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ABSTRACT

Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138"
microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) -
are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified
aberrant plasma cells (median purity =298%) in different clonal plasma cell disorders. We analyzed aberrant plasma
cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined signifi-
cance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence i situ
hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity
determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ
hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality
and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77 % of monoclonal gammopa-
thy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cyto-
genetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell
clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma
and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic
profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast
growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62 % of mon-
oclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aber-
rant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that recurrent
immunoglobulin heavy chain translocations might be absent in the primordial plasma cell clone in a significant proportion
of patients with clonal plasma cell disorders carrying these cytogenetic alterations.

Introduction

Acquisition of del(13q14), immunoglobulin heavy chain (IGH)
translocations at chromosome 14432 - t(14q32) - and numeri-
cal gains of different chromosomes (e.g., trisomies of chromo-
somes 3, 5, 7 and 9) are considered to be early cytogenetic
events in clonal plasma cell disorders, whereas other molecu-
lar changes (e.g, MYC dysregulation and RAS mutation) are
characteristic of malignant transformation and advanced
stages of the disease."® Despite this, limited and controversial
data are currently available about the patterns and the
chronological sequence of acquisition of cytogenetic alter-
ations at the intratumoral cell level in multiple myeloma (MM)
and monoclonal gammopathy of undetermined significance
(MGUS).* This is related to the fact that the majority of stud-
ies reported so far have relied on conventional cytogenetics

with relatively few metaphases analyzed and/or single
color/single chromosome interphase fluorescence in situ
hybridization (iFISH) analyses of whole bone marrow sam-
ples or plasma cells (PC) enriched by CD138" microbeads.*"""

Although significantly more karyotypic aberrations can be
identified in MM and MGUS when CD138" PC are enriched
rather than when unsorted whole bone marrow is studied,"
the PC enrichment technique is associated with several pit-
falls, particularly in MGUS. CD138 is commonly expressed
by normal PC (N-PC), reactive PC and aberrant PC (aPC).”
Normal PC are typically absent or infrequent in MM, but they
account for >5% of all bone marrow PC in nearly 90% of
MGUS patients, with a mean percentage of <2% of N-PC in
MM and of around 65% in MGUS.**'* Moreover, previous
studies suggest that CD138 could be rapidly lost by apoptotic
PC" and a subpopulation of CD138 PC frequently coexists
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with the major fraction of CD138" PC in clonal plasma cell
disorders."” Finally, the 85%-95% median purity of mag-
netically enriched CD138* PC limits detailed evaluation of
clonal profiles in cases carrying one or multiple cytogenet-
ic changes, particularly as regards identification of a frac-
tion of non-altered aPC," as also described for other B-cell
neoplasias.” Simultaneous usage of the FISH technique
and May-Griinwald-Giemsa staining or immunopheno-
typing (e.g., staining for CD138 or cytoplasmic light
chains) through the so-called FICTION technique has
occasionally been described.”” However, both approach-
es are limited by the fact that only a low number of PC are
analyzed in a cytospin preparation, a bone marrow smear
or a formalin-fixed, paraffin-embedded section.
Conversely, flow cytometry allows reliable differentiation
and large scale, high purity (median =298%) sorting of N-
PC and aPC.” To the best of our knowledge, only one
cytogenetic study using flow cytometry-sorted aPC has
been published so far, but the analysis was focused on
numerical chromosomal alterations and did not include
the prognostically informative IGH gene rearrangements.”

In the present study we investigated the intratumoral
patterns of cytogenetic alterations in a large series of MM
and MGUS patients, using multicolor iFISH analysis of
highly purified flow cytometry-sorted aPC. Further analy-
sis of IGH gene arrangements and complementarity deter-
mining region 3 (CDR3) sequencing was carried out in a
subset of patients and the simultaneous application of
iFISH and immunofluorescent protein staining (FICTION
or immunoFISH technique) was performed in selected
cases to confirm clonality and cytogenetic findings.
Overall, the cytogenetic heterogeneity of aPC from indi-
vidual patients reflected coexistence of cytogenetically-
defined aPC clones; this suggests that acquisition of cyto-
genetic alterations occurs stepwise within the bone mar-
row aPC of individual patients with plasma cell disorders.
It is noteworthy that different but related cytogenetic pat-
terns were frequently found in MM versus MGUS.
Interestingly, in individual MGUS cases, and to a lesser
extent also in MM, a significant proportion of aPC carry-
ing an /GH translocation - including recurrent cytogenetic
alterations such as t(11;14) - coexists with aPC lacking
these alterations.

