
ment are given in Figures 7 and 8, wh ere CD34"
CD33" DR cells are simultaneously stimulated
by two or three growth factors. The molecular
basis regulating the complex interplay bet ween
cytokines is sti Il largely unknown. However, one
proposed mechanism for growth factor syner-
gism is the inducti on of CSF receptors on early
hematopoi etic progenitor cells.”” Thisappears to
be a coordinate cascade transactivation via up-
modulation of growth factor receptors that leads
to proliferation and differentiation of human
marrow cells.*” Conversely, the structural
homology between some growth factors,* the
presence of shared receptor subunits on the cell
membrane® and common signal-transduction

Figure 7. Human CD34* CD33- DR- cells were stimulated by IL-9 (A) or IL-9
and SCF (B) in the presence of EPO. The addition of SCF induced the
growth of large multicentered BFU-E colonies containing > 10,000 cells.
The different size of the colonies indicates amplification of stem cell prog-
eny (synergy).
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Figure 8. The addition of SCF to IL-11, in the presence of EPO, results in a
much higher number of colony-forming cells derived from CD34* CD33~
DR™ progenitors (right), as compared to the IL-11 and EPO combination
(left) (recruitment).

proteins* provide a potential explanation for
their functional similarities and the apparent
redundancy of their activi ty.

The growth of hematopoi etic progenitor cells
is also regulated by soluble negative regulators
such as macrophage inflammatory pro tein- la
(MIP-1a), tumor necrosis factor-o (TNF-av),
interferons (IFNs), prostaglandins and trans-
forming growth factor-B (TGF-B). The TGF-
familyof proteins includes at least five isoforms
(TGF-B1-5) which are encoded by different
genes” and produced by stromal cells, platelets
and bone cells. Moreover, a subsetof very pri m-
i tive mu rine hem a topoi etic cells has been shown
to secrete active TGF-B1 by an autoc rine mech-
anism.” TGF-B1 and 2 isoforms are bimodal
regulators of murine and human hematopoietic
progenitor cells, and their activity is based upon
the differentiation state of the target cells and
the presen ce of growth factors.” In the human
systan, for instance, CFU-GEMM derived from
purified CD34* CD33" cells are inhibited by
TGF-B1, whereas more committed progenitors
such as CFU-G or CFU-GM are not affected. In
addition, high proliferative potential-CFC
(HPP-CFC) responsive to a combination of
CSFs are markedly inhibi ted by TGF-B1, while
more mature CFU-GM are actually enhanced
when GM-CSF is used as colony forming fac-
tor.” TGF-B1 and 2-induced myel o suppression
is partially counteracted by early-acting growth
factors such as G-CSF, IL-6 and fibroblast
growth factor.” On the other hand, TGF-3 has
been shown to be a more potent su ppressor of

human BM precursors and its activity on
hematopoiesis is only inhibi tory,” although the
synergistic growth factors IL-11 and IL-9 seem
to be able to oppose the negative regulation of
TGF-B3 on human CD34* cells.” Several poten-
tial modes of action of the TGF-B family have
been suggested, including down-modulation of
cytokine receptors,” interacti on with the under-
phosphorylated form of the retinoblastoma
gene productin late G; phase,” and alteration of
gene expression.” Early studies have shown that
TGF-B1 and 3 exert their activity on normal
and leu kemic cells by lengthening or arresting
the G; phase of the cell cyde,” and this ef fect is
functional to protect normal CD34positive cells
from the toxicity of alkylating agents in vitro.”
More recent investigations have demonstra ted
that TGF-f regulates the responsiveness of mice
hematopoietic cells to SCF, which is known to
be the main synergistic factor for both murine
and human stem cells, through a decrease in c-
kit mRNA stability that leads to decreased cell-
surface ex pression.”

Similarly to TGF-3, TNF-a has been reported
to have both inhibitory and stimulatory effects
on hematopoietic progenitor cells. TNF-a
potentiated the IL-3 and GM-CSF-mediated
growth of human CD34" cells in short-term liq-
uid culture assay. However, it inhibited the
growth promoting activity of G-CSE.”* Two
TNF receptors with molecular weights of 55
and 75 kd, respectively, have recently been iden-
tified.” Whereas the p55 receptor mediates
TNF-a effects on committed progenitor cells,
the p75 receptor is involved in signaling the
inhibition of murine primitive cells.

