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Acute Lymphoblastic Leukemia

Introduction

Despite recent advances in the treatment of pediatric pre-
cursor T-cell acute lymphoblastic leukemia (T-ALL),1 this enti-
ty still remains a challenge because relapses carry a particular-
ly poor prognosis.2,3 Conceptually, it would, therefore, be
helpful to develop a molecular risk profile, which would
enable stratification of patients early after diagnosis.4 It is
known that the differentiation stage of the T-ALL clone5-7 or
the activation of defined leukemogenic pathways8 may play
a role in prognosis. Furthermore, in patients treated on the
ALL-BFM 2000 protocol, we have shown that the activation
of the NOTCH1 receptor pathway signifies a favorable prog-
nosis,9,10 although in the context of other protocols this effect
was not seen.11,12

In addition, inactivating mutations of the tumor suppressor
phosphatase and tensin homolog (PTEN) are known to occur
in a variety of tumors and to disturb signaling networks
including the PI3K-AKT pathway. Activation of the PI3K-
AKT pathway is known to play a particular role in T-ALL.8,13

The loss of PTEN function thus represents a candidate mech-
anism to modulate the aggressiveness of T-ALL. Indeed, dele-
tions and point mutations but also posttranslational mecha-
nisms of PTEN inactivation, have previously been associated
with poor treatment response in some studies with a small
number of patients, although this has not been found in other
studies.13-17 The clinical effect of oncogene activation and
tumor suppressor gene inactivation can depend on the treat-
ment strategy.11,12,18,19 Therefore, we analyzed the incidence of
PTEN point mutations and the effect of PTEN inactivation on
clinical outcome in what is the largest cohort so far of 301
children with T-ALL who were treated on the ALL-BFM 2000
protocol.

Studies in cell lines have revealed that NOTCH1 can inhibit
PTEN function via the transcriptional inhibitor HES1.20,21 We
have, therefore, analyzed the clinical interaction of PTEN
inactivation and NOTCH1 pathway activation. We show in
univariate analyses that PTEN inactivated leukemias tend to
be resistant to induction treatment and that affected patients
show an unfavorable long-term outcome. When combined
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with NOTCH1-mutation status, PTEN mutated and
NOTCH1 non-mutated patients show a significantly infe-
rior outcome than the remaining cohort. Interestingly, this
unfavorable effect of PTEN inactivation is counterbal-
anced clinically by the simultaneous presence of activating
NOTCH1 mutations. These data have unexpected and
potentially profound implications for the development of
future treatment and stratification strategies in general,
and for the use of NOTCH1 inhibitors in particular.

Design and Methods

Patients’ clinical characteristics
From August 1999 through February 2008, a total of 545

patients with T-ALL were eligible for treatment in the multicenter
ALL-BFM 2000 trial; no non-Hodgkin's lymphoma patients were
included. This study was approved by the institutional review
board of the Hannover Medical School and other participating
institutions. Informed consent was obtained in accordance with
the Declaration of Helsinki. This trial enrolled pediatric patients up
to 18 years of age from 70 different treatment centers in Germany,
Austria and Switzerland. The subjects were selected on the basis
of availability of sufficient amounts of DNA for molecular analy-
sis. There was no significant difference in clinical parameters (age,
gender, white blood cell count at diagnosis, prednisone response,
MRD at Day 78) between this subgroup of patients and the entire
ALL-BFM 2000 cohort.1

Mononuclear cells were isolated from bone marrow (BM) sam-
ples and stored in liquid nitrogen or at -80°C until DNA extraction.
All BM samples contained a blast percentage of 80% or more.
Immunophenotyping was carried out as previously described,22

and the subclassification of T-ALL was performed according to the
guidelines of the European Group for Immunological
Characterization of Leukemias (EGIL).23

Early in vivo response to prednisone, defined as the cytoreduc-
tion to a 7-day prednisone treatment prophase and a single dose of
intrathecal methotrexate on Day 1, served to assess the effect of
early treatment.24 According to prednisone response, patients were
classified into good responders (PGR: <1000 blasts/microliter at
Day 8) or poor responders (PPR: ≥1000 blasts/microliter at Day 8).
Treatment response was further defined by determination of min-
imal residual disease (MRD) kinetics that were assessed at 2 differ-
ent time points: at Days 33 and 78 of treatment, respectively.25-28

