
T
he proliferation, differentiation and sur-
vival of hematopoietic progenitor cells is
sustained by a family of glycoproteins

termed hematopoietic growth factors, which
are also able to promote the survival and influ-
ence the function of mature cells. The effects of
these cytokines are mediated by interaction
with specific receptors present on the surface of
their target cells and this extracellular event, in
turn, leads to the activation of intracellular sig-
naling pathways that modulate the transcrip-
tion of genes involved in the control of cell pro-
liferation and/or differentiation.1,2 The cloning
of the genes encoding for hematopoietic growth
factors and the availability of recombinant pro-
teins have allowed demonstration that recombi-
nant human granulocyte colony-stimulating
factor (rHuG-CSF) is both an early-acting
cytokine able to trigger the cycling of dormant
progenitors surviving in G0, and a late-acting
factor that regulates proliferation, differentia-
tion and function of neutrophils and their
progenitors.2,3 These biological effects of rHuG-
CSF have represented the basis on which vari-
ous trials have been planned in order to estab-
lish the role of this cytokine in clinical practice.

In the United States and the majority of
European countries, including Italy, the clinical
use of rHuG-CSF has been approved for the
amelioration of chemotherapy-induced neu-
tropenia and the restoration of neutrophil pro-
duction after bone marrow transplantation.4-7

However, in some countries rHuG-CSF has also
been approved for various other conditions such
as myelodysplastic syndromes (MDS),8 aplastic
anemia (AA)9 and severe chronic neutropenia.10

In the future, the clinical utility of this growth
factor is likely to be further expanded.

In this issue of Haematologica, four papers11-14

address the question of less consolidated or
quite innovative clinical applications of rHuG-
CSF, underlining how the administration of this
colony-stimulating factor can significantly con-
tribute to transforming the therapeutic ap-
proach to some clinical problems. Perugini et
al.11 describe an elderly patient affected by an
aggressive variant of MDS that presented with a
pancytopenic picture complicated by a poten-
tially life-threatening infection. After treatment
with rHuG-CSF, the patient experienced a reso-
lution of the infectious complication and
achieved hematological remission. rHuG-CSF
has been used frequently in patients with MDS,
where cytokine therapy represents one of the
most attractive forms of treatment. The use of
hematopoietic growth factors aims at reversing
the defective proliferation and differentiation of
hematopoietic precursors within MDS marrow
and, consequently, at modifying the dominant
cytopenias with their related morbidities. Both
recombinant human granulocyte-macrophage
colony-stimulating factor (rHuGM-CSF) and
rHuG-CSF have proven to be effective in
increasing granulocyte production in 75-90% of
neutropenic MDS patients.8,15-19 Studies on the
clonality of hematopoiesis after treatment with
cytokines suggest that GM-CSF and rHuG-CSF
do not preferentially stimulate normal hemato-
poiesis, but rather they induce differentiation of
the abnormal clone without being able to eradi-
cate it completely.19,20 Data on neutrophil func-
tion are less conclusive, even though Negrin et
al.15 demonstrated an improvement in in vitro
chemotaxis and phagocytosis after therapy with
rHuG-CSF. Authors have also reported a signifi-
cant reduction in infectious risk in those
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patients reaching more than 1.53109/L neu-
trophils when compared with their pre-treat-
ment clinical history. rHuG-CSF therapy can
also contribute to the resolution of established
infections in those patients who experience a
substantial increase in their neutrophil count.
rHuG-CSF alone did not improve platelet and
reticulocyte production in the reported trials on
MDS patients; however, recent studies have
demonstrated in vitro synergy between rHuG-
CSF and rHuEpo for normal and MDS erythro-
poiesis.21,22 Leary et al.3 showed that rHuG-CSF
enhanced the development of early precursors
into erythropoietin-responsive progenitor cells.
Two clinical trials documented a synergistic in
vivo effect of rHuG-CSF and rHuEpo on the
anemia of patients with myelodysplasia, with a
substantial percentage of subjects showing both
erythroid and myeloid responses.23,24 Response
was more frequent in patients with less severe
pancytopenia and lower endogenous erythro-
poietin levels, but the durability of these
responses must still be clearly assessed. Concern
about possible risks involved in stimulating the
proliferation of the leukemic cells and the con-
sequent evolution of myelodysplasia to acute
myeloid leukemia was raised in the early study
of GM-CSF.17 However, since an increase in
blasts is part of the natural history of MDS, no
firm conclusion can be drawn about the impact
of cytokine therapy on the transformation into
acute leukemia. The long-term effects of both
GM-CSF and rHuG-CSF on the natural history
and survival of MDS patients remain to be
established, and randomized controlled studies
are awaited to determine whether colony-stimu-
lating factors can really improve the duration
and/or the quality of life of MDS patients.
Moreover, since colony-stimulating factors
should be administered for long periods, a care-
ful evaluation of their cost must be taken into
consideration. 