Design and Methods

Patients

Patients with newly diagnosed MM (n=148) and MGUS (n=60)
were included in this study; three MM patients underwent assess-
ment of cytogenetic alterations during follow-up at different dis-
ease stages. Written informed consent was given by each subject.
In order to avoid borderline cases we excluded from the analysis
those MGUS patients with <5% N-PC (since they are at high risk
of progression to MM') as well as those MM patients with the
opposite pattern (>5% N-PC) who have a more indolent disease
course.™™!® Patients with IgM MGUS were also specifically
excluded from this series. The study was approved by the local
ethics committee and conducted in accordance with the declara-
tion of Helsinki.

Multiparameter flow cytometry and sorting of aberrant
plasma cells

Immunophenotyping of N-PC and aPC was performed on
EDTA-anticoagulated, erythrocyte-lysed bone marrow samples

with a conventional direct immunofluorescence stain-and-then-
lyse technique, as previously described.'*” A standard FACSCanto
II flow cytometer equipped with the FACSDiVa software [Becton
Dickinson Biosciences (BD), San José, CA, USA] was used for data
acquisition and Infinicyt software (Cytognos SL, Salamanca,
Spain) was employed for data analysis. Positivity for a particular
antigen was recorded if 220% of the aPC stained for this antigen
above the autofluorescence levels of unstained aPC.

Normal PC and aPC were identified in bone marrow samples
from all patients using either four-color (127 MM and 55 MGUS
patients) or eight-color (21 MM and 5 MGUS patients)
immunostaining panels of fluorochrome-conjugated monoclonal
antibodies based on the following combinations of reagents: fluo-
rescein isothiocyanate (FITC)/phycoerythrin (PE)/peridinin
chlorophyll protein-cyanin 5.5 (PerCP Cyb5.5)/allophycocyanin
(APC) and  FITC/PE/PerCP-Cy5.5/PE-Cyanin 7  (PE
Cy7)/APC/APCH7 /Pacific blue (PacB)/Pacific orange (PacO) -:
CD38/CD56/CD19/CD45, CD38/CD27/CD45/CD28, f-2
microglobulin/CD81/CD38/CD117  and  CD38/CD56/p-2
microglobulin/CD19/cytoplasmic immunoglobulin kappa light
chain (cylgk)/cylg lambda light chain (cyIgh)/CD45/CD138,
CD38/CD28/CD27/CD19/CD117/CD81/CD45/CD138.

Plasma cells were identified based on their unique light scatter
profile and their pattern of expression of CD38, after excluding cell
doublets and debris. Aberrant PC were distinguished from N-PC
based on their aberrant patterns of expression of two or more of
the following antigens previously described in detail:*** CD19,
CD277, CD28*, CD38"*, CD45, CD56°, CD81"°, CD117* and/or
monotypic cylg light chain expression. The most frequent
immunophenotype of aPC - considering only some of the antigens
analyzed - included the following patterns: CD19CD45CD56*
(101/205 patients, 49%), CD19CD45CD56 (32/205 patients,
16%), CD19CD45'CD56" (30/205 cases, 15%), CD19°CD45
CD56" (16/205 cases, 8%); other aberrant profiles were found
more rarely (P>0.05 for MM versus MGUS).

Aberrant PC were sorted with a FACSAria 1I cell sorter (BD).
The median purity of aPC was 298% (range: 90%-100%).

Interphase fluorescence in situ hybridization studies
Interphase FISH was done on flow cytometry-sorted aPC (from
all MM and MGUS cases) and N-PC (from 8 MGUS and 2 MM
patients containing chromosomal alterations in their aPC by
iFISH), as previously reported.®” Briefly, translocations involving
the IGH gene at chromosome 14q32 and either del(14¢q32) or
+14q32 in the absence of t(14q32) were identified with a panel of
standard LSI IGH dual-color break-apart rearrangement probes
purchased from Vysis (Downers Grove, IL, USA). Samples show-
ing an IGH gene rearrangement or del(14q32) potentially associat-
ed with an IGH gene rearrangement (one fusion and one split sig-
nal) were further analyzed using specific fusion probes for the
most frequent t(14g32) chromosomal translocations - e.g, t(4;14),
t(11;14), and t(14;16) - (Vysis).” Deletions and gains of FGFR3,
CCND1 and MAF were also systematically recorded in these
patients if not involved in the IGH gene rearrangement. The pres-
ence of del(13q14) and del(17p13) or +17p13 was simultaneously
analyzed with the LSI RB1 (18q14) and LSI P53 (17p13.1) probes
(Viysis), respectively. Near tetraploid cases (flow cytometry DNA
index =1.8) were considered to carry del(13q14) if two signals
were detected in a tetraploid cell. Thresholds of 8% and 15%
were applied for the detection of deletions/gains and t(14q32),
respectively. In turn, cases with =10% of iFISH signals compatible
with t(14¢32) using the IGH break-apart probe and =10% positive
signals for specific t(14g32) - or three /GH copies in the case of
‘other t(14q32)’ - using fusion probes were considered to have IGH
gene rearrangements. All thresholds were based on the results



obtained through the analysis of control (flow cytometry sorted)
bone marrow cells for the same probes (mean + 3 standard devia-
tions of the values obtained).