Furthermore, it was recently shown that
TNF-a is capable of inhibiting the multi-
growth factor (GM-CSE, IL-3, G-CSF, SCEF, IL-
1)-dependent growth of human HPP-CFC
derived from CD34" cells through interaction
with both p55 and p75 receptors, while the p55
receptor exclusively mediates the bifunctional
activity of TNF-a on more mature BM precur-
sors responsive to single cytokines.'*

MIP- la is a pepti de of 69-amino acids with a
moleallar weight of 7.8 kd produced by activa t-
ed macrophages, T-cells and fibroblasts."" It
belongs to a large family of putative cytokines
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that inclu des MIP- 13, MIP-2 and IL-8 (chemo-
kines). Biologic characterization has shown that
MIP-1a enhances the M-CSF- and GM-CSF-
depen dent growth of CFU-GM, while it inhibits
the colony-forming ability of hematopoietic
precursors present in a cell population enriched
for CD34" DR* cells stimulated with erythro-
poi etin, IL-3 and GM-CSE'*

Taken together, these results indicate that a
complex interplay bet ween positive and negative
regulatary proteins determines the proliferation
or inhibition of early hematopoietic progenitor
cells (Figure 9). In general, the activity of
inhibitors of hemopoiesis appears to be
reversible, lineage-nonspecificand directed at the
early stages of differentiation In addition, TGF-$
has shown some degree of differential activity
bet ween normal and neoplastic lym phoid cells.”
Thus, negative regulators may be dinically rel e-
vant to the protecti on of the hematopoietic stem
cell compartment from the dose-limiting toxicity
of neoplastic disease therapy.”'*>'*

Collection of CD34" cells

Bone marrow and peripheral blood are the
only sources of immatu re hem opoietic precur-
sors identified as CD34" cells. A diagnostic mar-
row sample contains only a few CD34" cells,
while even fewer of them are present in peri ph er-

Differentiation

al bl ood samples taken under steady state condi-
tions. Large quantities of CD34" cells can be col-
lected with massive marrow harvests, such as for
transplantation purposes. Nevertheless, marrow
CD34" cells are somewhat elusive due to their
scattering among the predominant CD34"
hematopoi etic population.'” Recently devel oped
cell separation procedures all ow collection of
highly enriched CD34" cell populations.
However, this is generally accomplished through
aspecific and often unacceptable cell loss."™ So far
the limited number of immature precursors
commonly obtained from both bone marrow
and peripheral bl ood has been the majorobstade
to a simple identification and analysis of marrow
CD34" cells. Indeed, the growing interest in
CD34" cells is primarily the result of the develop-
ment of new therapeutic modalities that all ow
easy access to large quantities of hemopoietic
precursors through the peripheral bl ood. The key
role in these innova tive approaches is represen ted
by the introduction of hem opoi etic growth fac-
tors for clinical use."”

At present GM-CSF and G-CSF are the most
extensively employed and studied hemopoietic
growth factors in the clinical setting From the
very beginning, it was observed that GM-CSF or
G-CSF administration was associated with an
increase in circulating hemopoietic progeni-
tors.108,109
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hematopoietic stem cells.
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Later on, it was demonstrated that this phe-
nomenon could beex tensively and reproducibly
amplified by com bining growth factor adminis-
trati on with high - dose chemotherapy."*'"

In deed hem opoi etic progenitors are massively,
though transiently, mobilized into peripheral
blood during hemopoietic recovery following
high-dose chemotherapygiven with growth fac-
tor support. Such an abundance of immature
hemopoietic cells makes them easily recogniz-
able by cell sorting techniques that employanti -
CD34 MoAbs."” Under optimal conditions, the
proportion of CD34" cells may reach values as
high as 20-30% of the total leukocyte count. In
steady state conditions CD34" cells do not
exceed 4% of the total marrow population,
while they are undetect a ble by cell sorting tech-
niques in the peripheral blood. Chemothera py
and growth factors do not merely induce a rela-
tive increase of immature hemopoietic cells;
their absolute number is amplified several times
over basal conditions. This all ows coll ection of
sufficient amounts of hem opoi etic progenitors
for autografting purposes by means of a few
leukapheresis procedures."*">'"