Allele-specific oligonucleotide-polymerase chain reaction (PCR)
protocols were used for quantitative detection of leukemic clone-
specific immunoglobulin and T-cell receptor gene rearrangements
on a LightCycler instrument (Roche Diagnostics, Mannheim,
Germany).29 An unfavorable MRD status (≥10-4) was defined by
the presence of at least one leukemic cell in 104 cells, whereas a
favorable MRD status (< 10-4) was defined as the absence of
detectable leukemic cells in 104 cells.9 For treatment stratification,
the BFM-ALL protocol distinguishes the standard risk group (neg-
ative MRD on Days 33 and 78), the high-risk group (MRD at least
one leukemic cell in 103 cells on Day 78) and the intermediate-risk
group (all others). Complete remission (CR) was defined as less
than 5% blasts in the regenerating BM, the absence of leukemic
blasts in the peripheral blood and cerebrospinal fluid, and no evi-
dence of localized disease. Relapse was defined as recurrence of
lymphoblasts or localized leukemic infiltrates at any site.

Mutational analysis of diagnostic samples for PTEN
and NOTCH1 mutations

PCR amplification of exon 7 of PTEN genes was performed
with primary genomic DNA. The analysis of all other exons was

performed on genomic DNA after whole genome amplification
(primer sequences are shown in Online Supplementary Table S1).
The mutations that have been identified were confirmed in pri-
mary DNA. Sequencing of NOTCH1 has been performed as
described previously.10 PCR-amplified fragments were sequenced
by GATC biotech (Konstanz, Germany) and analyzed by muta-
tion surveyor software for identification of mutations and cross
checked manually.

Statistical analysis
Event-free survival (EFS) was defined as the time from diagnosis

to the date of last follow up in complete remission or first event.
Events were resistance to therapy (non-response), relapse, second-
ary neoplasm (SN), or death from any cause. Failure to achieve
remission due to early death or non-response was considered as
events at time zero. Survival was defined as the time of diagnosis
to death from any cause or last follow up. The Kaplan-Meier
method was used to estimate survival rates, differences were com-
pared with the two-sided log rank test. Cox’s proportional hazards
model was used for uni- and multivariate analyses. Cumulative
incidence (CI) functions for competing events were constructed by
the method of Kalbfleisch and Prentice, and were compared with
the Gray’s test. Results are presented as estimated probability of 5-
year EFS (pEFS) and estimated cumulative incidence of relapse
(pCIR) with standard error (± SE). Differences in the distribution
of individual parameters among patient subsets were analyzed
using Fisher’s exact test for categorized variables and the Mann-
Whitney-U test for continuous variables. Logistical regression was
used to analyze the effect of mutations on response variables
(prednisone response, MRD). All statistical analyses were conduct-
ed using the SAS program (SAS-PC, v. 9.1, SAS Institute Inc., Cary,
NC, USA).

Results

The clinical and immunological characteristics of the
patient cohort analyzed here is comparable to that of the
entire cohort of T-ALL patients included in the BFM-ALL
2000 study (Table 1).1 PTEN mutations have previously
been identified in approximately 20% of children with T-
ALL and reported to signify a poor treatment response in
studies with small patient numbers.13-16 In the cohort of
301 patients studied here, we found a total of 58 muta-
tions in 52 patients (17.3%). The majority (52 of 58) of the
mutations were detected in the mutational hotspot in
exon 7, which is consistent with previously reported find-
ings.14 The other mutations were detected in exons 1, 4
and 5 (Online Supplementary Table S2). Four patients had 2
mutations either both in exon 7 or in exons 4 and 7 or 5
and 7, respectively. One patient had 3 mutations: 2 in exon
7 and one in exon 1.  In these patients, the diagnostic strat-
egy we used did not allow the distinction between bial-
leleic compound or monoallelic double mutations to be
made. In a previous study, we had also found large dele-
tion mutations in 4 of 72 patients for whom sufficient
DNA for array-CGH analyses were available (including 44
from the cohort analyzed here). Three of these patients
(one with a homozygous and 2 with a heterozygous dele-
tion) showed a poor early treatment response, whereas
one patient with a heterozygous deletion showed a favor-
able early treatment response.8 Because the array-CGH
analyses could only be performed in a subset of the entire
cohort, we did not include these previously reported data
in the statistical analyses of this report. However, the
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observed poor treatment response in 3 of these 4 patients
is consistent with the clinical effect of PTEN point muta-
tions in the entire cohort (see below).

