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Chronic Myeloproliferative Disorders

Introduction

Myelofibrosis (MF) is a clonal hematopoietic stem cell dis-
order belonging to the non-chronic-myeloid-leukemia myelo-
proliferative neoplasms (MPN). MF is characterized by
cytopenias and/or leukocytosis, leukoerythroblastosis in
blood, progressive marrow fibrosis and extramedullary
hematopoiesis with splenomegaly.1 The disease can occur de
novo as primary MF (PMF) or result from the progression of
polycythemia vera (PV) or essential thrombocythemia (ET)
(hereafter called post-PV/ET MF) with no differences in clini-
cal or histological characteristics.2 MF has a poor prognosis;
the median overall survival (OS) is five years.3 Evolution to
acute myeloid leukemia (AML) occurs in approximately 20%
of patients.3 OS is predicted by the International Prognostic
Scoring System (IPSS),3 dynamic-IPSS (DIPSS)4 and DIPSS-
plus system.5 These scores help therapeutic decision-making.
DIPSS-plus takes into account unfavorable karyotypic abnor-
malities such as +8, -7/7q-, i(17q), inv(3), -5/5q-, 12p- or 11q23
rearrangement. The karyotype is abnormal in approximately
35% of PMF cases;6 the most frequent lesions are del(20q),
del(13q) and abnormalities of chromosome 1.7

The discovery of JAK28 and MPL9 mutations in 50-60%
and 5-10% of patients, respectively, allowed a better under-
standing of MF pathogenesis. Mutations in CBL,10 TET2,11

ASXL1,12 IDH,13 IKZF1,14 LNK,15 EZH2,16 DNMT3A,17 NF1,18

SUZ12,18 SF3B1,19 and SRSF220 genes have been described in

MPNs including MF. MF seems to have more genetic alter-
ations than ET and PV, for example, more ASXL1 muta-
tions.12,21–23 There is no difference in the prevalence of an
abnormal karyotype among the three MF subtypes (PMF and
post-PV/ET MF),24 but the difference in mutation frequency is
not well established and the genetic events that trigger PMF
and post-ET/PV MF remain unknown. Early studies had
shown that ASXL1,23 EZH2,25 IDH26 and SRSF220 mutations
have prognosis impact. A recent study of a cohort of 879
PMF patients has shown that transformation to leukemia is
indeed influenced by ASXL1, EZH2, SRSF2 and IDH muta-
tions, and that ASXL1 mutations have an impact on survival
independent of the DIPPS-plus score.27

We studied 80 MF cases by using array-comparative
genomic hybridization (aCGH) and Sanger sequencing of 23
genes on 104 MF samples. We compared the molecular abnor-
malities in primary, secondary and blast phase MF.

Methods

Patients 
A total of 104 samples corresponding to 80 patients with MF were

studied, including 68 cases at chronic phases at diagnosis (n=24)
(Online Supplementary Table S1A) or during disease course (n=44)
(Online Supplementary Table S1B) and 12 blast phases (BP)-MF (Online
Supplementary Table S1C; in this table, 5 other BP cases are evolution
of 5 of the 68 chronic phases). Based on the World Health
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Myelofibrosis is a myeloproliferative neoplasm that occurs de novo (primary myelofibrosis) or results from the pro-
gression of polycythemia vera or essential thrombocytemia (hereafter designated as secondary myelofibrosis or
post-polycythemia vera/ essential thrombocythemia myelofibrosis). To progress in the understanding of myelofi-
brosis and to find molecular prognostic markers we studied 104 samples of primary and secondary myelofibrosis
at chronic (n=68) and acute phases (n=12) from 80 patients, by using array-comparative genomic hybridization and
sequencing of 23 genes (ASXL1, BMI1, CBL, DNMT3A, EZH2, IDH1/2, JAK2, K/NRAS, LNK, MPL, NF1,
PPP1R16B, PTPN11, RCOR1, SF3B1, SOCS2, SRSF2, SUZ12, TET2, TP53, TRPS1). We found copy number aber-
rations in 54% of samples, often involving genes with a known or potential role in leukemogenesis. We show that
cases carrying a del(20q), del(17) or del(12p) evolve in acute myeloid leukemia (P=0.03). We found that 88% of the
cases were mutated, mainly in signaling pathway (JAK2 69%, NF1 6%) and epigenetic genes (ASXL1 26%, TET2
14%, EZH2 8%). Overall survival was poor in patients with more than one mutation (P=0.001) and in patients
with JAK2/ASXL1 mutations (P=0.02). Our study highlights the heterogeneity of myelofibrosis, and points to sev-
eral interesting copy number aberrations and genes with diagnostic and prognostic impact.
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Organization criteria,28 MF at chronic phase comprised 39 PMF, 15
post-PV MF, 14 post-ET MF. For 19 of the 80 patients, two or more
samples were obtained (at different times during chronic phase, or
at chronic phase and at blast phase) allowing a preliminary study
of its progression (Online Supplementary Table S1B). Prognostic
impact for PMF was evaluated with IPSS,3 DIPSS4 and DIPSS-plus.5