Values of 10-20x10* CFU-GM/kg represent
the minimal required dose for marrow engraft-
ment with peripheral blood progenitors.">""” In
fact, much higher quantities of circulating
progenitors can be collected using appropriate
mobilization procedures. Under optimal condi-
tions, circulating CD34" cell peak values may
range between 150 and 700/uL on days of maxi-
mal mobilization. As a rule, at least §x10°
CD34" cells/kg or more can thus be collected
with 1 to 3 leukapheresis procedures."* These
huge quantities, approximately corresponding
to 50x10* CFU-GM/kg, must be considered the
ideal threshold dose of peripheral bl ood prog-
enitors for autografting purposes. Indeed values
of 8x10° CD34" cells/kg or more guarantee a
rapid and durable hem opoi etic recovery when
circulating progenitors are used as the sole
source for marrow reconstitution following
submyeloablative treatment."*"

Thus far, massive CD34* cell mobilization has
been most commonly observed when growth
factor is administered following high-dose
cyclophosphamide, given at 7 g/sqm. Indeed

chemotherapy that indu ces profound leu kocy-
topenia seems to be crucial for optimal mobi-
lization; for instance, cyclophosphamide at
doses lower than 7 g/sqm produ ces a redu ced
m obilizing stimulus.""'* Several other chem o-
therapy schedules have also been sucessfully
employed for mobilizati on purposes. The prin-
cipal chemotherapy protocols reported to be
highly ef fective in inducing CD34" cell mobiliza-
tionare summarizedin Table 4."0 """ 11> 117 12217

As stressedearlier, hem opoi etic growth factors
play a key role in mobilization. This has been
dearly documented with cydophosphamide. A
median peak value of 75 CD34" cells/pL has
been recorded following high - dose cydophos-
phamide alone, wh ereas 420 and 500/pL are the
median values recorded when GM-CSF or G-
CSF, respectively, are added to cyclophos-
phamide.">""*"*** Extensive growth factor-
induced mohilization is further substantiated by
the possibility of collecting sufficient CD34*
cells using growth factor alone.”"" In this set-
ting the most promising ex periences have been

Table 4. Main chemotherapy protocols employed in hematopoietic progeni-
tor mobilization.

Authors Protocol Drug(s) Dosage
characteristics employed

Gianni et al™ single agent  cyclophosphamide  high

Tarella et al.'? single agent  etoposide high

Gianni et al"*

Kotasek et al.'* single agent  cyclophosphamide intermediate

Tarella et al'*

Dreyfus et al® single agent  cytarabine high

Schimazaki et al'®  multiple drugs etoposide high
cytarabine

Kawano et al.'"® multiple drugs daunorubicin intermediate
cyclophosphamide
etoposide

Pettengell et al'” multiple drugs doxorubicin intermediate
cyclophosphamide
etoposide

Hass et al.'" multiple drugs cytarabine high

mitoxantrone
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produced with G-CSF. The results reported
indicatenew opportunities for the utilizati on of
mobilized progenitors in all ogeneic transplanta-
tion procedures.”* Combined chemotherapy
and growth factors remain the most efficient
mobilizati on procedure at this time. However,
ongoing studies are directed at improving mobi-
lization ef fic i ency with growth factors alone. For
example, G-CSF at doses higher than 5
pg/kg/day up to 20 ug/kg/day may have higher
mobilization capacity.” Further improvement
might derive from the clinical availability of new
cytokines, such as IL-3, SCF and others, to be
employed alone or in combination with G- or
GM-CSE.""" However, the potentially high
m obilizing activi ty of such new cytokine com bi-
nations must be accompaniedby no or very few
side effects in order to be considered for a wide
clinical applicability.

Mobilizing protocols gen erally include daily
delivery of growth factors, starting 1 to 3 days
after chemotherapy administration and con-
tinuing until harvesting procedures are com-
pleted. Growth factor is usually administered
for a total of 7-12 consec utive days. The most
convenient route of delivery is subcutaneous,
with 1 to 2 doses per day. Progenitor cell har-
vests are performed during hemopoi etic recov-
ery, provided that progenitor cell mobilization
is documented. Indeed various parameters
have been considered as an indirect indicati on
of progenitor mobilization, including an
increase in WBC or, alternatively, in mono-
cytes, basophils or platelets.””® ' However,
CD34" cell evaluation remains mandatory for
an accurate definition of the extent of progen i-
tor mobilization."*""**

