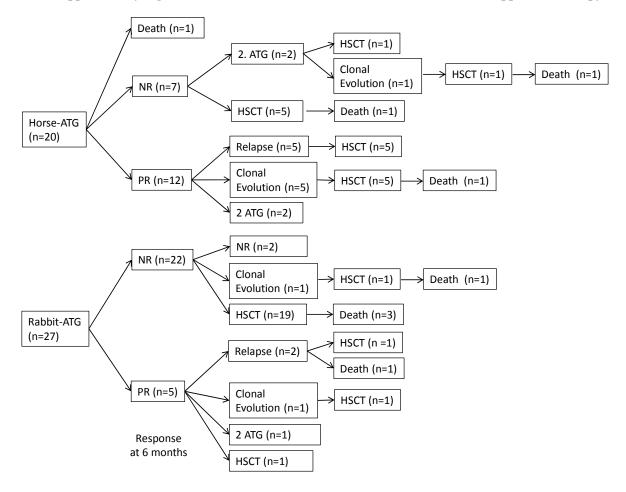
Comparison of horse and rabbit antithymocyte globulin in immunosuppressive therapy for refractory cytopenia of childhood

Ayami Yoshimi,¹ Marry M. van den Heuvel-Eibrink,² Irith Baumann,³ Stephan Schwarz,⁴ Ingrid Simonitsch-Klupp,⁵ Pascale de Paepe,⁶ Vit Campr,⁷ Gitte Birk Kerndrup,⁸ Maureen O'Sullivan,⁹ Rita Devito,¹⁰ Roos Leguit,¹¹ Miguel Hernandez,¹² Michael Dworzak,¹³ Barbara de Moerloose,¹⁴ Jan Starý,¹⁵ Henrik Hasle,¹⁶ Owen P. Smith,¹⁷ Marco Zecca,¹⁸ Albert Catala,¹⁹ Markus Schmugge,²⁰ Franco Locatelli,²¹ Monika Führer,²² Alexandra Fischer,¹ Anne Guderle,¹ Peter Nöllke,¹ Brigitte Strahm,¹ and Charlotte M. Niemeyer¹

¹Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University of Freiburg, Germany; ²Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, and Dutch Childhood Oncology Group, the Hague, the Netherlands; ³Department of Pathology, Boeblingen Hospital, Clinical Centre South West, Boeblingen, Germany; ⁴Department of Pathology, University Medical Center Erlangen, Germany; ⁵Clinical Institute of Pathology, Medical University of Vienna, Austria; ⁶Department of Pathology, University Hospital Ghent, Belgium; ⁷Department of Pathology, University Hospital in Motol, Prague, Czech Republic: ⁸Department of Pathology, Veile Hospital, Denmark; ⁹Histology Laboratory, Our Lady's Hospital for Sick Children, Dublin, Ireland; ¹⁰Department of Pathology, Bambino Gesu' Children's Hospital, Rome, Italy; ¹¹Department of Pathology, University Medical Centre Utrecht, and Dutch Childhood Oncology Group, the Hague, the Netherlands; ¹²Department of Pathology, Hospital Universitario La Fe, Valencia, Spain; 13St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Austria: ¹⁴Department of Pediatric Hemato-Oncology, Ghent University Hospital, Belgium: ¹⁵Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Pediatric Hematology Working Group, Czech Republic; ¹⁶Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark; ¹⁷Paediatric Oncology and Haematology, Our Lady's Hospital for Sick Children Crumlin, Dublin, Ireland; 18Pediatric Hematology-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ¹⁹Department of Hematology, Hospital Sant Joan de Déu, Barcelona, Spain; ²⁰Department of Hematology and Oncology, University Children's Hospital, Zurich, Switzerland; ²¹Department of Pediatric Hematology and Oncology, Bambino Gesu' Children's Hospital, Rome, University of Pavia, Italy; ²²Dr von Haunersches Kinderspital, Children Hospital of the Ludwig-Maximilians-University of Munich, Germany on behalf of the European Working Group of MDS in Childhood (EWOG-MDS)