Cases with an IGH gene rearrangement without t(4;14), t(11;14)
or t(14;16) were classified as ‘other t(14g32)’, while cases with a
deletion potentially associated or not with an /GH gene rearrange-
ment but lacking t(4;14), t(11;14) or t(14;16) were considered to
carry del(14g32) in the absence of t(14q32). The calculation of the
percentage of aPC carrying either t(4;14), t(11;14) or t(14;16) was
based on the mean of the percentages of aPC showing a positive
signal for the IGH break-apart probe and aPC identified with a
specific t(14q32), respectively. In a single case which showed two
different types of IGH translocation - t(4;14) and t(14;16) - in dis-
tinct populations of aPC, percentages refer to the respective
t(14q32) specific probes. Percentages of aPC with a distinct cyto-
genetic alteration were systematically adjusted to the purity of
aPC using the following formula: ‘% of cells with a distinct cytogenetic
alteration x 100/% purity of aPC’. The karyotypic patterns of cyto-
genetic alterations were assessed separately in every case in order
to define individual aPC clones based on the percentage of aPC
with a distinct cytogenetic alteration using a 15%-threshold as
specified below. Only those clones in which >15% of the aPC dif-
fered were considered to be cytogenetically different. This criteri-
on [>15% aPC without a specific cytogenetic alteration, e.g.
t(14q32)] was also used for cytogenetically altered cases to define
the presence of an aPC clone lacking the tested cytogenetic alter-
ation. In those few cases with two different cytogenetically altered
aPC populations differing by <15% aPC but only one of them
comprising =85% of all aPC, the two cell populations were con-
sidered to belong to the same (i.e. initial) clone (because of the esti-
mated maximum contamination with N-PC in the bone marrow
and the variability associated with iFISH spot counting).
Karyotypic alterations found in the majority of aPC (285%) were
considered to be early oncogenetic events, whereas those found
only in a fraction of aPC were considered to occur later during dis-
ease evolution. Confirmation of parent-progeny relationships and
coexistence of multiple clones was achieved by simultaneous
hybridization with all involved probes in addition to the
hybridizations performed with the double stainings documented
above, as illustrated in Figure 1. Interphase FISH slides from cases
with t(14q32) were blindly evaluated by two independent expert
observers with a high reproducibility (Online Supplementary Table
S1). Of note, none of the N-PC analyzed showed chromosomal
alterations for all iFISH probes assayed.

Analysis of DNA ploidy of aberrant plasma cells

Evaluation of flow cytometry DNA ploidy was based on a dou-
ble staining for nuclear DNA (propidium iodide) and surface PC
antigens (anti-CD38 and anti-CD138 monoclonal antibodies), as
previously reported in detail.”’*’ The DNA index was defined as
the ratio between the modal channel of the GO-G1 peak of PC and
the GO-G1 peak of the remaining residual normal cell populations.
Hypodiploidy was defined when the DNA index was <0.9, hyper-
diploidy when it was =1.08; all other cases with a DNA index >0.9
and <1.08 were classified as being DNA diploid.

FICTION analyses

Briefly, for FICTION analyses (n=4 MM cases) flow cytometry-
sorted aPC cells were sequentially washed with phosphate-
buffered saline (PBS) containing 1% bovine serum albumin (BSA),
permeabilized (PBS with 1% BSA + 0.1% TritonX), and washed
again (PBS with 1% BSA). The cells were then stained in parallel
with anti-Cylgk-APC (DAKO, Glostrup, Denmark) and anti-
Cylgh-APCHY (BD) antibodies, followed by the iFISH protocol as
described above (with slight modifications). Stained samples were
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analyzed using a Confocal Laser Scanning Microscope (TCS SP2,
LEICA, Heidelberg, Germany).

Analysis of IGH gene rearrangements
and CDR3 sequencing

The technique used for analysis of /GH gene rearrangements
and CDR3 sequencing performed in a subgroup of nine patients is
detailed in the Omnline Supplementary Design and Methods. Briefly,
two different multiplex polymerase chain reactions were tested
for the IGH gene regions (VDJ-FR2 and DJ) using highly purified
aPC. Clonal IGH gene rearrangements were identified by frag-
ment analysis in an ABI PRISM 3130 Avant sequencer, using GEN-
EMAPPER 3.1 software (Applied Biosystems, Melbourne,
Australia). A clonal population was defined by the presence of
either a single peak or a predominant peak over a polyclonal back-
ground. Clonal polymerase chain reaction products were then
purified with ExoSap (USB Corp., Cleveland, OH, USA) and
directly sequenced in both directions in an ABI 3130 DNA
sequence analyzer using the Big-Dye 3.1 Terminator cycle
sequencing chemistry (Applied Biosystems).