We obtained 25 paired normal DNAs for the 80 patients (buccal
swabs and CD3+ cells). For all patients, median time for follow up
was 47 months (range 2-207). Median time from diagnosis to sam-
pling was 47 months (range 3-289). Samples and associated data
were obtained from the IPC/CRCM Tumor Bank, that operates
under authorization #AC-2007-33 granted by the French Ministry
of Research. Prior to scientific use of samples and data, patients
were appropriately informed and asked to give their written con-
sent, in compliance with French and European regulations. The
project was approved by the IPC Institutional Review Board
(Comité d'Orientation Stratégique).

DNA extraction 
DNAs from PB leukocytes (n=97), BM (n=7) and matched nor-

mal (n=25) samples were extracted following a previously
described protocol.23 

Array comparative genomic hybridization (aCGH) 
Genomic imbalances were analyzed by using genome-wide,

high-density 244K CGH Microarrays (Hu-244A, Agilent
Technologies, Massy, France) as described in the Online
Supplementary Methods.29

Sanger sequencing 
Genes were selected because of their known involvement in

leukemogenesis or their alteration in the aCGH-study, and studied
by Sanger-sequencing of their exon-coding regions: ASXL1, BMI1,
CBL, DNMT3A, EZH2, IDH1/2, JAK2, KRAS, LNK, MPL, NF1,
NRAS, PPP1R16B, PTPN11, RCOR1, SF3B1, SRSF2, SOCS2,
SUZ12, TET2, TP53 and TRPS1. Primer sequences are described in
Online Supplementary Table S2A. PCR amplifications of DNA were
performed as previously described.23 The PCR program for TET2 is
described in Online Supplementary Table S2B. All mutations were
confirmed on an independent PCR product. 
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Table 1. Features of MF cases with CNAs and 20q deletion.
Total CNA No CNA P 20q no 20q P

number deleted deleted

Myelofibrosis 63 34 (54%) 29 (46%) 14 (22%) 49 (78%)
Gender M 34 17 17 0.50 7 27 0.74

F 29 17 12 7 22
MF character primary 38 22 (65%) 13 (45%) 0.44 11 (79%) 27 (55%) 0.11

secondary 25 12 (35%) 16 (55%) 3 (21%) 22 (45%)
Diagnosis PMF 38 22 (65%) 16 (55%) 0.02 11 (79%) 27 (55%) 0.12

post-PV MF 14 10 (29%) 4 (14%) 3 (21%) 11 (22.5%)
post-ET MF 11 2 (6%) 9 (31%) 0 11 (22.5%)

Age (y) (range) 69 (30-86) 70 (53-86) 66 (30-83) 0.23 67 (59-82) 68 (30-86) 0.76
median (range)
Leukocyte count (x 109/L); 8.9 (1.3-120) 7.1 (1.3-120) 9.3 (1.9-48.8) 0.28 3.8 (1.3-35) 10.7 (1.9-120) 0.01
median (range)
Hemoglobin count (g/dL); 11.4 (5.8-17.8) 9.8 (5.8-15.7) 12.0 (8.5-17.8) 0.001 9.4 (7.2-13.7) 11.6 (5.8-17.8) 0.03
median (range)
Hematocrit count (%); 34.7 (18-52) 28.8 (18-51.9) 37.2 (24.8-52) 0.0004 26.9 (20.2-40.8) 35.0 (18-52) 0.02
median (range)
Platelet count  (x 109/L); 256 (5-1188) 150 (5-890) 274 (36-1188) 0.12 106 (5-890) 273 (26-1188) 0.05
median (range)
Need red cell transfusion no 40 17 23 0.03 5 35 0.03

yes 19 14 5 7 12
Circulating blasts no 23 12 11 0.97 6 17 0.48

yes 38 20 18 7 31
IPSS category
(PMF) low/inter-1 13 5 8 0.14 2 11 0.13

inter-2/high 20 13 7 8 12
DIPSS category
(PMF) low/inter-1 13 4 9 0.01 1 12 0.03

inter-2/high 23 17 6 10 13
DIPSSplus category (PMF) low/inter-1 12 4 8 0.03 1 11 0.04