©2014 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2013.095786 Manuscript received on July 31, 2013. Manuscript accepted on October 22, 2013. Correspondence: ayami.yoshimi@uniklinik-freiburg.de Online Supplementary Table S1: Clinical characteristics of patients with refractory cytopenia of childhood and hypocellular bone marrow (excluding patients with monosomy 7/7q- or \geq 3 chromosomal aberrations) grouped according to primary therapy


	IST (n = 115)	MSD-HSCT (n = 39)	UD/MMFD-HSCT (n = 45*)	P-value
Median age at diagnosis (years, range)	9.8 (1.2–18.1)	12.4 (2.6–17.9)	11.4 (3.1–17.9)	0.01
Sex (male/female)	74/41	24/15	24/21	ns
Median ANC (×10 ⁹ /L, range), $n = 196$	0.4 (0.0–3.8)	0.5 (0.04–1.7)	0.6 (0.02–2.4)	0.09
MCV (normal/elevated for age), n = 193	45/67	11/26	16/28	ns
HbF (normal/elevated for age), $n = 75$	5/37	1/15	3/14	ns
Median Hb (g/dL, range), n = 196	7.8 (2.4–12.8)	6.0 (2.9–14.9)	7.8 (3.2–12.5)	0.05
Median platelet count (×10 ⁹ /L, range), n = 195	13 (0–188)	12 (1–105)	16 (1–126)	ns
Median interval between diagnosis and therapy (days, range)	60 (1-402)	84 (34–164)	134 (17–177)	0.01

IST: immunosuppressive therapy, MSD: matched sibling donor, HSCT: hematopoietic stem cell transplantation, UD: unrelated donor. ANC: absolute neutrophil count, MCV: mean corpuscular volume, HbF: fetal hemoglobin, Hb: hemoglobin. All blood values given are prior to transfusion. *Forty-four patients were transplanted from an unrelated donor and one patient from a mismatched family donor.

Online Supplementary Table S2: Clonal evolution and disease progression after immunosuppressive therapy

ID	ATG	Interval between	Response	Karyotype at clonal evolution	Diagnosis at	Therapy, outcome
		IST initiation and	at 6		clonal evolution	(years)
		clonal evolution	months			
		(years)				
D337	horse-ATG	1.0	NR	45,XY, -7	RAEB	HSCT, TRM (0.6)
D394	horse-ATG	4.9	PR	46,XY, del (16)(q12q23)	RCC	HSCT, alive (>2.1)
D433	horse-ATG	3.7	PR	46,XY	Clinical PNH*	HSCT, alive (>3.6)
D442	horse-ATG	0.6	PR	45,XY, -7	RCC	HSCT, alive (>7.5)
D452	horse-ATG	3.5	PR	46,XY	MDR-AML	HSCT, TRM (0.4)
D529	horse-ATG	1.2	PR	46,XY,der(4)t(4;7)(q25;q33),der(7)t(4;7)(q2?5;q21)	RCC	HSCT, alive (>5.7)
D724	rabbit-ATG	1.2	PR	45,XY, -7	RCC	HSCT, alive (>2.9)
CH043	rabbit-ATG	0.9	NR	45XX, -7	RCC	HSCT, TRM (0.7)

horse-ATG: horse antithymocyte globulin (Lymphoglobulin[®]), rabbit ATG (Thymoglobulin[®]), IST: immunosuppressive therapy, NR: no response, PR: partial response, RAEB: refractory anemia with excess blasts, RCC: refractory cytopenia of childhood, PNH: paroxysmal nocturnal hemoglobinuria, MDR-AML: myelodysplasia-related acute myeloid leukemia, HSCT: hematopoietic stem cell transplantation, TRM: transplantation-related mortality. At diagnosis, 6 of 8 patients had a normal karyotype and 2 patients had no metaphase cytogenetics; no patients had an abnormal karyotype. *hemolysis

Online Supplementary Figure S1: Details of treatment failures (n=47) after immunosuppressive therapy

horse-ATG: horse antithymocyte globulin (Lymphoglobulin[®]), rabbit-ATG (Thymoglobulin[®]), NR: no response, PR: partial response, 2. ATG: second course of ATG, HSCT: hematopoietic stem cell transplantation