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Cancer should be considered in the context of its nor-
mal cellular counterpart, and in the case of myelo-
ma, this is a normal plasma cell which exists to pro-

duce functional antibody. In this respect, myeloma arises
as a consequence of the deranged biological behavior of a
plasma cell that has undergone a complex development
process. This plasma cell differentiation process has been
shaped by evolution and the need to resist infection by the
production of effective antibodies.1,2 The description of the
“Molecular Hallmarks” of cancer provides an excellent
framework against which to consider the ways in which a
normal plasma cell can become cancerous.3 While the
mechanisms underlying this transformation process gener-
ally involve the acquisition of DNA mutations over time, it
is becoming increasingly recognized that epigenetic
changes play an equally important function.4,5

This mechanistic approach to treatment is one of the key
tenets of modern medicine, where the overall aim is to
understand the pathological basis of the disease such that
it can be manipulated therapeutically. If this is the case,
then the problem of curing myeloma can be viewed simply
as an issue of understanding what is underlying the normal
behavior of the normal plasma cell which has become
deregulated to give rise to myeloma. Here we provide a
structure, based on relevant publications, that may be help-
ful to devise future research strategies. Many of the aspects
concerning the generation of myeloma have come from a
limited number of clinical and laboratory systems which
have been extensively investigated. Despite this, the appli-
cation of novel technologies to these systems can continue
to yield important new evidence. 

Aspect 1. The clinical behavior of cases with myeloma
One of the key insights into myeloma comes from an

understanding of the clinical behavior of the disease. A num-
ber of distinct clinical phases of myeloma can be recognized,
including monoclonal gammopathy of undetermined signif-
icance (MGUS) and asymptomatic or smoldering multiple
myeloma (SMM).6 A recent study has suggested that all
cases of myeloma pass through a MGUS phase, but it is
often unrecognized or subclinical.7 While both these disease
phases lack the clinical features of myeloma, they do share
some of the genetic features of symptomatic myeloma.8 In
contrast, symptomatic multiple myeloma (MM) is defined
by clinical symptoms and evidence of end organ damage.
A characteristic feature of myeloma cells is the require-

ment for an intimate relationship with the bone marrow
microenvironment where plasma cells are nurtured in spe-
cialized niches that maintain their survival long term and
protect them from drug-induced apoptosis.9 However,
with disease progression, clonal cells tend to develop the
ability to proliferate at sites outside of the bone marrow,
manifesting as extra-medullary myeloma (EMM) and plas-
ma cell leukemia (PCL).10,11 These cells constitute the end

stages in the multistep transformation process from normal
to malignant plasma cells. 
This multistep progression system provides us with a

system to understand how acquired genetic and epigenetic
changes contribute to disease progression. The basic
hypothesis being that progression events collaborate with
etiological events to push a clonally-damaged cell through
a series of transformation steps eventually leading to PCL.
What is now realized is that there is intraclonal hetero-
geneity within the pre-dominant myeloma clone, and that
subtle variation in biological behavior associated with
these variants, combined with Darwinian natural selec-
tion, mediates disease progression and the development of
treatment resistance.12

Aspect 2. Environmental and inherited contribution
Epidemiological studies have shown risk factors for the

development of MM including increasing age, male gender,
familial background and a past history of MGUS.13 MGUS
is a common pre-malignant disorder found in 3.2% of
Caucasians aged 50 years or older.14 It is associated with an
annual actuarial risk of progression to MM of 1%.7,15

Environmental risk factors have also been implicated in
increasing MM risk, including obesity,16,17 immune dysfunc-
tion (including auto-immune disease, HIV and transplanta-
tion),18–20 and agricultural or industrial exposure to chemi-
cals, pesticides or radiation.21,22 A key hypothesis that has
been addressed in numerous studies is that genetic varia-
tion governing individual response to environmental expo-
sures may mediate some of the familial aggregation seen in
MM. The descriptions of families with more than one case
of MM support the suggestion that there is an underlying
genetic predisposition with an increased relative risk of
developing MM for first degree relatives (increased risk of
developing MM (RR=2.1; 95%CI: 1.6-2.9) and of develop-
ing MGUS (RR=2.1; 95%CI: 1.5-3.1)).23 There is reportedly
a racial contribution to the risk of developing MM,24 with a
greater prevalence of MGUS and MM in African
Americans.24,25 However, it is likely that other factors influ-
ence this risk, such as inequalities in access to care and/or
confounding effects due to environment and behavioral
factors.26–28 Molecular epidemiological approaches have
been used to gain insights into the earliest genetic factors
leading to the development of myeloma. An increased risk
of developing myeloma is associated with 7 genetic loci
located at 2p, 3p, 3q, 6p, 7p, 17p and 22q. Such inherited
variation accounts for approximately 13% of the familial
risk of myeloma. Further studies are required to gain
insight into the functional consequences of alterations at
these loci. Potential genes include DNMT3A or CBX7 as
they are already implicated in other cancers.29,30 Given the
sample size and the submaximal linkage disequilibrium in
these GWAS studies, it is probable that many other genetic
loci remain unidentified.29,30
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Aspect 3. Normal plasma cell development
Understanding the behavior and developmental process-