All mutations identified in the current study were small
deletions or insertions which resulted either in nonsense
mutations or frameshift mutations with downstream pre-
mature stop codons (48 insertions of up to 13 nucleotides,
8 deletions of up to 17 nucleotides) (Online Supplementary
Table S2). The affected mRNAs may thus be targets of
nonsense mediated decay quality control thus limiting the
total expression of the encoded proteins30,31 or may code
for inactive C-terminally truncated proteins.15 The pres-
ence of these mutations was significantly associated with
the absence of activating NOTCH1 mutations. There was
no significant correlation with patient age, gender, white
blood cell count at the time of diagnosis, or T-cell
immunophenotype (Table 1).

We next analyzed the influence of PTEN mutations on
early treatment response and long-term outcome.
Prednisone response was available for all the 52 patients
with PTEN mutations and for 242 of 249 patients without
PTEN mutations. Patients with PTEN mutations showed a
poor prednisone response significantly more frequently
than those patients without PTEN mutations (P=0.007),
with an odds ratio in the univariate analysis of 2.4
(95%CI: 1.3-4.4, P=0.006; Table 2). Furthermore, in a mul-
tivariate analysis including variables known to be associat-
ed with prednisone response (gender, age at diagnosis,
presenting WBC count at diagnosis and T-cell
immunophenotype), the negative effect of PTEN muta-
tions retained its significant effect (odds ratio 2.6, 95%CI:
1.3-5.2, P=0.005; Table 2).

MRD data on Day 33 were available for 272 patients (47
PTEN mutated, 225 PTEN non-mutated) and in 274
patients at the end of the induction phase on Day 78 (46
PTEN mutated and 228 PTEN non-mutated). On Day 33,
only 6% of the patients with PTEN mutations showed a
favorable MRD response as compared to 29% of PTEN
non-mutated patients (P=0.0007). On Day 78, 43% of the
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Table 1. Clinical and immunological characteristics of the study cohort of 301
children with T-ALL.
Characteristic PTEN Mutation

All (% of the Mutated Non-mutated P*
total cohort) (%) (%)

Gender
Male 224(74) 44(20) 180(80) P=0.08
Female 77 (26) 8(10) 69(90)

Age at diagnosis
< 10 years 159 (53) 21(13) 138(87) P=0.06
≤10 years 142 (47) 31(22) 111(78)

Presenting WBC count at diagnosis
< than 10x109/L 42 (14) 7(17) 35(83) P=0.3
10x109/L < 50x109/L 83 (28) 12(15) 70((85)
50x109/L < 100x109/L 58 (19) 7(12) 51(88)
≥100x109/L 118 (39) 26(22) 93(78)

T-cell immunophenotype**
Pro 11 (4) 2(18) 9(82) P=0.8
Pre 50 (17) 8(16) 42(84)
Cortical 197 (65) 33(17) 164(83)
Mature 38 (13) 9(24) 29(76)
T not further classified 5 (2) 0 (0) 5(100)

NOTCH1 mutations
Mutated 150 (50) 19 (13) 131 (87) P=0.05
Non-mutated 151 (50) 33 (22) 118 (78)

MRD-risk classification
High risk 53 (18) 14 (26) 41 (74) P=0.06
Medium risk 154 (51) 28 (18) 126 (82)
Standard risk 44 (14) 3 (6) 39 (94)
Data not available 50 (17) 7 (14) 43 (86)

Total-risk classification*** P=0.004
High risk 133 (44) 33 (25) 100 (75)
Medium risk 126 (42) 17 (26) 109 (74)
Standard risk 42 (14) 2 (5) 40 (95)
Data not available 0 0 0

For PTEN mutated patients, n = 52; for PTEN non-mutated patients, n = 249. WBC: white blood
cell. *P χ2 test. **Pro (cyCD3+, CD7+) Pre (cyCD3+, CD2+ and/or CD5+ and/or CD8+), cortical
(CD1a+), mature (CD1a-, sCD3+). cyCD3+: cytoplasmic CD3+; sCD3+: surface CD3+. 
***The total risk classification combines prednisone response and MRD data. 