inter-2/high 24 17 7 10 14
CNA: copy number aberrations; DIPSS: dynamic international prognostic scoring system; F: female; Inter: intermediate; IPSS: international prognostic scoring system; M: male; MF:
myelofibrosis; PMF: primary myelofibrosis; post-ET MF: post-essential thrombocythemia MF: post-PV MF: post-polycythemia vera MF; y: years. For PMF, IPSS, DIPSS and DIPPS plus
scores depend on age (>65 years), on hemoglobin (< 10 g/dL), on leukocyte count (> 25x109/L), on circulating blasts (> or = 1%), on platelet count (< 100x109/L), on presence
of constitutional symptoms (weight loss, night sweats, fever). For DIPPSplus score, karyotype and transfusion status must be added to DIPSS. IPSS score was calculated at MF diag-
nosis whereas DIPPS and DIPPSplus scores were calculated at sampling.



Statistical analysis 
Analyses were carried out on patients at diagnosis and/or during

follow up. Correlations between sample groups and clinico-bio-
logical data were calculated with the χ2 and Fisher’s exact tests for
qualitative variables with discrete categories, and the Mann-
Whitney U-test for continuous variables. For post-PV/ET MF, sta-
tistical analyses were restricted to cases at MF phase. OS and time
to acute transformation (TTAT) were calculated from the time of
MF diagnosis. Death from any cause was defined as a relevant
event for OS while the occurrence of acute transformation was
considered as a relevant event for TTAT. Patients without any
event at last contact were censored. Causes of death for MF
included leukemic transformation, marrow failure, and complica-
tions from infections. Survival curves were defined with the
Kaplan-Meier method and compared with the log rank test. Two-
tailed P<5% was considered statistically significant. 

Results

Copy number aberrations in myelofibrosis 
We searched for copy number aberrations (CNA) in 63

MF samples, comprising 38 PMF, 14 post-PV MF and 11
post-ET MF (Online Supplementary Table S1A). Among the
34 samples (54%) that showed CNAs, 17 (50%) carried a
single CNA, 6 (18%) two CNAs, and 11 (32%) three or
more CNAs (Online Supplementary Table S3). We identified
72 CNAs including 9 gains and 63 deletions (del) (Figure
1). We classified aCGH profiles into three types. Type 1
(45 of 72) comprised large CNAs (>4Mb) affecting chro-
mosome arms: +1q, -5q, -7, +9p, -8q, -11q, -12p, -13q, -
17q, -18p, -20q. Type 2 (27 of 72) showed CNAs that
affected few or single genes such as deletions involving
CSMD2 (1p35.1), TET2 (4q24), MYB (6q23.2), CUX1
(7q22.1), TRPS1 (8q24.11), ETV6, CDKN1B/p27 (12p13),
SOCS2 (12q22), RCOR1 (14q32.33), NF1 (17q11), genes,
and gains involving TPO (2p25) and SALL3 (18q23) genes

(Online Supplementary Table S3 and Online Supplementary
Figure S1). In type 3 profiles, observed in 46% (n=29) of
patients, no CNA were detected.

We detected no difference in CNAs according to gender
(P=0.50), or to the character of primary or secondary MF
(P=0.44). Nevertheless, we identified CNAs in 58% of
PMF (22 of 38), 71% of post-PV MF (10 of 14), and 18% of
post-ET MF cases (2 of 11). Cases that carried at least one
CNA (n=34) were associated with lower hemoglobin
(P=0.001), lower hematocrit (P=0.0004), and the need for
red cell transfusion (P=0.03). The DIPSS score is estab-
lished only for primary MF; the presence of CNA was
associated with intermediate-2/high-risk DIPSS and
DIPSS-plus scores (P=0.01 and P=0.03) (Table 1). 