Shwachman-Diamond syndrome is a rare
inherited disorder characterized by pancreatic
failure, short stature, metaphyseal chondrodys-
plasia and neutropenia that, together with an
impairment of neutrophil chemotaxis, predis-
poses patients to developing infections.25 The
etiology of the Shwachman-Diamond syn-

drome remains elusive and patients have an
increased risk of developing both AA and acute
leukemia (20 and 5%, respectively). As recently
demonstrated for patients with the Kostmann
syndrome,26 a specific defect in rHuG-CSF sig-
nal transduction that causes either defective
myeloid proliferation or disturbed granulocyte
maturation can be hypothesized. The case
report described by Ventura and Dragovich in
this issue of Haematologica12 confirms that, as
previously published by other authors,2 7 , 2 8

rHuG-CSF may be useful in selected Shwach-
man-Diamond patients with more severe neu-
tropenia and a high incidence of infectious
complications. Pharmacological doses of
rHuG-CSF can overcome the peculiar defect of
these patients, driving their abnormal
hematopoietic system to a more effective pro-
duction of functionally active cells, with a con-
sequent reduction of morbidity and mortality.
As dramatically demonstrated in children with
the Kostmann syndrome or cyclic neutrope-
nia,29,30 rHuG-CSF can substantially modify the
natural history of the disease and the quality of
life of children with the Shwachman-Diamond
syndrome. However, since this therapy is pallia-
tive and not curative, its long-term effects must
still be carefully assessed, with particular regard
to the risk of stem-cell depletion or of cytokine-
induced overstimulation of cells prone to neo-
plastic transformation. 

Ippoliti et al.13 report the case of a young male
affected by AA who was successfully treated
with a combination of cyclosporin-A (Cs-A)
and rHuG-CSF. A number of studies over the
last few years have documented the clinical util-
ity of rHuG-CSF in patients with AA,9,31,32 and
there is no doubt that the natural history of AA
is dramatically and rapidly changing; rHuG-
CSF, through stimulation of granulopoiesis,
may significantly contribute to the resolution of
bacterial or fungal infections in patients with
AA9 and play a pivotal role in favoring the
response to immunosuppressive treatment.
Recently, the European Group for Blood and
Marrow Transplantation (EBMT) Working
Party on severe AA documented in a pilot study
that the combined use of rHuG-CSF with
immunosuppressive therapy (antilymphocyte
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globulin, Cs-A and steroids) significantly
reduces the mortality risk and increases the
chances of hematological response in patients
with acquired severe AA.32 In fact, in the past,
treatment of AA patients with antilymphocyte
globulin produced a hematological response in
about half the subjects.33,34 However, those with
a low neutrophil count (< 0.23109/L) were
exposed to a marked risk of early mortality
within the first 100 days. In a cooperative
report of the EBMT,32 rHuG-CSF reduced early
infectious complications, thus increasing the
number of patients surviving long enough to
achieve a hematological response. The efficacy
of the combined treatment is clearly demon-
strated by the fact that more than 80% of the
patients enrolled in the study displayed a partial
or complete hematological response and the
actuarial survival at 3 years was 92%. rHuG-
CSF determined not only an early increase in
the neutrophil count, but also a mobilization of
hematopoietic progenitors in the peripheral
blood. This very interesting observation invites
intriguing speculation on the possible role of
rHuG-CSF in favoring a reseeding of primitive
progenitors, as well as offering a chance to col-
lect these hematopoietic stem cells in the case of
patients with a disease relapse, or in a future,
theoretically conceivable, scenario of autotrans-
plantation. In our personal view, the only con-
cern about using  rHuG-CSF in AA patients is
that it is currently unknown whether this
growth factor can favor the development of
myelodysplasia or acute leukemia. In fact, these
two disorders, as well as paroxysmal nocturnal
hemoglobinuria, frequently follow or are asso-
ciated with AA, thus supporting the hypotheti-
cal model according to which AA represents the
clinical expression of an attempt by the
immune system to cure abnormal or even clon-
al stem cells.3 5 As discussed above for the
Shwachman-Diamond syndrome, the in vivo
use of rHuG-CSF raises the question of whether
it could stimulate the expansion of cells prone
to neoplastic transformation. Further studies
and longer observation should provide a con-
clusive answer to this crucial question.