Statistical methods

Comparisons of frequencies in the different groups were ana-
lyzed with the ¥’ test or Fisher’s exact test. For continuous meas-
urements the Mann-Whitney U test was used. P values <0.05
(two-sided) are considered statistically significant. The commer-
cially available PASW software (Version 18.0, Chicago, IL, USA)

was used for the statistical analyses.

Results

Frequencies and patterns of cytogenetic alterations

Frequencies of different cytogenetic alterations in MM
versus MGUS are shown in Table 1. At least one of the
cytogenetic alterations investigated (including DNA
hyperdiploidy) was observed in 96% of MM and 77 % of
MGUS patients (P<0.001). Among these cases, a large pro-
portion had cytogenetic alterations of chromosomes
13q14, 17p13 and 14q32 detected by iFISH (84% of MM
and 55% of MGUS cases, P<0.001), while the other
altered cases only had DNA hyperdiploidy (12% of MM
and 22% of MGUS cases, P=0.08). Patients were further
classified into distinct cytogenetic groups according to the
‘karyotypic pattern’ based on the presence or absence of
del(13q14) and del(17p13) with or without t(14g32) (Table
2)

The median percentage of aPC carrying individual cyto-
genetic alterations, including different types of t(14¢q32),
did not differ significantly between MM and MGUS,
although the percentage of aPC with t(14q32) was slightly
higher (P=0.08) in /GH-translocated MM than in IGH-
translocated MGUS cases (Figure 2; Online Supplementary
Figure S1). Focusing on MM patients, the median percent-
ages of aPC with del(13q14) and t(14q32) were higher
(P=0.02 and P<0.001) than the median percentage with
del(17p13) (Figure 2); these findings support the assump-
tion that the former two cytogenetic alterations reflect
mainly primary cytogenetic events, whereas del(17p183)
typically corresponds to a secondary genetic change. The
percentage of aPC with del(13q14) was also significantly
(P=0.08) higher than the percentage with +17p13, both
alterations being found in MM at lower percentages
(P=0.01 and P<0.001) than t(14g32). Finally, the percent-
age of aPC with t(14q32) and del(14q32) or +14q32 in the
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Figure 1. lllustrating examples of clonal profiles of MM patients found by iFISH analysis of highly purified aPC, as defined in Table 2. (A and
C): karyotypic patterns of group I; (B): karyotypic patterns of group Il. Each number in the panels corresponds to a cell and identifies its
sequence from the ancestral clone (1) to additional subsequent clones (2 and 3) (x1000 original magnification). BA: break-apart; DC: dual
color; DF: dual fusion; SG: spectrum green; SO: spectrum orange. —: sequential acquisition. & simultaneous acquisition.

absence of t(14q32) differed significantly (P=0.01) in MM
patients. By contrast, the median percentages of aPC with
different cytogenetic alterations [e.g. del(13q14),
del(17p13)] did not differ significantly in the cohort of
MGUS patients (Figure 2). Likewise, the percentage of aPC
with different types of t(14q32) did not differ significantly
among /GH-translocated cases, either in MM or in MGUS
(Online Supplementary Figure S1).

Specific evaluation by iFISH for the presence of PC pos-
itive for IGH gene rearrangements was also performed in
purified residual N-PC fractions from a subgroup of ten
patients who showed coexisting residual N-PC and aPC in
their bone marrow at diagnosis, and carried a t(14g32) in
a high percentage of aPC (>82%); in all these cases normal
iFISH patterns were systematically found within the puri-
fied N-PC fraction, with <1% nuclei having a t(14q32).

Intratumoral patterns of cytogenetic alterations

The presence of two or more cytogenetically different
clones in aPC from the same patient and sample was more
commonly observed in MM (95/148 cases, 64%) than in
MGUS (22/60 cases, 37 %) (P<0.001) (Table 3). In order to
determine the specific potential clonal profiles in MM ver-
sus MGUS we investigated whether there were shared
profiles between the two groups of patients, based on
both the presence versus absence of del(13q14), del(17p13)
and/or t(14g32) and the presumed chronological sequence
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Table 1. Frequency of individual cytogenetic alterations in MM and
MGUS.