Table 2. Effect of inactivating PTEN mutations on early treatment response in ALL-BF M 2000 treated children with T-ALL.
Prednisone response PPR(%) PGR(%) Data not P* Univariate RR  P* Multivariate RR† P*
(Day 8)‡ available (95%CI) (95%CI)

119 175 7

PTEN mutated 30(58) 22(42) 0 0.007 1.00§ 0.006 1.00§ 0.005
PTEN non-mutated 89(37) 153(63) 7 2.4(1.3-4.4) 2.6(1.3-5.2)

MRD (Day 33) Unfavorable, Favorable, Data not Univariate or P* Multivariate or P*
≥10-4 (%) <10-4 (%) available (95%CI) (95%CI)

204 68 29

PTEN mutated 44(94) 3(6) 5 1.00§ 0.003 1.00§ 0.001
PTEN non-mutated 160(71) 65(29) 24 0.0007 9.2(2.2-39.1) 11.0(2.5-48.5)

MRD (Day 78)

115 159 27
PTEN mutated 26(57) 20(43) 6 1.00§ 0.02 1.00§ 0.05
PTEN non-mutated 89(39) 139(61) 21 0.03 2.1(1.1-4.0) 2.0(1-4.1)

For PTEN mutated patients, n = 52; for PTEN non-mutated patients, n = 249. RR: relative risk; CI; confidence interval; MRD: minimal residual disease. *P χ2 test. †Adjusted for gender, age at
diagnosis ‡PPR (prednisone poor response), ≥ 1000 leukemic blasts/mL of peripheral blood, PGR (prednisone good response), <1000 leukemic blasts/mL of peripheral blood on 
treatment Day 8. §Reference category. 



patients with a PTEN mutation achieved a favorable MRD
response compared to 61% in the PTEN non-mutated
group (P=0.03; Table 2). Logistical regression analysis
showed that patients with PTEN mutations carried a 9.2-
fold higher of not achieving a favorable MRD level on Day
33 (95%CI: 2.2-39.1; P=0.003) and a 2.1-fold higher risk on
Day 78 (95%CI: 1.1-4.0; P=0.02), respectively. In a multi-
variate analysis with variables known to be associated
with treatment response (gender, age at diagnosis, pre-
senting WBC count at diagnosis and T-cell immunopheno-
type), the negative effect of PTEN mutation retained its
significant effect on Day 33 (odds ratio 11.0, 95%CI: 2.5-
48.5; P=0.001) and on Day 78 (odds ratio 2.0, 95%CI: 1.0-
4.1; P=0.05) (Table 2). These effects resulted in PTEN
mutated patients to be stratified into the high risk group
significantly more frequently. Four out of the 5 patients
with 2 or 3 PTEN mutations showed an unfavorable early
treatment response.

These differences between PTEN mutated and non-
mutated patients in early treatment response were main-
tained as a trend towards an inferior pEFS of 0.72 vs. 0.82
(P=0.11, Figure 1A). There was also a slight trend towards
a higher pCIR in PTEN mutated patients of 0.17 when
compared to the pCIR of 0.11 observed in non-mutated
patients (P=0.34, Figure 1B).

The unfavorable effect of inactivating PTEN mutations
is clinically neutralized by activating NOTCH1 receptor
mutations 

We have previously shown that activating NOTCH1
mutations are associated with a favorable early treatment
response and long-term outcome in the same cohort of
ALL-BFM 2000 treated patients who were analyzed
here.9,10 The NOTCH1-downstream target HES1 is a nega-
tive transcriptional regulator of PTEN and thus indirectly
stimulates the PI3K-AKT pathway,13 which may ultimate-
ly lead to a clinical synergism between activating
NOTCH1 and inactivating PTEN mutations. We tested
this hypothesis, by analyzing the clinical interaction of
PTEN and NOTCH1 mutations. We thus grouped the
patients according to their PTEN and NOTCH1 mutation-
al status and compared their early treatment response and