Recurrent alterations in myelofibrosis
We detected 34 recurrent aberrations (>3 times), in 20q

(n=14), 17q (n=7), 7p (n=5), 9p (n=3), 13q (n=3), and 1q
(n=3). Del(20q), found in 22% (14 of 63) of the cases, was
the most recurrent alteration (41%, 14 of 34); it was iden-
tified by aCGH and karyotype in 13 cases (11 PMF and 2
post-PV MF) and in one post-PV MF by karyotype only
(clone with del(20q) was minority) (Figures 1 and 2).
Del(20q) was isolated in half of the cases and associated
with at least another CNA in the other half. The average
size of the deletion was 16.0 Mb (range 4.3-28.3Mb)
(Online Supplementary Table S3). We distinguished two sep-
arate commonly deleted regions (CDR1 and CDR2).
CDR1 spanned 0.3 Mb and included around 10 genes
including PPP1R16B and two small nucleolar RNA (SNOR)
host genes (SNORA71, SNHG11). CDR2 spanned 3.9 Mb
and comprised several potential leukemogenic genes:
STK4, SDC4, CD40, NCOA3, SULF2, ZFAS1 and several
SNORs (Figure 2 and Online Supplementary Table S4). Cases
with del(20q) were associated with lower leukocyte
count, hemoglobin, and hematocrit (P=0.01, P=0.03 and
P=0.02, respectively) and the need for red cell transfusion

aCGH array and sequencing of myelofibrosis
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Figure 1. Karyoview of copy number aberrations (CNAs) detected in 63 patients with myelofibrosis by using array-comparative genomic
hybridization. The bars depict the physical positions and the size of aberration: green bars indicate deletions and red bars indicate gains.
Some genes known or suspected to play a role in leukemogenesis are indicated when included in the shown CNAs. 
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(P=0.03). PMF cases with del(20q) were associated with
intermediate-2/high-risk DIPSS and DIPSS-plus scores
(P=0.03 and P=0.04) (Table 1).

The second most recurrent CNA was del(17q), detected
in 7 cases (3 post-PV MF and 4 PMF cases). Four del(17q)
were microdeletions that spanned around 1.2 Mb, with
the loss of few genes including NF1 and SUZ12 (Figure 1
and Online Supplementary Table S3). NF1 deletions were
found in 3 post-PV MF and 2 PMF. In one post-PV case
(HD-1427_1656), this deletion was associated with del(1p)
and gain (6q) as the patient got worse. In one post-PV MF
(HD-1813_1836), it was associated with monosomy 7 and
del(12p) and the disease evolved in AML. In a PMF (HD-
0689), it was associated with del(4q24) and del(14q); the
patient developed fatal evolution. 

The third most recurrent CNA was del(7p) detected in 5
cases (3 post-PV MF, 1 post-ET MF and 1 PMF). Three
del(7p) were part of monosomies 7, which affect several
leukemogenic genes, such as EZH2, CUX1 and IKZF1.
Monosomy 7 was accompanied by a microdeletion in
12p, which encompassed ETV6 and CDKN1B/p27 genes,
in 2 post-PV MF cases that both evolved in AML, and asso-
ciated with del(20q) in a patient with post-PV MF who
died (Figure 1 and Online Supplementary Table S3).

Gene mutations in myelofibrosis
We studied the mutational status of 23 genes in 68 MF

cases comprising 39 PMF, 15 post-PV MF and 14 post-ET
MF (Online Supplementary Table S5). Eighteen genes
(ASXL1, CBL, DNMT3A, EZH2, IDH1/2, JAK2, KRAS,
LNK, MPL, NF1, NRAS, PTPN11, SF3B1, SRSF2, SUZ12,
TET2, and TP53) were selected for their involvement in
leukemogenesis, and five because they were found altered
by the aCGH analysis (BMI1, PPP1R16B/TIMAP, RCOR1,
SOCS2, and TRPS1). Frequently mutated genes were
JAK2 (69%), ASXL1 (26%), TET2 (14%), EZH2 (8%), NF1
(6%), and SRSF2 (6%). All other studied genes were
mutated in less than 5% of the cases (CBL, DNMT3A,
LNK, MPL, NRAS, PTPN11, SF3B1, and TP53) or not
mutated (BMI1, IDH1/2, KRAS, PPP1R16B, RCOR1,
SOCS2, SUZ12 and TRPS1) (Figure 3A and Online
Supplementary Figure S2). We identified one new gene
mutated in MF, PTPN11, which was also affected by dele-

tions. In 2 PMF cases (HD-0777 and HD-1289), we found
PTPN11 missense mutations (c.1471C>T;p.Pro491Ser and
c.1508G>A;p.Gly503Glu). These mutations, which affect
the Protein Tyrosine Phosphatase domain (exon 13) were
probably both acquired; p.Pro491Ser has been described
as somatic in childhood acute leukemia30 and we did not
find p.Gly503Glu in the patient’s buccal swab DNA. No
acquired mutation was found in TRPS1. 