Cytogenetic alteration MM (n=148) MGUS (n=60)
del(13q14) 81 (55%)*** 13 (22%) ***
+17pl3 21 (14%) 6 (10%)
del(17p13) 17 (11%) *** >
t(14q32) 62 (42%)** 13 (22%)**
t(4;14) 15 (10%)* 1 (2%)*
t(11;14) 25 (17%) 7 (12%)
t(14;16) 3 (2%) 1 (2%)
t(4;14) + t(14;16) 1 (1%) 0
other 18 (12%) 4 (T%)
del(14¢32)/+14q32" 24 (16%) 11 (18%)

Results expressed as number of patients (percentage of cases). MM, multiple myeloma;
MGUS, monoclonal gammopathy of undetermined significance. *P<0.05, **P<0.01,
***P<0.005 (MM versus MGUS). 'comprising del(14g32), deletion potentially associat-
ed with t(14q32) - but absence of t(4,14), t(11;14) and t(14,16) - and +14g32 in the
absence of t(14g32) in 12,9 and 3 MM cases and in 5,5 and 1 MGUS cases (P>0.05).

of acquisition of these cytogenetic alterations (Table 2).
Only MM and MGUS patients with cytogenetic alter-
ations by iFISH for the respective chromosomal regions
were included in this part of the analysis. Considering the
karyotypic patterns defined by the presence of del(13q14),
del(17p13) and t(14g32), 98/110 (89%) patients with MM



showed patterns that were also found in MGUS and 24/24
(100%) MGUS cases had patterns also found in MM
(P>0.05). Despite this, when the presumed chronological
sequence of acquisition of these alterations together with
+17p18 was considered, the frequency of shared patterns
decreased to 87/119 (73%) in MM but remained 100%
among MGUS cases (29/29) (P<0.001; Table 2).
Additionally, when further cytogenetic variables were
considered, such as DNA ploidy, type of t(14q32) and
deletions/gains of IGH, FGFR3, CCND1 and MAF without
t(14g32) in their presumed chronological sequences, the
frequencies of overlapping karyotypic patterns were
32/125 (26%) for MM and 18/33 (55%) for MGUS
(P=0.008; Online Supplementary Table S2). Altogether, these
findings could suggest that progression of MGUS to MM
frequently requires acquisition of specific cytogenetic
alterations in individual aPC which are uniquely associat-
ed with the advanced form of the disease.

Interestingly, 73/148 (49%) MM and 44/60 (73%)
MGUS cases (P=0.002) showed a primary aPC clone (pri-
mordial or ancestral tumor cell clone) representing >15%
aPC without any cytogenetic alteration for all probes test-
ed (Online Supplementary Table S3). Among cases with
t(14g32), this alteration was absent in the primordial aPC
clone in a smaller proportion of cases: 15/62 (24%) MM:
t(4;14), t(11;14) and ‘other t(14q32) in three, five and
seven cases, respectively versus 8/13 (62%) MGUS

patients: t(11;14), t(14;16) and ‘other t(14q32)" in four, one
and three cases, respectively; P=0.02) (Figure 3; Omnline
Supplementary Table S2). In order to confirm these appar-
ently unexpected findings, we further analyzed some
exemplarily cases with a recurrent IGH translocation, e.g.

MM MGUS
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< 80% - o ° - ® . -+ -;-
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@c-g | B
O 2 a 0, .
=8  40% °
.,6 % . L] Y . . .
2 ° . L °

20% - . i - .

0% - +17p13  1(14932) +17p13  1(14932)
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Figure 2. Percentage of highly purified aPC with del(13q14),
+17p13, del(17p13), t(14932) and del(14q32)/+14q32 in the
absence of t(14932) from all bone marrow aPC in individual MM ver-
sus MGUS patients. Circles indicate individual patients and bars cor-
respond to the median values of altered cells. Statistical compar-
isons are given in the text.
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t(4;,14) or t(11;14), by FICTION studies. These studies
showed that aPC with and without the translocation can
coexist in the same patient/sample, whereas all investigat-
ed cells expressed only one single light chain type (cylgk
or cylgh) confirming the high purity of flow cytometry-
sorted aPC (Figure 4).

Interestingly, in some of the MM cases which were
exemplarily evaluated during follow-up at different dis-
ease stages, the non-altered aPC clone persisted during
disease evolution, even in cases carrying a recurrent /GH
translocation such as t(4;14) (Online Supplementary Table
S4).