es giving rise to a normal plasma cell is crucial if we are to
understand how these processes are deregulated to give
rise to a malignant plasma cell. Humans have evolved in
the context of a constant requirement to resist infections,
and antibodies are key effectors of this process. A reduc-
tionist approach to the description of a plasma cell is that it
is simply a specialized antibody-producing cell. Such a cell,
however, has a number of important behavioral features to
which it must conform if it is not to become malignant.
One of these key characteristics is that once formed in
response to an infection, it should undergo apoptosis when
it is no longer required. It should also be able to survive
long term to produce long-term immunological memory
for the infection against which it was generated.2

Understanding the mechanisms underlying the deregula-
tion of these key biological features is likely to give insights
into the process of myelomagenesis. 
We know that the derangement of developmental

processes often underlie the process of carcinogenesis and
the same is true in myeloma. Following the rearrangement
of their immunoglobulin genes to generate a functional B-
cell receptor, B cells leave the bone marrow as naive B cells.
After an encounter with their cognate antigens, activated B
cells migrate to the germinal center. Within the germinal
center, B cells that express a functional B-cell receptor
undergo affinity maturation in response to antigen present-
ed on antigen-presenting cells. This process requires that
the DNA encoding the hypervariable regions of the
immunoglobulin heavy chain (IgH) gene undergoes somat-
ic hypermutation (SHM) to produce highly specific and
avid antibodies.1

The functionality of these antibodies is increased by
class switch recombination (CSR), which produces anti-
bodies of different immunoglobulin (Ig) isotypes. CSR is a
region-specific deletional recombination reaction which
replaces one switch region with another.31 Mechanistically,
both SHM and CSR require the expression of activation-
induced deaminase (AID)32 and are mediated by the gener-
ation of double-strand DNA breaks (DSB) in the Ig loci.
Although AID-induced DSBs are mostly repaired locally,
they can be joined to DSBs occurring elsewhere in the
genome leading to aberrant chromosomal translocations,
one of the central molecular hallmarks of myeloma.1

Another of the key developmental challenges for a nor-
mal plasma cell is the effective generation of antibodies.
Central to this process is an ability to differentiate from an
immature B cell, located within a germinal center, to a
mature antibody-secreting plasma cell located in the bone
marrow. This differentiation process requires cessation of
cell cycle, compaction of chromatin, and silencing of cellu-
lar functions unnecessary for antibody production, at the
same time as switching on key programs required to make
and secrete antibodies. Checkpoints in development have
been identified as key features of these biological systems
where cells that fail quality control can be deleted via apop-
tosis.31 For example, one effective developmental check-
point is the ability to make and correctly fold nascent anti-
body.33

Normal plasma cell differentiation is controlled by the
coordinated regulation of transcription factors. Interferon

regulatory factor 4 (IRF4) down-regulates BCL6, resulting
in the upregulation of B-lymphocyte-induced maturation
protein 1 (BLIMP1, also known as PRDM1), leading to the
downregulation of paired box gene 5 (PAX5) and upregu-
lation of X box binding protein 1 (XBP1). The expression
of IRF4, BLIMP1 and XBP1 are necessary for the ongoing
survival of plasma cells.31 XBP1 is the transcription factor
that is key in mediating the final stages of plasma cell
development.34 It is regulated by inositol-requiring
enzyme 1α (IRE1α), a key sensor of unfolded protein and
cellular stress in the endoplasmic reticulum.33 IRE1α medi-
ates the splicing of XBP1 to XBP1s, its active transcription-
al state, which provides key growth and survival signals,
as well as stimulating the production of genes necessary
for Ig production and the unfolded protein response
(UPR).35–38 These genes are involved in the pathogenesis of
myeloma, and transgenic mice over-expressing XBP1s
develop a syndrome that recapitulates some of the fea-
tures of myeloma.36

