# Correlation of clinical response and response duration with miR-145 induction by lenalidomide in CD34<sup>+</sup> cells from patients with del(5q) myelodysplastic syndrome

Christopher P. Venner,<sup>1</sup> Joanna Wegrzyn Woltosz,<sup>2</sup> Thomas J. Nevill,<sup>1</sup> H. Joachim Deeg,<sup>3</sup> Gisela Caceres,<sup>4</sup> Uwe Platzbecker,<sup>5</sup> Bart L. Scott,<sup>3</sup> Lubomir Sokol,<sup>4</sup> Sandy Sung,<sup>5</sup> Alan F. List,<sup>4</sup> and Aly Karsan<sup>2</sup>

<sup>1</sup>Leukemia/Bone Marrow Transplant Program, Division of Hematology, University of British Columbia, Vancouver, BC, Canada; <sup>2</sup>British Columbia Cancer Research Centre, Vancouver, BC, Canada; <sup>3</sup>Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; <sup>4</sup>H. Lee Moffitt Cancer Center, Tampa, FL, USA; and <sup>5</sup>Universitätsklinikum "Carl-Gustav-Carus", Medizinische Klinik I, Dresden, Germany

©2013 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2012.066068

# **Online Supplementary Appendix**

### **Design and Methods**

## RNA expression after in vitro exposure to lenalidomide

Both cryopreserved human CB cells and patient marrow samples were separated based on CD34<sup>+</sup> status by positive selection using magnetic beads (EasySep Human CD34 Positive Selection Kit, StemCell Technologies Inc., Vancouver, Canada). CD34<sup>+</sup> and CD34<sup>-</sup> cells were cultured in vitro for 48 h with either lenalidomide (10  $\mu$ M) or DMSO added to the culture media. The small and large RNA fractions were isolated using the mirVana PARIS kit (Ambion, Austin, TX, USA) and relative miRNA expression was determined by RT-qPCR. The purified large RNA preparation was used as a template to generate first strand cDNA using SuperScriptII (Invitrogen, Carlsbad, CA, USA). In a similar fashion, lineage-negative cells from mouse marrow were selected using magnetic beads (EasySep Mouse Hematopoietic Progenitor Cell Enrichment Kit, StemCell Technologies Inc., Vancouver, Canada). Mean fold-change values were compared using Student's t-test. For the correlation of fold change and clinical outcomes twotailed Pearson's correlation was performed in all cases.

miRNA expression after transduction with decoy producing vector and response to lenalidomide re-exposure in vitro

To achieve knockdown of miR-143 and miR-145, we used miRNA decoys (target sequences for miR-143 and miR-145) as described previously.<sup>1,2</sup> Four tandem repeats of each miRNA seed recognition sequence were cloned into the 3'UTR of the GFP reporter gene in the lentiviral expression vector, LentiLox 3.7. CD34<sup>+</sup> cells isolated from cryopreserved human cord blood cells by positive selection using magnetic beads were transduced with the decoy or control (empty) vector. GFP+ cells were flow-sorted. In examining the miRNA inhibition after transduction with the decoy-expressing vector, the mean values of 2 experiments are shown and are compared using Student's t-test. Clonogenic progenitor assays were then performed following treatment of transduced cells in vitro with lenalidomide (10  $\mu$ M) or vehicle (DMSO) for 48 h as per manufacturer's instructions (Stem Cell Technologies, Vancouver, BC, Canada). Colony forming cells were scored after 14 days. Mean values of three experiments carried out in duplicate are presented and compared using Student's t-test.

Statistics for the *in vitro* experiments were performed using GraphPad Prism software version 5.00 and the correlation with clinical outcome was made using SPSS software version 20.

# References

2. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods. 2007; 4(9):721-6.

<sup>1.</sup> Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010;16(1):49-58.