A total of 57 cases (84%) were mutated in at least one
of the studied genes. JAK2, ASXL1, TET2, EZH2,
DNMT3A, LNK and SF3B1 mutations were evenly found
in PMF and secondary MF. SF3B1 mutations were detect-
ed in post-ET MF (1 of 12, 8%) and PMF (2 of 36, 6%) and
SRSF2 mutations (4 of 38, 8%) in PMF patients only. We
did not find any mutation in 35% of post-ET MF and 15%
of PMF (Figure 3A).

Within the three MF subtypes, the majority of concomi-
tant mutations implicated JAK2 mutation and another
gene mutation (Figure 3A and B). In secondary MF, muta-
tions of genes involved in epigenetic regulation or in splic-
ing were systematically associated with the JAK2V617F
mutation, whereas in PMF these mutations could be iso-
lated (Figure 3A and B). Mutations in CBL, LNK, MPL,
NF1, PTPN11 and NRAS were mutually exclusive but
could occur with a JAK2 mutation (Figure 3B). Mutations
in TET2 and DNMT3A were mutually exclusive, whereas
ASXL1, EZH2, and TET2 mutations could be concomitant
and could co-occur with a JAK2 mutation. Mutations in
SF3B1 and SRSF2 were mutually exclusive, and could
occur with a JAK2 mutation (Figure 3B). 

ASXL1, TET2 and SRSF2 mutations were associated with
older age (P=0.02, P=0.03 and P=0.05, respectively). Cases
mutated in ASXL1, EZH2 or SRSF2 genes had an increased
WBC count (P=0.01, P=0.009 and P=0.006, respectively)
(Online Supplementary Table S6). Platelet count was high in
SRSF2-mutated cases (P=0.04) (Online Supplementary Table
S6). Patients with a need for red cell transfusion were pref-
erentially ASXL1-mutated (P=0.04) (data not shown).

Alterations during disease course and blast phase
transformation

To identify molecular markers associated with disease
course, we studied 19 MF matched pairs (corresponding to
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Figure 2. aCGH profiles of recurrent del(20q). Del(20q) is a recurrent CNA detected in 13 cases by an aCGH. Two separate commonly-deleted
regions (CDR), CDR1 and CDR2, were identified, with a respective size of 0.3 Mb (HD-1047;HD-1538) and 3.9 Mb (HD-1538;HD-1587). Genes
lost in CDR1 and CRD2 are shown in Online Supplementary Table S4. 



patients with two or more samples during disease course)
and 17 BP-MF (Online Supplementary Table S1B). 

Evolution to MF
A PV case (HD-0842) was JAK2-, ASXL1- and EZH2

mutated without CNA; 24 months later, at post-PV MF
stage (HD-1401), a del(8q) including CSMD3 and RAD21
genes appeared. An ET case (HD-0551) was JAK2V617F
(15-30%) and carried a del(11q) (-0.1); 61 months later at
MF stage (HD-1616), the JAK2V617F mutation and

aCGH array and sequencing of myelofibrosis
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Figure 3. Frequency and distribution of gene mutations. (A) Circos plot showing frequencies of gene mutations in MF, in PV and ET according
to a previous study,23 in PMF, in post-PV MF and post-ET MF. The ribbon representing the splicing pathway is composed of SF3B1 and SRSF2
mutations; that representing the signaling pathway is composed of CBL, LNK, MPL, NF1, NRAS, and PTPN11 mutations. (B) Patterns of con-
comitantly mutated genes and CNAs in myelofibrosis. Identified mutations are shown by colored squares and CNAs seen by aCGH are shown
by colored squares with *. For DIPSS scores, in PMF, green and red squares represent low/intermediate-1 and intermediate-2/high risk. +:
gain, -: deletion, (C) CBL, DNMT: DNMT3A; ET: essential thrombocythemia; M: MPL; MF: myelofibrosis; N: NF1; PTP: PTPN11; PMF: primary
myelofibrosis; PV: polycythemia vera; R: NRAS; SUZ: SUZ12.
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del(11q) increased (50-70% and -0.8, respectively) and a
trisomy 9 was present (Online Supplementary Table S7).