Aspect 4. The cell biology of myeloma and the role 
of the bone marrow niche
Having exited the germinal center, normal plasma cells

migrate to the bone marrow where they either relatively
rapidly undergo apoptosis after cessation of the immune
response, or they migrate to specialized niches where they
can survive for many years as long-lived plasma cells pro-
viding serological memory. Competition for access to this
bone marrow niche seems to be38,39 important in maintain-
ing the immune response long term, as well as immortaliz-
ing abnormal plasma cells.39,40 Understanding how myeloma
plasma cells interact with and come to dominate access to
such a niche is important in understanding how the process
of myeloma is initiated and subsequently progresses.
A series of cell biological studies have established our

key understandings of how a myeloma cell survives in
relation to its local environment. These investigations
have established the importance of several cytokines
(including IL-6, TNFα, BAFF, IGF and HGF), adhesion
molecular networks (including VLA4, VCAM1, Syndecan-
1), and the cellular compartment (including stroma cells,
osteoblasts, osteoclasts, T and natural killer (NK) cells).41,42

Interactions with the bone marrow stromal cells, chiefly
via adhesion molecules, lead to the activation of complex
signaling pathways that govern cell survival and tumor
progression.42,43 Myeloma cells also interact with endothe-
lial cells inducing neoangiogenesis and, therefore, progres-
sion.44 Interactions with osteoclasts and osteoblasts, espe-
cially the increase in osteoclast activity and osteoblast
inhibition are responsible for the bone lesions that are
accountable for a large proportion of myeloma morbidi-
ty.45,46 The important biological factors influencing this
process include RANKL, OPG, and members of the Wnt
pathway (including DKK1).47 Finally, the immune
microenvironment imparts immune changes leading to
immune evasion and disease persistence.48–54 Loss of inter-
action with the bone marrow microenvironment, caused
by reduced expression on MM cells of adhesion molecules
(CD56, LFA-1) and chemokine receptors such as CXCR4,
leads to impaired retention of malignant cells in the bone
marrow and immune evasion leading to extra medullary
spread, plasmocytoma and PCL.10,11
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Aspect 5. Chromosomal changes associated
with myeloma
The cytogenetic study of myeloma cell lines has been

hugely informative in developing our understandings of
the biology of myeloma. At the cytogenetic level, the
myeloma genome is recognized as being complex and
more reminiscent of epithelial cancers rather than the sim-
pler leukemias.55 The key genetic lesion identified using
metaphase analysis was the presence of balanced translo-
cations at the IgH region on chromosome 14q32 which
provided a major key to understanding the genetic makeup
and etiology of myeloma. Once it was realized that the
translocations consistently involved the IgH regions it was
possible to use positional cloning to understand the site of
breaks in the Ig regions, as well as to identify and clone
recurrently deregulated genes. 
In myeloma, most translocations, such as the t(4:14),

occur through class switch recombination (CSR) in mature
B cells. Nevertheless, a recent study suggests that, in some
cases, translocations are generated through DH-JH recombi-
nation, suggesting that they may arise in an earlier B-cell
precursor (pro-B cell stage). From an etiological perspective,
this may suggest that myeloma initiation can occur early
on in the B-cell development.56 As mentioned previously,
the other necessary actors in the translocation and muta-
tion process are receptor revision and somatic hypermuta-
tion. In the context of a normal immune system, IgH
rearrangements and somatic hypermutation confer a bene-
fit by increasing the quality of the immune response. The
consequence of this process being that, despite being high-
ly regulated, abnormal events do occur which can lead to
the development of malignant transformation. These
abnormal events and the malignant transformation are tol-
erated in an evolutionary sense as they are rare.57 It seems,
therefore, that the price of an effective immune system
protecting from infections throughout life is a background
rate of B-cell tumors and myeloma, particularly later in life.
In this respect, it is perhaps not surprising that in popula-
tions over the age of 50 there is evidence of a clonal expan-
sion of plasma cells in the form of MGUS in more than
3.2% of individuals.14