long-term outcome. In 19 of the 52 leukemias with PTEN
mutations, concomitant activating NOTCH1 mutations,
either in the heterodimerization or in the PEST domains,
were identified. The PTEN and NOTCH1 mutation status
was available in 294 patients with known prednisone
response, in 272 patients with known MRD level on Day
33, and 274 patients with known MRD levels on Day 78
(Figure 2). For prednisone response and for Day 33 MRD,
the unfavorable effect of PTEN mutations was maintained
regardless of the presence of NOTCH1 mutations.
Furthermore, the presence of PTEN mutations neutralized
the known favorable effect of NOTCH1 mutations9,10

because patients with both mutations show a similar poor
early treatment response to those patients with a PTEN
mutation only (Figure 2A and B). These data on early treat-
ment response are thus consistent with a dominant clinical
effect of PTEN inactivation over NOTCH1 activation but
do not support the notion of a clinically relevant syner-
gism. By contrast, at the end of induction on Day 78,
favorable MRD responses were observed most commonly
in the NOTCH1-mutated groups regardless of the pres-
ence of PTEN mutations, whereas the group with PTEN
mutations only was the least favorable, and the group
with neither mutation was intermediate (Figure 2C).
Therefore, at the end of induction the favorable effect of
NOTCH1 receptor activation was clinically dominant over
the unfavorable effect of PTEN inactivation.

We next performed a subgroup analysis of long-term
outcome of the four possible PTEN/NOTCH1 combina-
tions. The subgroup with PTEN mutations but no
NOTCH1 mutations showed a significantly lower pEFS
(0.62±0.09) than the rest of the cohort (pEFS 0.83±0.02;
P=0.005) (Figure 3A) and a strong trend for a higher pCIR
(0.23 vs. 0.11; P=0.07) (Figure 3B). Subgroups with
NOTCH1 mutations, with or without PTEN mutations,
were the most favorable (pEFS 0.87 and 0.89; pCIR 0.06
and 0.07) (Figure 4A), whereas the group with neither
mutation was intermediate (pEFS 0.77, pCIR 0.16) (Figure
4B). Notably, subgroup analyses showed that the unfavor-
able PTEN-effect was restricted to the medium risk group
with a good prednisone response and an intermediate
MRD-response. The 14 patients with PTEN-mutations in
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Figure 1. Univariate analysis shows a trend towards poor long-term outcome in children with T-ALL. Kaplan-Meier estimate of pEFS (A) and
pCIR (B) in PTEN mutated and PTEN-non-mutated patients treated on the ALL-BFM 2000 protocol 
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this group (total n=154 patients), showed a highly signifi-
cantly worse outcome (pEFS 0.51) than those with a
NOTCH1 but no PTEN-mutation (n=85; pEFS 0.89;
P=0.0008) or with neither a NOTCH nor a PTEN mutation
(n=55; pEFS 0.88; P=0.0026) (Figure 4C). By contrast, there
were no significant differences between the subgroups in
the conventionally defined high-risk group (total n=53
patients) including 12 patients with a PTEN mutation only
(Figure 4D). Given the small size of the subgroups, the
direct comparison of the difference in outcome between
the PTEN-only mutated patients in either the HR- or the
MR-group was not statistically significant. In the standard
risk group (total n=43 patients), there was only one of the
6 patients with a PTEN-mutation and no NOTCH1-muta-
tion with a good prednisone response and negative MRD
findings on Days 33 and 78 of induction.

Taken together, these results define a subgroup of
approximately 10% of the large and important medium-
risk group with a poor prognosis and reveal a clinical activ-
ity of NOTCH1, which neutralizes the negative effect of
PTEN inactivating mutations in this subgroup of children
with T-ALL treated on the ALL-BFM 2000 protocol. 