| status      | Patient | Age<br>(years) | Sex | Cytogenetics                                             | Blast<br>(%) | score | IPSS  | <b>Previous treatment type</b>   | Ц   | Relapse | Kesponse duration<br>(months) |
|-------------|---------|----------------|-----|----------------------------------------------------------|--------------|-------|-------|----------------------------------|-----|---------|-------------------------------|
| Del(5q)     | -       | 71             | F   | del(5q), poor                                            | -            | 1.5   | INT-2 | None                             | yes | ou      | 31.3                          |
| Del(5q)     | 7       | 52             | F   | del(5q), int                                             | -            | -     | I-TVI | None                             | yes | yes     | 10.4                          |
| Del(5q)     | 3       | 44             | F   | del(5q), int                                             | 4            | -     | I-TVI | ESA                              | yes | ou      | 36.0                          |
| Del(5q)     | 4       | 78             | ч   | 46XX,del 5q(q13q31)                                      | 4            | 0.5   | LR    | ESA, Prinomostat, Thalidomide    | yes | ou      | 20.6                          |
| Del(5q)     | s       | 75             | Μ   | 46, xy, del (5q22-33)                                    | 4            | 0.5   | LR    | ESA, G-CSF, Thalidomide, ARA-C,  | ou  |         |                               |
| Del(5q)     | 9       | 79             | F   | 46,XX,del(5)(q13q33)[19]/46,XX[1]                        | 9            | 0     | LR    | ESA                              | yes | yes     | 39.7                          |
| Del(5q)     | 7       | 61             | ч   | 46,XX,del(5)(q13q33)[4]/46,idem,del(1)(p34)[3]/46,XX[13] | 7            | 0     | LR    | ESA                              | yes | yes     | 23.0                          |
| Del(5q)     | ×       | 83             | Μ   | del(5q)                                                  | v            | -     | I-T/I | ESA                              | yes | ou      | 37.5                          |
| Del(5q)     | 6       | 74             | F   | del(5q)                                                  | ę            | -     | LR    | None                             | yes | yes     | 5.5                           |
| Del(5q)     | 10      | 56             | ц   | del(5q)                                                  | 7            | 1     | I-TNI | None                             | yes | ou      | 17.1                          |
| Non-del(5q) | -       | 73             | Μ   | 46 XY                                                    | 1.8          |       | LR    | ESA, Prinomostat                 | yes |         |                               |
| Non-del(5q) | 7       | 67             | Μ   | 46 XY                                                    | -            | 0.5   | I-TVI | None                             | ou  |         |                               |
| Non-del(5q) | ŝ       | 75             | Μ   | 46 XY                                                    | 0            | 0.5   | I-TVI | None                             | ou  |         |                               |
| Non-del(5q) | 4       | 70             | Μ   | 46 XY                                                    | 6            | -     | I-T/I | ESA, thalidomide and azacytidine | ou  |         |                               |
| Non-del(5q) | s       | 60             | Μ   | 46, XY, inv (3)(q21, q26)(12/20)                         | 6            | 0.5   | I-TVI | ESA                              | ou  |         |                               |
| Non-del(5q) | 9       | 79             | ч   | 46 XX                                                    | 0            | 0     | LR    | ESA                              | ou  |         |                               |
| Non-del(5q) | 7       | 78             | Μ   | 46 XY                                                    | 9            | -     | I-TVI | p38 MAP kinase inhibitor         | ou  |         |                               |
| Non-del(5q) | 8       | 58             | Μ   | 46 XY                                                    | e            | 0     | LR    | ESA                              | ou  |         |                               |
| Non-del(5q) | 6       | 67             | Μ   | 46 XY                                                    | 7            | 0.5   | I-T/I | ESA                              | ou  |         |                               |
| Non-del(5q) | 10      | 82             | Μ   | 46 XY                                                    | 8            | -     | I-TVI | ESA                              | ou  |         |                               |
| Non-del(5q) | Ξ       | 81             | Μ   | 45 X, -Y                                                 | 7            | 0     | LR    | ESA and azacytidine              | ou  |         |                               |
| Non-del(5q) | 12      | 79             | Μ   | 46 XY                                                    | -            | 0.5   | I-TVI | ESA                              | ou  |         |                               |
| Non-del(5q) | 13      | 78             | Μ   | 45 X, -Y                                                 | -            | 0     | LR    | ESA and G-CSF                    | ou  |         |                               |
| Non-del(5q) | 14      | 67             | Μ   | 46 XY                                                    | -            | 0     | LR    | p38 MAP kinase inhibitor         | ou  |         |                               |
| Non-del(5q) | 15      | 72             | ч   | 46 XX                                                    | 7            | 0     | LR    | ESA and G-CSF                    | yes | yes     | 5.5                           |
| Non-del(5q) | 16      | 76             | Μ   | 46 XY                                                    | 4            | 0     | LR    | ESA                              | yes | ou      | 52.1                          |
| Non-del(5q) | 17      | 68             | Μ   | 46 XY                                                    | -            | 0.5   | I-TVI | ESA                              | no  |         |                               |
| Non-del(5q) | 18      | 75             | Я   | 45 X, -Y                                                 | ÿ            | -     | I-TNI | ESA                              | yes | ou      | 17.5                          |

ES4: erythropoiesis stimulating ogent; G-CSF: granulocyte-colony stimulating tactor; IPSS International Prognostic Staging. System; TI: transfusion independence.

Online Supplementary Table S1. Patient's characteristics.