MF disease course
Between cases studied at diagnosis (n=24) or after the

initial diagnosis (n=44) there was no difference in the over-
all number of mutations (P=0.70) and no difference in
mutational frequencies for ASXL1, TET2 and EZH2 genes
(Online Supplementary Figure S3). Indeed, several patients
already carried ASXL1, EZH2, JAK2, SF3B1, SRSF2 and
TET2 gene mutations at MF diagnosis. Only one PMF case
(HD-0540) mutated in ASXL1 acquired an additional MPL
mutation 36 months later. Similarly, CNAs were analyzed
according to whether MF cases were studied at diagnosis
for 23 patients or later for 40 patients. Overall, there was
again no difference between the two groups (P=0.76)
(Online Supplementary Figure S3). Among the 19 pairs, 8
(42%) did not acquire any additional alteration during dis-
ease course. Additional CNAs or more visible CNAs were
observed in few patients during disease course. A post-ET
MF case (HD-1360), JAK2V617F-mutated with no CNA,
eight months later acquired a del(12p). Another post-ET
MF (HD-0614) was not mutated in the genes studied and
did not show any CNA, but the patient’s condition wors-
ened during the disease course (HD-1352) and the patient
acquired a complex karyotype including losses of 4q24
(TET2), 7p (IKZF1, ETV1), 12q23.1 (SOCS2). A post-PV
MF (HD-0789) carried del(20q), ASXL1 and JAK2 muta-
tions, and 37 months later, the patient (HD-1691) acquired
a  monosomy 7 and died (Online Supplementary Table S7).

Blast phase MF transformation
Among MF transformed to AML (n=5), 2 post-PV MF

(HD-1559 and HD-1813) at chronic stage harbored a
monosomy 7 and a small del(12p) encompassing ETV6
(not detectable on karyotype for HD-1559) (HD-1813 had
also a del(17q11) encompassing NF1 not detectable on
karyotype). These 2 MF evolved rapidly in AML, keeping
their CNAs. One PMF case (HD-0927), which was JAK2-,
ASXL1-, SRSF2-mutated with no CNA, acquired during
disease course (HD-1265, HD-1461) a del(20q) and
evolved in AML (HD-1853) with a trisomy 8. Another
PMF case (HD-0528) JAK2-, TET2- and SRSF2- mutated
without CNA at diagnosis, relapsed 47 months later (HD-
1300) despite engraftment, and acquired a del(20q), an
additional TET2 mutation with JAK2 and SRSF2 muta-
tions increase; one year later at BP transformation, a
del(6q) was added to del(20q) and the patient (HD-1611)
died. Another post-ET MF (HD-1309) without CNA was
not mutated in the studied genes; at leukemic transforma-
tion 14 months later (HD-1741), we detected a complex
karyotype with several CNAs including del(7p), del(12p)
(Online Supplementary Figure S4); the patient died rapidly
(Online Supplementary Table S7).

Among 17 BP-MF, we detected CNAs in 82% of the
cases (14 of 17) (Online Supplementary Table S8). We iden-
tified 82% of type 1 CNAs (55/67) including large gains:
+3q, +9p; and large deletions: -7q, -8q, -11q, -16q. Type 2
CNAs represented 18% (12 of 67) of CNAs and included
deletions in 12p (ETV6, CDKNA1B/p27), 13q14.2 (RB1),
15q21.3 (TCF12), 17q11 (NF1), 18p11 (PTPN2), and 21q22
(RUNX1) (Online Supplementary Figure S8 and Online
Supplementary Figure S4). Recurrent CNAs were del(12p),
including ETV6 and CDKN1B/p27, detected  in 5 AMLs  (3
post-PV/ET MF, one post-PMF and one post-MPN MF),

del(7q), including EZH2, detected  in 5 AMLs (5 post-
PV/ET MF), del(20q) detected in 3 AMLs (one post-PV MF
and 2 post-PMF), del(17q11), including NF1, detected in 2
AMLs (2 post-PV/ET). The most often mutated genes
were JAK2 (44%, 4 of 9), ASXL1 (25%, 3 of 12), TP53
(23%, 3 of 13) and EZH2 (22%, 2 of 9) (Online
Supplementary Table S9).
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Figure 4. Kaplan-Meier estimates. (A) Time to acute transformation
(TTAT) according to deletions: del(12p), del(17q), del(20q). (B) Overall
survival (OS) according to more than one mutation. (C) OS according
to JAK2/ASXL1 combined mutations. del: deletion; mt: mutated; wt:
wild-type.
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Prognostic impact of CNAs and gene mutations
We studied TTAT according to CNAs and genes fre-

quently mutated (>5%) (Online Supplementary Table S10).
In univariate analysis, there was no difference in TTAT
between patients with and without CNAs (P=0.58).
However, TTAT was decreased in patients with at least
one CNA if it were del(20q) or del(17q) or del(12p)
(P=0.03) (Figure 4A). TTAT was decreased in patients with
more than one mutation (P=0.04) and in SRSF2- and
EZH2-mutated patients compared to non-mutated
patients (P=0.0002 and P=0.01) (Online Supplementary Table
S10).

