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Chronic hemolytic anemias are made up of sickle cell
anemia (SCA), beta (b)-thalassemia, paroxysmal
nocturnal hemoglobinuria, autoimmune hemolytic

anemia, and unstable hemoglobinopathies. They are asso-
ciated with a high thrombotic risk. In SCA patients, a high

rate of both venous and arterial thrombosis (deep vein
thrombosis, pulmonary embolism, stroke, pregnancy-relat-
ed venous thromboembolism) has been reported.1

Interestingly, these subjects commonly present with labora-
tory features of a subclinical hypercoagulable state,2 charac-



terized by increased plasma levels of markers of thrombin
generation, e.g. D-Dimer, thrombin-antithrombin complex
(TAT), prothrombin Fragment 1+2 (F1+2), during the non-
crisis ‘steady state’ and, in particular, during acute pain
episodes. In fact, hemolysis is a known procoagulant condi-
tion3 due to the release of cell-free plasma hemoglobin and
the depletion of nitric oxide.4 Additional biological mecha-
nisms of hemolysis-associated hypercoagulation include:
red blood cell membrane abnormalities leading to exposure
of anionic procoagulant phospholipids (i.e. phos-
phatidylserine), endothelial dysfunctions with overexpres-
sion of cell adhesion molecules, platelet activation, throm-
bocytosis following functional hyposplenism or surgical
splenectomy.2,4-6

Importantly in this scenario is the occurrence in SCA
patients of increased levels of circulating microparticles
(MPs).7 MPs are vesicles of less than 1 mm resulting from the
shedding of activated or apoptotic blood and vascular cell
membranes. Among their various functions, MPs exert pro-
coagulant actions through the expression on their surface of
procoagulant phospholipids (i.e. phosphatidylserine) and
proteins (i.e. Tissue Factor).8 Elevated circulating MPs are
found in different clinical conditions at high thrombotic
risk, e.g. diabetes mellitus, atherosclerosis, acute coronary
syndrome and myocardial infarction, sepsis, antiphospho-
lipid syndrome, malignancy.9-12 Specifically, in SCA, MPs of
erythrocyte origin produced during hemolysis carry nega-
tive niches that activate the intrinsic phase of blood coagu-
lation (tenase and prothrombinase) leading to thrombin
generation.13 A significant correlation between the total
number of MPs and the levels of markers of hypercoagula-
bility (i.e. D-dimer, TAT, and F1+2) has been repeatedly
demonstrated in SCA patients.7,13-15 In this condition, MPs

likely represent the interface between hemolysis and blood
clotting activation. However, as shown for the first time by
the study of Nébor et al. published in this Journal,16 in SCA
children there is a variety of MPs which originate not only
from erythrocyte, but from virtually all blood cells, mainly
platelets. In contrast to the situation for adult patients,13-15

only limited data are available regarding MP characteriza-
tion in SCA children.5 Nébor et al. found that, although
platelet-derived and erythrocyte-derived MPs were the
most common type in this condition, all other cell origins,
e.g. monocyte-, granulocyte-, and endothelial cell-derived
MPs, were represented. Interestingly, the age-related reduc-
tion in HbF levels during childhood was associated with an
increase in MP levels, particularly those from platelets and
monocytes, and to a lesser extent those from erythrocytes.
While confirming the already known inverse relation
between HbF concentration and MPs formation5 and
thrombin generation,13 these data show for the first time the
specific cellular patterns involved in the process. In the same
way, in this population the reactivation of fetal hemoglobin
(HbF) synthesis (which impairs HbS polymerization)
induced by hydroxyurea, the current standard therapy
option in SCA, correlated with the reduction in plasma lev-
els of MPs, particularly those of platelet and erythrocyte ori-
gin. Attempts to standardize the methodology for the isola-
tion, analysis and count of MPs have been shown to have
limitations and these tests can be influenced by many dif-
ferent factors, from blood collection up to gate analysis.17

However, the data published here open up new perspec-
tives on how all blood cellular compartments are involved
in the clotting activation associated to SCA and, possibly, to
all hemolytic anemias. In these circumstances, different
subtypes of MPs act as messengers between hemolysis and
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Figure 1. Mixed microparti-
cles in SCA children act at
the interface between hemol-
ysis and clotting activation.
Microparticles (MPs) of differ-
ent cellular origin (e.g. red
blood cells, platelets, mono-
cytes, granulocytes) are
released upon hemolysis,
blood cell apoptosis, and acti-
vation. Hemolysis increases
when the physiological switch
from fetal (HbF) to adult
hemoglobin occurs and sickle
cells (characterized by HbS)
are produced. Vice versa,
hemolysis decreases when
hydroxyurea therapy is start-
ed, with subsequent upregula-
tion of HbF (α2γ2) levels. On
their surface MPs expose pro-
coagulant phospholipids (i.e.
phosphatidylserine, PS) and
proteins (i.e. Tissue Factor,
TF), and activate other blood
cells (e.g. platelets, mono-
cytes) and hemostasis. HbF
levels inversely correlate to
circulating MPs and regulate
specific MP patterns, particu-
larly those platelet-derived.



the hemostatic system activation. This also expands our
vision of the possible mechanism(s) involved in the
hemolytic crisis brought on by other comorbid conditions,
such as sepsis. Along the same lines, there is evidence that
the HbF levels, an important regulatory mechanism of SCA
severity and hemolysis, govern MP concentration by acting
on specific MP subtypes.

We can imagine that, in SCA children, a storm of vari-
ous (mainly platelet-derived) procoagulant MPs takes
place with chronic hemolysis and is driven by HbF levels
(Figure 1).
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Hematologic malignancies are diseases that mainly
affect older subjects. Multiple myeloma,1 myelodys-
plastic syndromes2 and chronic myeloid leukemia3

are common in advanced age. Nevertheless, there is evi-
dence that older patients with hematologic malignancies
have often been excluded from clinical trials (CTs).4,5 Their
exclusion prevents clinicians from obtaining information
concerning the efficacy and safety of treatments in older
patients and might represent an important barrier to the
treatment of these patients.6 Published literature reflects tri-

als performed some years before their publication. It is not
known whether older individuals are gradually being
included in more trials as a consequence of the aging of the
population and of the recommendation provided by
Regulatory Agencies, e.g. FDA and ICH, to include older
individuals in CTs.7,8 The aims of this study were to assess
the presence and the extent of underrepresentation of older
individuals in ongoing CTs on hematologic malignancies
registered in an online open-access CT registry maintained
by the World Health Organization (WHO), and to evaluate