DNA ploidy status and immunophenotype
of neoplastic plasma cells

The frequency of DNA hyperdiploidy was similar in
patients with MM or MGUS (47 % versus 45%; Figure 3).
As expected, the t(14g32) prevailed in non-hyperdiploid
versus hyperdiploid cases in both MM (57 % versus 25%;
P<0.001) and MGUS (B0% versus 11%; P>0.05).
Del(13q14) was likewise more frequent among non-
hyperdiploid than hyperdiploid cases in MM (63% versus
45%; P=0.03). In contrast, del(17p18) was found at similar
frequencies in hyperdiploid and non-hyperdiploid MM
cases (14% versus 9%; P>0.05). +17p13 was more frequent

Table 2. Cytogenetic patterns defined by the simultaneous assessment
of del(13q14), del(17p13), +17p13 and t(14932) in different cytoge-
netic subgroups of patients with MM or MGUS.

Cytogenetic profiles MM (n=148) MGUS (n=60)
1[t(14932)+, del(13q14)+] 39 (26%)** 2 (3%)**
(1) del(13q14) & t(14g32) 26 (18%)** 1 (2%)**
(2) del(13q14) & del(17p13) & t(14g32) 3 (2%) 0
(3) t(14¢32) — del(13q14) 4 (3%) 0
(4) del(13q14) — t(14932) 3 (2%) 1 (2%)

(5) del(13q14) & t(14q32) — del(17p13) 2 (1%) 0
(6) A: del(13q14) & t(14g32);

B: del(13q14) & t(14g32) — +17p13  1(1%) 0

11 [t(14q32)+, del(13q14)-] 23 (16%) 11 (18%)
(1) t(14g32) 21 (14%) 10 (17%)
() t(14q32) & +17pl3 1 (1%) 1 (2%)
(3) +17p13 — t(14g32) 1(1%) 0

111 [t(14q32)-, del(17p13) +] 12 (8%)* 0%
(1) del(17p13) 6 (4%) 0
(2) del(13q14) & del(17p13) 3 (2%) 0
(3) del(13q14) — del(17p13) 2 (1%) 0
(4) del(17p13) — del(13q14) 1 (1%) 0

IV [t(14g32)-, del(13q14)+, del(17p13)-] 36 (24%) 11 (18%)
(1) del(13q14) 27 (18%) 11 (18%)
(2) del(13q14) & +17p13 6 (4%) 0
(3) del(13q14) — +17p13 2 (1%) 0
(4) +17p13 — del(13q14) 1 (1%) 0

V [t(14g32)-, del(13q14)-, del(17p13)-] 38 (26%)** 36 (60%)**
(1) none 29 20%)** 31 (5206)**
) +17p13 9 (6%) 5 (8%)

Results are expressed as number of patients and percentages are given between brack-
ets. t(4;14) occurred more frequently among group I than group Il MM patients (14/39
patients, 36% versus 2/23 patients, 9%, P=0.03), while t(11;14) was more common
among group Il than group I cases (11/39, 28% versus 14/23 patients, 61%, P=0.02).
The two MGUS patients in group I showed t(11;14) and ‘other t(14q32)". The median
DNA index was significantly (P=0.01) increased in MM versus MGUS patients within
group V cases: 1.2 (range: 1.0-1.6) versus 1.1 (range: 1.0-1.7), respectively (no signifi-
cant differences within the other groups). Abbreviations are explained in Table 1.
*P<0.05, **P<0.005 (MM versus MGUS). 'Tivo aPC populations with different cytoge-
netic patterns sorted by flow cytometry. +: cytogenetic alteration present. - cytogenetic
alteration absent. —: sequential acquisition. &: simultaneous acquisition.

among hyperdiploid MM (25%) and MGUS (19%) than in
non-hyperdiploid cases (5% and 3%; P<0.001 and P=0.08,
respectively), while del(14q32)/+14¢32 in the absence of
t(14g32) showed no significant association with DNA
ploidy either in MM or in MGUS (data not shown).

Analysis of IGH gene rearrangements
and CDR3 sequencing of aberrant plasma cells

IGH gene rearrangements and CDR3 sequences of high-
ly purified aPC were analyzed in nine exemplary (2
MGUS and 7 MM) cases; two of them had none of the
tested cytogenetic alterations and the other seven showed
at least one cytogenetic alteration (Online Supplementary
Table S5). In two out of these latter seven MM cases a frac-
tion of the aPC purified had a recurrent IGH translocation
- t(4;14) in one case and t(11;14) in the other - and coexist-
ed with another aPC fraction without the translocation
(36% and 23% of all aPC in cases n. 93759 and 85864;
Ounline Supplementary Table S5). Only one unique CDR3
sequence was identified for each sample analyzed, indi-
cating a clonal relationship between the /GH-translocated
and non-translocated cases and absence of a significance
proportion of contaminating polyclonal N-PC.