Discussion

Signaling networks including the PI3K/AKT pathway
control a variety of cellular functions including differenti-
ation, cell growth, metabolism and differentiation.32 As

one of its functions, the phosphatase PTEN counterbal-
ances the stimulatory effect of PI3K by dephosphorylat-
ing PIP3 and thus functions as a key negative regulator of
this pathway.33 In addition to the other pathways that are
involved in leukemogenesis, dysregulation of this path-
way represents one of the most common events in
tumorigenesis in general,34 and has also been identified to
play an important part in T-ALL in particular.8,35-37 In T-
ALL, both large deletions and inactivating small deletions
and small insertions have been identified in a subset of
approximately 15%-20% of patients.8,13-16 In addition,
posttranslational modifications such as phosphorylation
and oxidation have been described to also limit PTEN
function in T-ALL.16 The effect of PTEN inactivation on
clinical outcome has been reported in studies with smaller
numbers of patients and shown to be variable and possi-
bly dependent on the type of mutation.8,14,15,17 It is one of
the important results of this study that in a large and clin-
ically well-defined cohort of patients, inactivation of
PTEN is not only associated with early treatment resist-
ance but also with a poor long-term prognosis. This dif-
fers from previously reported results showing no prog-
nostic effect of PTEN mutations.14,17 This difference may
be explained by the modulating effect of NOTCH1 acti-
vation reported here and also by differences in treatment
protocols. Differences in treatment have previously been
suggested to play an important role in defining the effect
of molecular risk factors in T-ALL.10 More specifically, the
differences between the outcome of patients with PTEN-
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Figure 2. Effect of PTEN inactivation and NOTCH1 activation on early
treatment response in children with T-ALL. (A) Prednisone response:
prednisone good response (PGR; <1000 blasts/mL of peripheral
blood at Day 8), Prednisone poor response (PPR; ≥1000 blasts/mL
of peripheral blood at Day 8). (B) MRD response on Day 33: an unfa-
vorable MRD status (≥10-4) was defined by the presence of at least
one leukemic cell in 104 cells, whereas a favorable MRD status (<
10-4) was defined as the absence of detectable leukemic cells in 104

cells (C) MRD response on Day 78: an unfavorable MRD status 
(≥10-4) was defined by the presence of at least one leukemic cell in
104 cells, whereas a favorable MRD status (<10-4) was defined as
the absence of detectable leukemic cells in 104 cells. The number
of patients is indicated on top of the columns.
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mutations but no NOTCH1 mutations, who have either
been treated in the high-risk or in the medium-risk arm of
the BFM protocol suggest (with the limitation of small
sizes of the subgroups) that the unfavorable effect of
PTEN inactivation may potentially be neutralized by
more intensive treatment (Figure 4). The NOTCH1 path-
way is a key regulator of blood cell differentiation. While
the importance of NOTCH1 activity in T-cell develop-
ment has been known for some time,38-40 NOTCH has
recently emerged to also function in myeloid, megakary-
ocyte and erythroid development.41-43 Gain of NOTCH1
function is a hallmark of 50%-60% of children with T-
ALL,9,44 and is thought to function as an initiating event
and a progression factor in T-ALL.45-47 Therefore, one
might have predicted that activating NOTCH1 mutations
should have an unfavorable effect on treatment response
and long-term outcome. Interestingly, however, the clini-
cal association of NOTCH1 activating mutations with
treatment outcome is dependent on the protocol used. In
ALL-BFM 2000 type protocols that are used in central
Europe, Scandinavia and Japan, NOTCH1 gain of func-
tion is associated with a favorable effect,48-50 whereas in
other protocols, either no effect or the expected unfavor-
able effect was observed.11,12 On the level of cell biology,
the NOTCH and the PI3K/AKT pathways are known to
interact in more complex signaling networks, which is
highlighted by one of the major downstream targets of
NOTCH1, the T-cell lymphomagenesis potentiating pro-
tein, HES1.51 HES1 is known to down-regulate PTEN
activity and thus to activate the PI3K/AKT pathway.13

This poses the interesting question of how the two sig-
naling pathways interact in clinical terms. The second
important finding in the large cohort of patients analyzed
here is that early during induction the unfavorable associ-
ation of PTEN loss of function with response dominates
over that of NOTCH1 gain of function and that this effect
is reversed later. The MRD response at the end of induc-
tion and the long-term outcome of patients with both,
NOTCH1 activating and PTEN inactivating mutations are
indistinguishably favorable when compared to patients
with NOTCH1 mutations only. By contrast, patients with
PTEN mutations but without NOTCH1 mutations in the

conventionally defined medium-risk group represent a
particularly unfavorable subgroup. Taken together, these
data demonstrate that NOTCH1 activation and PTEN
inactivation do not synergize on a clinical level in ALL-
BFM 2000 treated patients. In contrast, when considering
long-term outcome, NOTCH1 activation is associated
with a neutralizing activity of the unfavorable effect of
PTEN inactivation. The clinical association between
NOTCH1 activation, PTEN inactivation and clinical out-
come is surprising in the light of experimental data
obtained from an analysis of cultured NOTCH1 activated
cell lines and an analysis of the cell lines in xenotrans-
planted mice, which indicated a molecular synergism
between NOTCH1 activation and PTEN inactivation.52