CD34" cells should be monitored daily from
the early stages of hemopoietic recovery.
Detection of circulating CD34" cells is not suffi-
cient reason for starting leukapheresis proce-
du res; an adequa tenumber of CD34" cells (>20-
50/pL) and WBC >1.0x10°/L and platel et count
>30x10°/L are required for safe and effective
progenitor cell harvesting.'*'** Leukaphereses
are perform ed using continuous-flow blood cell
separators. A complete leukaph eresis procedure
generally takes 2-3 hours and the total blood
volume processed ranges from 6 to 10 li-

ters."*"*1** The harve s ted cells are resuspen ded
in freezing medium and then cryopreserved for
subsequent transplantation. One to 3 leuka-
phereses repeated on consecutive days usually
provide large amounts of progenitor cells capa-
ble of rapid engraftment after submyeloablative
treatments.

Factors and procedures favoring CD34" cell
mobilization have been well established.
However, other conditions advers ely influencing
the mobilization phenomenon should be con-
sidered. A major limitation is represented by
impaired marrow functi on, as can occur in pre-
viously treated patients."" In fact, patients at
first relapse following a single treatment proto-
col maintain an adequate mobilization
capacity;'” however, few if any mobilizedCD34*
cells can be obtained from heavily treated
patients previously exposed to multiple chemo-
therapycourses. Mobilizati on is also profoundly
reduced and often totally abolished in patients
previously exposed to radiotherapy, especially if
it was del ivered to the pelvis or to exten ded ver-
tebral areas.''”'* Lastly, marrow invasion by
tumor cells may nega tively affect mobilization
capacity. This is typically reported in myeloma
patientsin wh om the ex tent of CD34" cells often
correlates with the degree of marrow invo lve-
ment by tumoral plasma cells.”” In conclusion,
several new findings have dramatically improv-
ed the procedures for collection of large
amounts of CD34* cells. However, optimal mar-
row functi on is a prerequisite for exploiting fully
the activi ty of all those factors known for their
mobilization - in dudng capaci ty.

CD34* positive cells in umbilical cord blood
Significant numbers of human hematopoietic
stem cells can be found in umbilical cord blood
and can be used for allogeneic bone marrow
transplantation. Mayani et al."** found that 1-
2% of the total number of cord bl ood - derived
low-density cells express high levels of the
CD34 antigen and low or undetectable levels of
the antigens CD45RA and CD71. These popu-
lations were highly enriched in clonogenic cells
(34%), in particular in multipotent progenitors
(12%). By culturing these cells at low con cen-
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tration for 8-10 days in highly defined serum-
free liquid cultures supplemented with various
hematopoietic cytokines, it was possible to
achieve a significant expansion (about 100-
fold) of the CD34" cell population.

These last results were recently confirmed by
Traycott et al.'" in an elegant study showing
that umbilical cord blood CD34" cells rapidly
exit Gy-G; phases and start to cycle in response
to stem cell factor. This feature would make
cord blood CD34" cells more suitable candi-
dates than bone marrow cells for ex vivo expan-
sion.

It is clear that in vitro expansion and matura-
tion of hematopoietic progenitor cells might be
of particular relevance for transplantation of
cord blood hematopoietic cells; however, infor-
mation abo ut the effects of such an expansion
on the cells required for long-term hematopoi-
etic reconstitution is highly desirable.

The dual role of peripheral bl ood hematopoietic
progenitor cells in oncohematol ogy

CD34" progenitor cells circulating in the
peripheral blood represent an enriched and eas-
ily accessible source of two distinct cell popula-
tions: committed progenitor cells and hemato-
poietic stem cells.