Discussion

In the present study virtually all patients with MM and
the great majority of those with MGUS showed hyper-
diploidy and/or cytogenetic alterations involving chromo-
somes 13ql14, 17p13 and 14g32. Overall, del(13q14),
del(17p13) and t(14q32) were identified at significantly
higher frequencies among MM patients than among
MGUS cases; in contrast, the incidence of +17p13 and
del(14g32)/+14g32 in the absence of t(14q32) did not dif-
fer significantly between the two groups of patients. The
frequencies found here for these cytogenetic alterations in
MM are concordant with previous data,”**" but those
observed in MGUS are considerably lower than described
by others.*® Different inclusion criteria used here for
MGUS - only cases with >5% N-PC - and MM - only cases
with =5% N-PC - might contribute to these discrepancies
since the usage of this 5% threshold for N-PC excludes a
group of MGUS patients (15-20% of all cases) with a high-
er risk of progression into MM, at the same time as avoid-
ing inclusion of some cases of smoldering MM."*1>'6

Interestingly, unique karyotypic patterns were found in

Table 3. Number of cytogenetically different clones in the distinct cytogenetic
groups of MM versus MGUS patients.

Karyotypic pattern At least 2 cytogenetically
different clones

MM (n=148) MGUS (n=60)
1 [t(1432)+, del(13q14)+] 30/39 (77%) 272 (100%)
11 [t(14q32)+, del(13q14)-] 18/23 (78%) 10711 (91%)
111 [t(14g32)-, del(17p13)+] 912 (75%) 00
IV [t(14¢32)-, del(13q14)+, del (17p13)-] 24/36 (67%)* 411 (36%)*
V [t(14q32)-, del(13q14)-, del(17p13)-] 14/38 (37%) ** 6/36 (179%)**

Total 95/148 (64%) *** 22/60 (37%) ***

Results are expressed as number of cases from the total number of patients in the respective
group.Abbreviations are explained in Table 1. *P=0.09, **P=0.07, ***P<0.001. +: cytogenetic alter-
ation present.-: cytogenetic alteration absent.




MM versus MGUS cases. For example, the simultaneous
presence of del(13q14) and t(14q32) occurred frequently in
MM but not in MGUS. As mentioned above, at least one
cytogenetic alteration and/or hyperdiploidy occurred in
virtually all MM patients, confirming the previously sug-
gested high frequency of genetic alterations in this dis-
ease,” but only in 77% of MGUS cases. This observation
and the fact that two or more cytogenetically different
clones were found significantly more frequently in MM
than in MGUS supports the previous assumption that evo-
lution of MM from MGUS is associated with a clonal
expansion of genetically abnormal PC® and potentially also
with the acquisition of additional chromosomal/molecular
alterations in individual aPC clones uniquely associated
with malignant transformation of the disease.

Despite the limitations of a mainly non-longitudinal
study - a large-scale longitudinal study to detect cytoge-
netic alterations in primordial aPC prior to diagnosis of a
plasma cell disorder seems to be virtually impossible - fur-
ther remarkable differences were found when the intratu-
moral patterns of cytogenetic changes were analyzed in
individual patients at the single aPC level. In MM, the
median percentage of aPC with different cytogenetic alter-
ations differed significantly indicating that during disease
evolution some alterations appear at an earlier stage than
others. Thus, we observed a significantly higher incidence
of aPC carrying t(14q32) and del(13q14) than aPC with
del(17p13); this is in line with the general belief that
t(14g32) and del(13q14) are mainly primary lesions while
del(17p13) commonly occurs later as a secondary cytoge-
netic change.*** Most interestingly, however, in about one
quarter of MM cases with t(14g32) we identified a signif-
icant proportion of aPC that did not carry the respective
cytogenetic alteration, indicating that this alteration - i.e.
t(14g32) - might be absent in the primordial (ancestral) PC
clone and be also acquired during disease evolution. It is
noteworthy that these cases also comprised different
types of t(14¢g32), including t(4;14) and t(11;14). These

IGH dual color break apart probe plus
cylgk staining

Figure 4. Simultaneous analysis
of cylgk light chain expression
(diffuse red staining) and iFISH
spots for the IGH dual color
break apart probe in purified
aPC from a representative MM
patient carrying t(4;14) in only
part of all aPC. IGH-rearranged
aPC show a fused red/green
signal plus an isolated red sig-
nal together with positive cylgik
whereas non-rearranged aPC
show two red/green spots
together with similar cylgk red
staining (white arrows).
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findings support a previous hypothesis that t(14q32) are
relatively early cytogenetic events;”® however, they also
argue against the assumption that they almost always cor-
respond to primary oncogenic events except for the rare,
possibly random, t(14g32) other than t(4;14), t(11;14) or
t(14;16).>® In this context our results strongly support
recently published single cell level FISH data questioning
the initiating role of recurrent IGH translocations.” In
addition, our results are also similar to those reported by
Fonseca et al’ in a series of 23 MGUS patients who had
t(14g32), most of whom [15/23 (65%)] had a significant
proportion (>15%) of clonal Ig-light chain-restricted PC
without t(14q32) coexisting with the t(14q32)-positive
cells.