The 5-year OS was severely decreased in patients with
more than one mutation (81% vs. 47%; P=0.001) (Figure
4B), with at least one mutation in epigenetic-associated
genes (ASXL1, EZH2, TET2, DNMT3A) (63% vs. 73%;
P=0.03) and with at least one mutation in a splicing-asso-
ciated gene (SF3B1, SRSF2) (42% vs. 68%; P=0.004).
Patients who carried ASXL1 or EZH2 mutation had a poor-
er OS than patients not mutated in the two genes (P=0.02
and P=0.003, respectively). This was not the case for TET2
(P=0.59). SRSF2-mutated patients had a poor OS (P=0.01)
(Online Supplementary Table S8). In multivariate analyses,
we included ASXL1, EZH2 and SRSF2 mutations as co-
variates; EZH2 and SRSF2 mutations predicted poor OS
(P=0.04 and P=0.007, respectively) (Online Supplementary
Table S8). We found a significant interaction between
JAK2 and ASXL1 status; cases mutated in both genes had
a poor outcome (P=0.02) (Figure 4C).

Discussion

We studied 80 patients with MF. We recognized several
alterations involved in MPN pathogenesis and identified
new alterations, which may have a role in MF initiation
and/or progression. Overall for 68 MF patients at chronic
phase, 54% of cases had CNAs and 88% were mutated.

Multiple pathways affected in MF
Components of signaling pathways such as JAK2,8 CBL10

and LNK15 were frequently mutated. We also detected
deletions of SOCS2, whose product down-regulates the
JAK/STAT pathway, and of NF123 whose product regulates
the RAS pathway. We showed that PTPN11 mutations,
found in juvenile myelomonocytic leukemia, myelodys-
plastic syndrome (MDS) and AML30 are also present in MF.
The TGFβ is thought to play a role in MF pathogenesis.31,32

TRPS1 was deleted in a PMF and a post-ET MF (Figure 1),
suggesting a role in MF development; it was shown that
the loss of TRPS1 enhances TGFβ signaling leading to
renal fibrosis.33 Signaling mutations were frequently asso-
ciated with mutations in genes involved in epigenetic reg-
ulation.34  

We found a high frequency of ASXL1, TET2 and EZH2
mutations. We detected several gains and deletions involv-
ing other epigenetic regulators, such as gain of SALL3,
whose encoded product interacts with DNMT3A.35 We
found one deletion of polycomb BMI1,36 whose loss in the
mouse model causes pathological hematopoiesis similar to
PMF37 and one deletion of RCOR1. 

The third cell process affected in PMF and post-ET MF
was RNA splicing. Few studies have previously described
SF3B1 and SRSF2 mutations in PMF cases.19,20 

Overall, MF seems to be characterized by alterations in
known leukemogenic genes but also by rare alterations in

other genes. Whole sequencing of an MF genome has
indeed shown the presence of non-recurrent mutations in
novel genes.38 

Primary and secondary MF 
There was no difference in CNAs between primary and

secondary MF, and gene mutations of ASXL1, TET2 and
EZH2 were evenly distributed in PMF (40%), post-PV MF
(45%) and post-ET MF (44%). However, in secondary MF,
mutations were always associated with the JAK2V617F
mutation. In contrast, in PMF, mutations and del(20q)
could be found independently of the JAK2V617F.39 These
observations, which would have to be complemented by
data on colony assays, suggest different molecular course
to MF. First, patients with post-ET/PV MF carry both an
epigenetic mutation and JAK2V617F mutation whereas
PMF can develop with a non-JAK2 mutation (Online
Supplementary Table S5). Second, in both primary and sec-
ondary MF we found cases with a JAK2V617F mutation
alone. Third, some patients with PMF or post-ET MF did
not have any mutation in any of the studied genes. The
proportion of post-ET MF without mutation and CNAs
was similar to that found in ET.23 Here, whole genome
sequencing could help define the mechanisms (private
gene mutations, mutation in miRNAs or other non-coding
sequences). 

We did not find any SF3B1 and SRSF2 mutations in
post-PV MF whereas SRSF2 mutations were found in 4
cases of PMF only and were associated with higher
platelet count. SF3B1 mutations were found in PMF and
post-ET MF. Mutations in SF3B1 were also found in refrac-
tory anemia with ring sideroblasts and marked thrombo-
cytosis.40 These data suggested a link between spliceo-
some mutations and megakaryocyte lineage proliferation. 