The study of chromosomal translocations, generated by
either aberrant CSR or VDJ rearrangement, shows that a
number of oncogenes (cyclin D1 (CCND1), CCND3,
fibroblast growth factor receptor 3 (FGFR3), multiple
myeloma SET domain (MMSET; also known as WHSC1),
MAF and MAFB) are placed under the control of the
strong enhancers of the Ig loci, leading to their deregula-
tion independently from the mechanism of IgH
rearrangement.58 Deregulation of the G1/S transition is a
key early molecular abnormality in myeloma. The consis-
tent deregulation of the D group cyclin was first noted as
a consequence of studying the CSR driven t(11;14) and
t(6;14) translocations, which directly deregulate cyclin D1
and cyclin D3, respectively.58,59 The t(4;14)(p16.3;q32.3) is
found in 15% of presenting cases and is associated with a
significantly worse prognosis than other biological sub-
groups. As a consequence of the translocation, two genes
are aberrantly expressed: the fibroblast growth factor
receptor 3 (FGFR3) and a multiple myeloma SET domain
containing protein, MMSET (WHSC1/NSD2), both of
which have potential oncogenic activity.60 Importantly,

FGFR3 shows only weak transforming activity and is
eventually lost in 30% of patients,61 suggesting that it is
not the main oncogenic factor. In contrast, MMSET gene
overexpression is universal in t(4;14) cases. MMSET is
known to have histone methyl transferase activity62 and is
deregulated early on in myeloma genesis. Overexpression
of MMSET leads to global changes in histone methylation
that promotes cell survival, progression and DNA
repair,63–65 confirming it is central to the pathogenesis of
this subtype of MM. 
Other IgH translocations are seen in myeloma and tend

to occur later in the disease process.66,67 The gene typically
deregulated by such events is MYC, the deregulation of
which may lead to a more aggressive disease phase68 but
such events still occur in 21% of myelomas at presentation
and involve the sequestration of active enhancer elements,
resulting in increased expression of MYC (BA Walker et al.
submitted manuscript, 2014). Interestingly, transgenic mice
engineered to over-express MYC in late B cells also develop
myeloma.69

The other major set of recurrent genetic abnormalities
seen in myeloma is hyperdiploidy, associated with the gain
of the odd numbered chromosomes including 3, 5, 7, 9, 11,
15, 19 and 21. The mechanism underlying hyperdiploidy is
much less tractable than translocations and so the mode of
its generation remains uncertain. However,  one hypothe-
sis, based on what has been suggested in hyperdiploid
acute lymphoblastic leukemia (ALL), is that the gain of
whole chromosomes occurs during a single catastrophic
mitosis rather than via the serial gain of chromosomes over
time.70

Aspect 6. The mutation profile of myeloma
The frequency and recurrent nature of interstitial loss of

copy number and loss of heterozygosity (LOH) suggests
that the minimally deleted regions may contain tumor sup-
pressor genes. Deregulation of these genes may be seen as
driver events leading to the development and progression
of myeloma.71–73

Tumor suppressor and cell cycle deregulations: most tumor sup-
pressor genes require inactivation of both alleles and have
either been identified by the study of homozygous dele-
tions or through the integration of mutational analysis
with copy number status.74 Examples of potential relevant
tumor suppressor genes include FAM46C, DIS3, CYLD,
Baculoviral IAP repeat containing protein 2 (BIRC2; also
known as cIAP1), BIRC3, and tumor necrosis factor recep-
tor associated factor 3 (TRAF3).72,75 Deregulation of the
G1/S transition is also a key early molecular abnormality in
myeloma, with loss of negative cell cycle regulators being
important. In addition to down regulation of CDKN2C by
loss of chromosome 1p3276 and inactivation of CDKN2A
by methylation are important,77,78 inactivation of RB1 also
affects this checkpoint and may occur as a result of loss of
chromosome 13, present in 58% of cases.73 The loss of the
TP53 gene, encoding for a tumor suppressor protein (p53)
has been implicated in a variety of human cancers.79 In
myeloma, its loss is associated with a significantly more
aggressive disease phenotype80,81 and disease progression.82