It should be mentioned further that normal iFISH pat-
terns were systematically found within the purified resid-
ual N-PC fractions in ten cases carrying a coexisting aPC
population with an /GH translocation in the present analy-
sis. In addition, analysis of IGH gene rearrangements and
CDR3 sequencing revealed that aPC populations with dis-
tinct cytogenetic alterations coexisting in the same patient
are clonally related. Additionally, the detection of only one
unique CDR3 sequence in the absence of an oligo-/poly-
clonal background in all tested samples (including those
cases with a recurrent /GH translocation present only in
an aPC subclone) argues against a significant proportion of
contaminating polyclonal N-PC. Moreover simultaneous
immunostaining for cylgk and cylgh plus iFISH (FICTION
assay) was applied in some exemplary cases, further sup-
porting the notion that aPC and N-PC might be clearly dis-
tinguished by the flow-cytometry based approach used
here, as suggested previously.”” Thus it is unlikely that
our findings are due to contaminating N-PC. Finally, our
observation that an aPC clone without any of the tested
cytogenetic alterations can persist - and even increase - at
different disease stages during follow-up, even in cases
carrying a recurrent /GH translocation such as t(4;14), fur-
ther supports our hypothesis that these karyotypic alter-
ations might not always correspond to primary events
during aPC expansion.

Taken together, our results suggest that also plasma cell
disorders may evolve from low numbers of aPC, which
lack cytogenetic alterations commonly associated with
MM and MGUS and that they may occur in a significant
percentage of otherwise healthy individuals, similarly to
what has been described for healthy subjects who show
circulating monoclonal chronic lymphocytic leukemia-like
B cells among whom cytogenetic alterations, such as tri-
somy 12 or del(13q), are typically found within those
cases with higher percentages of clonal chronic lympho-
cytic leukemia-like B cells.”*® In any case, the potential
existence of other underlying primary genetic lesions ver-
sus increased aPC survival mechanisms (e.g. cell senes-
cence) as early events triggering the expansion of aPC in
MGUS requires further investigation.

As in MM, cytogenetic heterogeneity and different sizes
of cytogenetically defined aPC clones with partially over-
lapping chromosomal alterations suggest that such alter-
ations were probably acquired stepwise also in MGUS;
since the median percentage of aPC with distinct cytoge-
netic alterations did not differ significantly between MM
and MGUS, it could be hypothesized that comparable
chronological sequences of acquisition of individual cyto-
genetic alterations might in principle be found in both dis-
eases. The presence of contaminating N-PC (e.g., due to
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* PC sorting by CD138" microbeads) might explain the dis-

crepant results found in other studies, which suggested
that del(13q14) typically occurs only in a subpopulation of
aPC in MGUS but in the majority of aPC in MM.**

Interestingly, our results showed that among cases with
IGH translocation the presence of a relatively high propor-
tion of aPC without the translocation was significantly
more frequent in MGUS than in MM patients, supporting
the notion that /GH translocations could, more frequently
than expected, correspond to a secondary event, particu-
larly in MGUS.**

Detailed analysis of distinct cytogenetic profiles of indi-
vidual cases showed only partially overlapping intratu-
moral pathways of clonal evolution in MM versus MGUS
when additional cytogenetic variables such as DNA
ploidy, lack of cytogenetic alterations in the primordial
clone, type of t(14q32) and deletion or gain of IGH,
FGFR3, CCND1 and MAF in the absence of t(14g32) were
considered together with del(13q14), del(17p13) and
+17p18. Of note, these overlapping cytogenetic profiles
were found in about half of MGUS patients and one quar-
ter of MM cases. Altogether, these findings suggest that at
the single aPC level, clinically stable MGUS (cases with
>5% N-PC/all bone marrow PC"*") frequently display dif-
ferent cytogenetic profiles from those of symptomatic
MM (MM cases with typically 295% aPC/all bone mar-
row PC"'%) and that progression from MGUS to MM may
frequently require acquisition of additional cytogenetic
alterations at the MGUS stage, which lead to the cytoge-
netic profiles typically found in MM. However, the disap-
pearance and emergence of specific cytogenetic clones
observed in a subset of MM cases analyzed here after ther-
apy suggest that marked genetic instability and intratu-
moral cytogenetic heterogeneity, presumably also affected
by clonal selection, frequently occurs in the course of MM
and not only at transformation from MGUS to MM.

In summary, the cytogenetic heterogeneity found here
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