The last paper in this issue of Haematologica
addressing the question of the clinical use of

rHuG-CSF is that by Majolino et al.14 These
authors analyze the role of rHuG-CSF for the
mobilization of peripheral blood progenitor
cells in healthy donors for allogeneic transplan-
tation. Here, we are exquisitely in the field of
innovative treatment and a novel, extremely
intriguing, clinical application of hematopoietic
growth factors. The use of circulating progeni-
tor cells (CPCs) for allogeneic transplants has
been proposed and made possible by previous
experience and results obtained with infusion
of autologous peripheral blood stem cell as
hematological rescue after myeloablative
chemo-radiotherapy. As a matter of fact, auto-
transfusion of CPCs is rapidly replacing autolo-
gous bone marrow transplantation after high-
dose chemotherapy for lymphoma and solid
tumors.36 The main reason for the extraordi-
nary success of this procedure lies in the capa-
bility of CPCs to determine a much faster
recovery of all hematopoietic lineages than is
possible with bone marrow.37 Due to this prop-
erty, high-dose chemotherapy regimens with
CPC support are employed as the initial treat-
ment of several chemosensitive tumors, and
many authors believe that this procedure is
going to change current therapeutic strategies
in a variety of malignancies.38-40 

In the setting of autologous transplantation,
CPCs have been mobilized into peripheral
blood and collected on a large scale by leuka-
pheresis after treatment with hematopoietic
growth factors administered as single agents or,
more frequently, following myelosuppressive
chemotherapy. Duhrsen et al.41 were the first to
demonstrate that rHuG-CSF administered at
accepted therapeutic doses (10 mg/kg/day) dur-
ing steady state hematopoiesis is able to mobi-
lize circulating progenitors. Based on this obser-
vation, a number of clinical trials were carried
out, and these studies clearly demonstrated that
rHuG-CSF-primed progenitors can repopulate
the bone marrow and sustain hematopoiesis
after myeloablative chemo- or radiotherapy.42-44

The yield of rHuG-CSF-primed progenitors is
extremely variable among patients; previous
myelotoxic therapy, bone marrow neoplastic
involvement and some still unknown variables
are the major factors influencing stem cell col-
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lection. Accordingly, a variable number of
aphereses (3 to 4 in most studies) are needed to
harvest the optimal dose of CPCs. Collection
after chemotherapy, either at conventional or
high doses, followed by G-CSF or GM-CSF
takes advantage of the additional mobilizing
effect of myelotoxic drugs.45,46 As a consequence,
the collection yield is more predictable and
fewer leukapheresis procedures are needed. 

The number of autologous CPCs required for
optimal hematological recovery is still contro-
versial, a fact that partially reflects difficulties in
standardizing the quantitative assay used.
Roughly 23106 CD34+ cells/kg or 103104 CFU-
GM/kg is considered to be sufficient for com-
plete hematopoietic reconstitution. However, a
greater number of CFU-GM or CD34+ cells
reinfused results in more rapid engraftment,
with consequent reduction in the duration of
both neutropenia and thrombocytopenia.47,48 In
our Institutions, we consider optimal a dose of
6-83106 CD34+ cells/kg, which has been shown
to determine a rapid neutrophil and platelet
recovery. 

Concerns have been raised about the capabili-
ty of CPCs to sustain life-long hematopoiesis.
This issue was recently addressed in an elegant
paper by Siena and colleagues.49 The authors
demonstrated that the behavior of a hemato-
poietic system reconstituted by autografting
solely with mobilized CPCs is the same as that
of one autografted with bone marrow. After a
median follow-up of three years, no secondary
irreversible graft failure was observed in 34
patients treated with myeloablative total body
irradiation.

The results summarized above have made it
possible to consider, as previously mentioned,
the use of CPCs as an alternative to bone mar-
row for allogeneic transplantation, and some
recently published reports have produced
encouraging data in this field.50,51 For obvious
reasons, in the case of allogeneic transplanta-
tion only hematopoietic growth factors can be
used ethically for the release of large numbers
of progenitors in the circulation of healthy
donors. Already at present and probably even
more so in the future, the use of circulating
hematopoietic stem cells mobilized with rHuG-

CSF has the potential to deeply modify the tra-
ditional approach to donation for allogeneic
transplantation. In fact, at present, donors
undergo traumatic harvesting by means of mul-
tiple bone punctures, with the associated (albeit
minimal) anesthesiological risk. 