Mutations occurring at a low frequency have also been
described.74,83
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NFKB alterations: other important regions of interest include
11q, the site of the BIRC2 and BIRC3 genes, 16q the site
of CYLD and 14q32 the site of TRAF3.56,71,72,84,85 All of these
genes are involved in the NF-κB pathway, indicating that
upregulation of NF-κB signaling is important in myeloma.
Whole genome- and whole exome-based sequencing

strategies have shown that there are approximately 35
non-synonymous mutations per sample in myeloma,
which is in between the numbers present in those of the
genetically simpler acute leukemia (8 non-synonymous
mutations)86 and those present in the more complex
epithelial tumors, such as lung cancer (540 non-synony-
mous mutations).87 There are few recurrently mutated
genes in myeloma, a feature consistent with other hema-
tologic malignancies, such as acute myeloid leukemia,
and this is in stark contrast to hairy cell leukemia and
chronic myelogeneous leukemia (CML) where single
unifying mutations are seen (BRAFV600E and BCR-ABL,
respectively).88,89 However, there are a number of recur-
rent pathways which are deregulated, e.g. the high fre-
quency of mutations in the ERK pathway (NRAS in 24%,
KRAS in 27% and BRAF in 4% of cases) indicates that the
ERK pathway is crucial for myeloma development and
points to a treatment strategy that has so far not been
harnessed.73 Deregulation of the PI3K pathway is also
important in myeloma, but in contrast to the RAS path-
way, the PI3K pathway is not frequently mutated.
However, phosphorylated AKT, which is indicative of
PI3K activity, is detected in 50% of cases.90 In addition,
DEP domain-containing MTOR-interacting protein
(DEPTOR), a positive regulator of the pathway, is fre-
quently up-regulated, especially in cases with MAF
translocations.91 A further and potentially relevant gene
that is very frequently deregulated is MYC, which if
over-expressed in germinal center cells in a mouse model
can give rise to myeloma.92

Aspect 7. Epigenetic changes
Genetic modifications have been considered essential in

myeloma, but another type of alteration, the epigenetic
event, also contributes to the oncogenic transformation of
normal plasma cells by altering gene expression. The
methylation of DNA and histones is one of the main phys-
iological processes to induce silencing of gene expression
and has been implicated in cancer progression. 
The most important epigenetic change relevant to the

pathogenesis of myeloma is global hypomethylation and
gene-specific hypermethylation during the transformation
of MGUS to myeloma. The most pronounced DNA
methylation changes are seen in the 15% of patients with
the t(4;14) translocation, where the 4p16 break point
occurs telomeric to the 5’ intron of MMSET, resulting in an
MMSET overexpression.58 This translocation leads to a
gene-specific hypermethylation signature compared to
other cytogenetic sub-groups.5,93 Other histone modifiers
deregulated in myeloma include KDM6A (UTX), a histone
demethylase, MLL, KDM6B and HOXA9.94 Chromatin reg-
ulators have the potential to be attractive targets in cancer
therapy. Super enhancers (clusters of transcriptional
enhancers that drive expression of genes usually defining
cellular identity) are found at the position of key oncogenic
drivers. Targeting super enhancers such as BRD4 preferen-

tially affects oncogenes such as Myc, which is implicated
in more aggressive disease.95

Aspect 8. Stem cell and biology of myeloma evolution 
If the biological process of myeloma is to be deciphered,

we need to have a framework against which to test ideas
generated from cell biological and genetic analyses. Simply
describing the molecular genetics of myeloma, while
informative, does not help us to understand how myeloma
develops. There is clearly a myeloma stem cell, but its biol-
ogy is difficult to understand. For example, a key concept
in stem cell biology is plasticity, where an equilibrium
exists between a cell with a stem cell phenotype and a
mature terminally differentiated plasma cell. 
The other important concept is that cancer stem cells are

heterogeneous. This heterogeneity is an essential require-
ment for cancer development and progression through the
various disease stages associated with increasing clinical
aggressiveness. The understanding of cancer evolution that
has come from the study of the simple cancer system of
pediatric acute lymphoblastic leukemia (ALL) has signifi-
cantly improved our concepts of how myeloma develops
and how we could computer model such systems.96–98

Intraclonal heterogeneity is present in myeloma and this is
the essential molecular substrate for cancer evolution.12,98 It
is interesting that even for a dominantly acting oncogene,
such as NRAS or KRAS, it is possible to identify variation
in the size of the clone carrying the mutation, pointing to
the presence of intraclonal heterogeneity and to potential
difficulties in the use of targeted treatment strategies. In
addition, the degree of intraclonal heterogeneity in myelo-
ma has been highlighted recently by following patients
through their treatment. Genetic studies demonstrate a
number of clones present with the frequency of the clones
changing with disease stage and therapy.99

Aspect 9. Understanding the mechanism of action 
of drugs that are active in myeloma
In recent years, two new classes of drug which are active

in myeloma have been identified and introduced into the
clinic. Understanding the mode of action of these drugs
and how they kill myeloma cells can inform us of clinically
useful pathways crucial to myeloma biology.