Although circulating progenitors are com-
monly called stem cells, the presence of circulat-
ing stem cells has been formally proved only in
mice."® In humans the presence of hematopoi-
etic stem cells in the peripheral blood is almost
certain (see below), but to call reinfusion of cir-
culating progenitors ‘transplantation’ of periph-
eral blood stem cells (PBSC or similar
acronyms) is hardly appropriate. This terminol-
ogy overlooks the fact that the tremendous
interest in peripheral blood autografting is not
(at least so far) a consequence of its being a
simple surrogate for autologous bone marrow
transplantation (as the term PBSC would sug-
gest), but rather derives from the unique prop-
erty of this procedure to reduce the duration of
the severe pancytopenia that foll ows submye-
loablative treatments from two-three weeks
(when bone marrow cells are used) to a few
days only."""* The reason for the rapid recovery

which occurs after circulating progenitor auto-
transfusion (CPAT) has not been formally
proved, but it is most likely a consequence of
the much larger (10- to 100-fold higher)
amount of committed progenitors reinfused
when a patient is autografted with blood-
derived (as opposed to marrow-derived) cells.
The most likely hypothesis is that these late
progenitors (post-progenitors) of granulocytes
and platelets are capable of giving rise to
mature progeny within a few days, thus allow-
ing submyeloablated patients to survive the ini-
tial aplastic phase.

The fundamental role of committed progeni-
tor cells was elegantly proved in mice by Jones
et al.” None of the lethally irradiated animals
transplanted with a pure population of stem
cells free of more mature progenitors (CFU-
GM, CFU-S) survived the initial aplasia. A
more recent paper”' challenged this ‘conven-
tional wisdom’ model, and maintained that
peripheralblood stem cells per se are capable of
rapidly matu ring in vivo.

Other auth ors, using a very similar approach,
reach ed an opposing condusion.”” In humans
the most convincing, albeit indirect, evidence
in favor of the role of committed progenitors in
accel erating post-transplant recovery was pro-
vided by Robertson et al.,"”” who documented a
significantly prolonged hematopoietic recovery
for pati ents under going auto | ogous bone mar-
row transplantation purged ex vivo with anti-
CD33 monoclonal antibodies. This result,
whichoccurred after a treatment that sel ective-
ly kills the most mature progenitor cells
(expressing the CD33 surface antigen), repre-
sents convincing indirect proof of the role of
committed progenitors in early en graftment.

The clinical role of committed progenitors in
reducing the morbi dity and mortality of high-
dose therapy has expanded since hemopoietic
growth factors have become dinically available.
In fact, infusion of rhGM-CSF or thG-CSFE, in
particular after administration of myelotoxic
doses of certain stemcell - sparing agents, all ows
easy collection of an amount of CFU-GM/kg
body weight 10 to 100 times higher than that
containedinabone marrow harvest."’

As already documented by a large number of
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papers, the use of circulating progenitors has
brought about a dramatic change in the per-
spectives of high-dose submyeloablative regi-
mens. In fact, these on ce specialized, expensive
and highly toxic treatments are now well toler-
ated, easy to administer, and dinically useful
( cost ef fective). As an example, it is worth men-
ti oning the initial Milan Can cer Institute ex pe-
rience in a group of over 50 poor-risk breast
cancer patients who received high-dose mel-
phalan plus an optimal amount of circulating
progenitors ( 5x10* CFU-GM/kg body
weight). These patients required a median of
10.5, 11 and 12.5 days to score > 0.5, 1.0 and
2.0x10°/L neutrophils/puL, respectively.
Moreover, more than half of them did not
require platel et transfusions, while the remain-
ing ones needed only one or two transfusions
during the first week after autografting. Such
mild to modera te toxicity was never described
before the clinical availability of committed
progenitor cells.

In conclusion born as a ‘compassionate sur-
rogate of bone marrow autografting, today
CPAT is rapidly replacing ABMT. In fact, tod ay
it is the latter that should be considered a ‘com-
passionate need’ procedure, useful in those few
patients unable to mobilizea sufficient num ber
of circulating progenitor cells.

The second, distinct role of circulating prog-
enitors is rel ated to the presence of stem cells,
i.e. totipotent precursors responsible for
durable reconstitution of all lympho-hemato-
poietic lineages following marrow ablative
therapy. Since virtually no high - dose treatment
that can be safely administered to humans is
genuinely myeloablative, formal proof of the
existence of circulating stem cells must await
eitherstable transducti on of DNA markers into
autografted cells or the use of this cell popula-
tionfor allografting.

These experiments are presently underway in
several labora tories,”*'* and preliminary data
do confirm the presence of stem cells in the
peripheral blood of humans. Their utilization is
expected to revolutionize fields like all ogeneic
bone marrow transplantation and somatic gene
therapy, whenever the target of genetic manipu-
lations is the hematopoietic cell.”
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