Disease progression and prognosis in myelofibrosis
We identified chromosomal abnormalities, i.e. del(20q),

del(17q) and del(12p), associated with poor TTAT. These
recurrent CNAs are observed in other myeloid malignan-
cies such as MDS and AML.41,42 We found an association
between del(20q) and intermediate-2 DIPPS-plus score,
low leukocyte count, low hemoglobin level, and the need
for red cell transfusion. Genes included in the del(20q),
such as L3MBTL1, have been studied for their possible
involvement in leukemogenesis. However, sequencing
analyses of 20q genes did not detect any mutation,43 sug-
gesting that haploinsufficiency of several genes of this
chromosomal region could contribute to leukemogenesis.
We compared the two minimal CDRs we identified with
other studies (Online Supplementary Figure S6). SNORNA
host genes were present in these two CDRs. SNORNAs
are 60–300 nucleotide-long non-coding RNAs that are
excised from intron regions of pre-mRNAs, down-regulat-
ed in leukemic cells, suggesting that they may have a role
in cancer development.44

The use of aCGH allowed the identification of abnor-
malities not detectable on karyotype, in particular
del(17q), and del(12p) associated or not to monosomy 7.
Del(17q11) was the second most recurrent CNA. Several
studies have described del(17q) encompassing NF1 tumor
suppressor in myeloid malignancies.45 We identified NF1
deletion in 5 cases and mutations in 2 PMF cases with no
CNAs. These cases evolved in AML or the patients died,
suggesting that NF1 alterations may contribute to MF
progression and poor outcome. Monosomy 7 or del (7q)
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were associated with del(12p13) in 3 cases. In MDS and
AML, a recent study reported that, in patients with
monosomy 7, an additional ETV6 deletion is common.46

Del(12p) was not systematically detected by karyotype
whereas monosomy 7 was always found when present.46

Alterations of 12p have been described in various hema-
tologic malignancies such as acute lymphoblastic
leukemia, AML, MDS and MPNs.47 The smallest deleted
region encompasses the ETV6 transcription factor and
CDKN1B/p27 tumor suppressor genes, in 12p13. In
myeloid malignancies, ETV6 rearrangements are fre-
quently associated with other genetic events.48 Our data
strengthen the idea that when the karyotype reveals a
monosomy 7, aCGH, FISH or sequencing could help
identify an associated del(12p); this information could be
important for therapeutic decision-making because of the
high risk of acute transformation.

We found that poor TTAT was associated with SRSF2
and EZH2 mutations, suggesting that these mutations are
associated with disease progression and may represent
an important event leading to AML. Our univariate
analyses showed that ASXL1, EZH2 and SRSF2 muta-
tions, but not TET2 mutations, are associated with poor
prognosis, in agreement with previous reports in
MPNs,23,25,27 MDS,49 chronic myelomonocytic leukemia,29

and AML.50 A study of 879 PMF cases showed that
ASXL1 mutations had prognostic relevance independent
of the DIPPS-plus model.27 Due to the small number of
patients in our study, we found only a tendency for
ASXL1 mutations to predict OS in multivariate analysis.
Interestingly, we identified an impact on OS when both
JAK2 and ASXL1 were mutated. This combination of
mutations may lead to specific disease phenotype (MPN)
and worse prognosis (clonal amplification). We did not
find any additional mutation in the studied genes during
MF disease course except for MPL and TET2 mutations

and increased JAK2 allele burden. According to previous
studies,21,22 patients with ASXL1 mutations present dur-
ing MF course already had ASXL1 mutation at diagnosis
(in PMF and secondary MF cases). ASXL1 mutations may
constitute early alterations in MPN oncogenesis and pre-
cede JAK2 and MPL mutations.12

In conclusion, we did not find any mutational or CNA
difference between the three MF subtypes. The same scor-
ing system might be used in PMF and secondary MF but
this should be assessed in a specific study. We identified
CNAs with impact on TTAT including some that could
not be described by karyotyping, suggesting that addition-
al molecular analysis could help therapeutic decision-mak-
ing. In agreement with an important recently published
article,27 our study showed that mutations in ASXL1,
EZH2, SRSF2 associated with del(20q), del(17q) and
monosomy 7/del(12p) identify MF patients at risk of pre-
mature death or leukemic transformation. This may help
therapeutic decision-making and the design of a new ther-
apeutic association between JAK2 inhibitors and epigenet-
ic drugs according to mutational status. 
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