Proteasome inhibition: targets a number of important bio-
logical pathways relevant to myeloma, such as the ubiq-
uitin proteasome system, NF-κB activationm,100,101 Bcl-2-
induced apoptosis102 and the unfolded protein response103

emphasizing the importance of these pathways. The
ubiquitin proteasome system, by promoting the timely
degradation of short-lived protein, is a key factor of
homeostasis. A better understanding of toxicity profiles
has focused the attention on the upstream enzymes (E3-
ubiquitin ligases and their regulators) as potential targets.
Resistance to proteasome inhibitors include a number of
mechanisms such as mutations (e.g. PSMB5 mutations or
mutations in proteosome subunits),104 overexpression of
PSMB5,105 alterations in the Bcl2/Mcl1 ratio,106,107 and sup-
pression of the Ire1-Xbp1 pathway. Conflicting data
regarding the suppression of the Ire1-Xbp1 pathway sug-
gests that it could promote either resistance108 or sensitiv-
ity to proteasome inhibition.109
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Thalidomide and its derivatives kill myeloma plasma cells at a
number of biological levels, and understanding how this
occurs at a molecular level can provide major insights into
the biology of malignant plasma cells. The recent descrip-
tion of cereblon as a thalidomide-binding protein and its
downstream impact on IRF4 is a significant step forward in
understanding the mechanisms of action of immunomod-
ulatory drugs (IMIDs) and in identifying possible biomark-
ers.110 Although early in vitro data on cell lines suggest the
lack of correlation between Cereblon levels (both at the
protein and RNA level) and response to IMIDs,111 these will
be improved with the ability to accurately measure the
level of cereblon protein in the cell. 

Implication for myeloma patients

Both clinically and biologically, myeloma is not a single
disease but a collection of diseases with different clinical
behaviors. Understanding this heterogeneity will enable us
to move forward from a standardized approach to preci-
sion medicine where clinical decisions are based on molec-
ular subtypes. The first step towards precision medicine is
to apply a risk stratification approach based on fluores-
cence in situ hybridization (FISH) abnormalities and gene
expression profiling. FISH has identified prognostically
important lesions such as gain 1q, del 17p and t(4:14) that
when combined with other markers, such as ISS (albumin
and beta2microglobulin), can be used as a prognostic mark-
er.80,81 Gene expression profiling (GEP) can also define inde-
pendent signatures that could also predict outcome.112–115

Identifying these groups and designing clinical trials for
them will refine our current management strategies, avoid-
ing over or under treating specific subgroups. Some clinical
trials have already been designed in this respect.116

The second step forward is to develop a targeted treat-
ment approach for specific molecular subtypes. Although
there is probably not an “imatinib” for myeloma that
would control all subtypes, selected molecular subtypes
may respond to specific therapies. Based on our knowledge
of epigenetic mechanisms, demethylation agents could be
investigated in a subset of myeloma patients over-express-
ing MMSET. Currently, BRAF inhibitors show some prom-
ising responses in the small subset of patients with a
BRAFV600E mutation. Ongoing studies will aim to target
the RAS pathway that is mutated in approximately 50% of
myelomas. But if we fail to integrate the notions of tumor
heterogeneity and clonal evolution into this targeted treat-
ment approach it is destined to fail. Combined treatment
approaches based on both targeted and current agents are
likely to be required to help us address these issues and
build towards a cure for myeloma. 

Conclusion

The analysis of the currently available data has helped us
understand the causes and consequences of the abnormal-
ities occurring in normal B cells that lead to myeloma. It
has also made clear that beyond the complexity of genetic
and epigenetic events leading to myeloma progression, an
additional complexity is given by the degree of both inter-
and intraclonal heterogeneity. The methodical application
of these aspects to myeloma has provided us with the tools

to translate these data into valuable keys that can be taken
forward to the clinic. Importantly, these advances under-
line the constant need for a collaborative effort between
the clinic and the laboratory in developing novel approach-
es for myeloma. However, given the nature and the com-
plexity of the disease outlined here, even with these
advances, challenges will still remain in the years to come
in the search for a cure for myeloma.
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