Therefore from the strictest ethical point of
view, the practice of bone marrow transplanta-
tion poses, especially for young donors, a con-
ceptual dilemma between primum non nocere
(above all, do no harm) and primum adiuvare
(above all, help) which is experienced with
some discomfort.52 It is evident that the use of
CPCs mobilized by means of hematopoietic
growth factors has the great advantage of saving
the donor from both general anesthesia and the
back pain associated with bone marrow har-
vesting. Moreover, preliminary studies high-
light the possibility that the technique of trans-
planting peripheral blood hematopoietic stem
cells may hasten the hematological recovery of
patients and permit, through an effect of stem
cell competition, achievement of marrow
engraftment in clinical situations where the risk
of graft failure is particularly high (namely allo-
geneic transplants using HLA-partially matched
family donors or HLA-matched unrelated vol-
unteers).53,54

Major concerns about the wide diffusion of
this technique, at least today, for the donor are
represented by the unknown long-term conse-
quences of administering a hematopoietic
growth factor, capable of stimulating the prolif-
eration of both normal and malignant stem cells
to a healthy subject, and for the recipient by the
theoretical risk of increasing the incidence
and/or severity of graft-versus-host disease
(GVHD). In fact, patients transplanted with
rHuG-CSF-primed progenitors receive a mas-
sive number of T-lymphocytes, whose subpopu-
lations may differ significantly from those pre-
sent in the bone marrow. Since the incidence of
GVHD correlates with the number of donor
clonable T-cells administered to the recipient,55

it cannot be excluded that this kind of trans-
plant could lead to an increased risk of immu-
nological complications. However, it would not
be completely surprising if the use of peripheral
blood hematopoietic stem cells were associated
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with a similar or even lower probability of
GVHD than bone marrow transplantation. In
fact, the percentage of cytotoxic T-lymphocytes,
responsible for tissue damage in GVHD, is high-
er in bone marrow than in peripheral blood,
where T-lymphocytes with helper/inducer activ-
ity are prevalent. Moreover, since bacterial and
viral infections are known to act as a trigger for
GVHD,56 accelerating the hematological recov-
ery after transplantation and consequently
reducing the risk of infectious complications
through the use of peripheral blood progenitors
could lower the risk of this complication.
Clinical trials on larger numbers of patients are
urgently awaited in order to provide definitive
answers to these problems.

Many other important questions remain con-
cerning the use of CPCs in allogeneic trans-
plantation. What is the optimal schedule of
administration and the dosage of rHuG-CSF?
When is the best time to collect peripheral
blood progenitors? What is the minimun num-
ber of circulating stem cells that should be
infused in order to achieve an optimal and
durable engraftment of donor hematopoiesis?
The study by Majolino et al.14 confirms that
treatment of normal donors with rHuG-CSF
daily leads to collection of large amounts of cir-
culating progenitor cells.53,54,57 rHuG-CSF was
given at 16 mg/kg/day subcutaneously for 4 days
and leukapheresis was performed on days 4 and
5. CD34+ cells peaked on day 4, with a median
increase of 65.3 times over baseline values; a
median of 7543106 CD34+ cells were collected.
As was shown in the autologous setting, there is
also a wide variability among donors in the
yield of CPCs for allogeneic transplants.
Because the peak of peripheral blood progeni-
tors varies in different patients, daily monitor-
ing of CD34+ cells is recommended in order to
achieve the best results. 

The minimum number of CPCs to be infused
for allogeneic transplants has not yet been
established. A minimum of 23106 CD34+

cells/kg of recipient body weight was suggested
for bone marrow transplantation,58 but this
amount may not be enough when rHuG-CSF-
mobilized peripheral blood stem cells are used.57

It is evident that if engraftment of donor hema-

topoiesis is really a dynamic phenomenon
depending on competition between both im-
munocompetent and hematopoietic stem cells
of donor and recipient, the use of rHuG-CSF-
mobilized peripheral blood progenitors offers a
unique possibility for enormously increasing the
magnitude of primitive donor progenitor cells
infused. As previously mentioned, this tech-
nique could therefore also represent a way of
optimizing the chances of hematopoietic
engraftment in situations where the risk of graft
rejection is markedly increased, either due to the
intrinsic nature of the original disorder (namely
severe AA) or due to a genetic disparity between
donor and recipient (i.e. transplants using HLA-
partially matched family donors or HLA-
matched unrelated donors).53

Finally, it has been shown that CPCs obtained
in large quantity by mobilizing procedures are
ideal targets for transplantation-based gene
therapy applications in AIDS, hematological
genetic diseases and cancer.59,60 As an example of
such foreseeable applications, the transfection of
drug resistance genes in neoplastic patients may
render their stem cell compartment insensitive
to the toxic effects of chemotherapy.61 On the
one hand, this will permit to increase the thera-
peutic index of cancer patients, and on the other
hand, it will avoid the need for rHuG-CSF to
hasten granulocyte recovery after chemotherapy,
which at present is the main indication for the
clinical use of this growth factor. 
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