The discrepancy between the clinical association and
molecular findings can be explained either by an
unknown molecular factor that is associated with the
presence of NOTCH1 mutations in primary patient sam-
ples but not in cell lines, or by a complex influence of the
treatment given on the clinical effect of activated onco-
genic networks. Further experimental studies will have to
address this important enigma, for example in xenotrans-
planted primary T-ALL, to shed light on the mechanisti-
cally unexplained variable effects of NOTCH1 activation
in the context of different treatment protocols.10-12 

On a more practical level, the data presented here iden-
tify PTEN-mutated leukemias without activating
NOTCH1 mutations as a subgroup with a particularly
unfavorable prognosis with a pEFS of only 0.62. By con-
trast, T-ALLs with activating NOTCH1 mutations, with or
without PTEN mutations, show a favorable prognosis
with a pEFS of 0.87 and 0.89, respectively. Interestingly,
subgroup analyses showed that the effect of PTEN muta-
tions in patients without NOTCH1 mutations is restricted
to patients who have been stratified to the medium-risk
group (pEFS 0.51) and have not received intensified high-
risk treatment. This combination of biomarkers thus
defines a subgroup of patients with an unfavorable prog-
nosis who may benefit from a new molecular stratifica-
tion algorithm in future T-ALL protocols and from treat-
ment intensification.

Interestingly, the effect of PTEN mutations is particular-
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Figure 3. NOTCH1 activation neutralizes the unfavorable effect of PTEN inactivation on long-term outcome in children with T-ALL. Kaplan-
Meier estimate of pEFS (A) and pCIR (B) in PTEN mutated and  NOTCH1 non-mutated patients compared to the rest of the cohort.
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ly evident on Day 8 when prednisone response is assessed
and on Day 33 MRD. By contrast, the neutralizing effect
of NOTCH1 mutations becomes apparent on Day 78
MRD and in long-term survival. These observations sug-
gest that drugs introduced between Days 33 and 78 of the
protocol (cyclophosphamide, 6-mercaptopurine, cytara-
bin) may be particularly important in mediating the differ-
ences of treatment response between early and later time
points. These data also suggest that it may be beneficial to
introduce these drugs earlier during induction.

Finally, the data presented here have unexpected and
potentially profound implications for the development of
NOTCH1 inhibitors for clinical use in T-ALL. Based on the
role of NOTCH1 activity in T-ALL leukemogenesis53,54 and
the discovery of the common occurrence of activating
NOTCH1 mutations in T-ALL,44 the therapeutic inhibition
of the NOTCH1 pathway has been a compelling perspec-
tive.55 The data of this study suggest that some patients,
and notably those with a combination of PTEN inactiva-

tion and NOTCH1 activation, may not benefit from the
use of NOTCH1 inhibitors in multimodal treatment regi-
mens, although the mechanism of the unexpected clinical
interactions between NOTCH1 activation and PTEN inac-
tivation remains to be explained.
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Figure 4. PTEN only mutated patients in the BFM-2000 medium-risk group show the worst long-term outcome. (A) Kaplan-Meier estimate
of pEFS in the four different combinations of PTEN, NOTCH1 genotypes (total cohort n=301). (B) pCIR in the four different combinations of
PTEN, NOTCH1 genotypes (total cohort n=301) (C) Kaplan-Meier estimate of pEFS in NOTCH1 and PTEN mutated, NOTCH1 and PTEN non-
mutated, and NOTCH1 non-mutated and PTEN mutated patients stratified into the medium risk group (n=154) (D) Kaplan-Meier estimate
of pEFS in NOTCH1 andPTEN mutated, NOTCH1 and PTEN non-mutated, and NOTCH1 non-mutated and PTEN mutated patients stratified into
the high-risk group (n=53).
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