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Online Supplementary Design and Methods

Modeling and statistics
Gene expression profiling data were quantile normalized
and single genes ranked according to the highest standard
deviation between stimulated (murine and human feeder
cells) versus unstimulated culture and the highest standard
deviation between time points. This identified genes most
deregulated upon co-culture compared to unstimulated cul-
ture. The 0.5% most deregulated genes (243 of 48600) were
tested with Ingenuity Pathway Analysis (IPA, Ingenuity
Systems, www.ingenuity.com) and DAVID7

(http://david.abcc.ncifcrf.gov) for functional annotation with cell
death, apoptosis and cell survival. This identified 35 genes in
common between IPA and DAVID, from which the 23 most
deregulated genes were selected by visual inspection for mod-

eling in a 2-step approach. First, candidate genes were further
grouped into clusters according to their gene expression kinet-
ics using the Partitioning Around Medoids (PAM) clustering
method8 to yield a number of genes small enough for subse-
quent network modeling. Here, genes (medoids) were select-
ed from a cluster that displays a gene expression time course
kinetic representative of the whole cluster of genes. The
resulting 8 medoids were the genes corresponding to the net-
work nodes in the second step of the statistical analysis.
Network estimation was made using the dynamic Bayesian
network approach,9 where probabilities of interdependencies
of genes (nodes) are displayed also dependent on kinetics
(time). The analysis employs a Markov Chain Monte Carlo
algorithm to obtain the posterior edge probabilities of the net-
work. These 8 genes were also used as controls for analysis of
transcription factor binding (Figure 2J).
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Online Supplementary Table S1. Primer sequences.
TBP_for: 5`-GCCCGAAACGCCGAATAT-3´ 
TBP_rev, 5`- CCGTGGTTCGTGGCTCTCT-3´ 
SDHA_for: 5`-TGGGAACAAGAGGGCATCTG-3´ 
SDHA_rev: 5`-CCACCACTGCATCAAATTCATG-3´ 
TCL1A_for: 5`-TCCAGTTTCTGGCGCTTAGT-3´
TCL1A_rev: 5`-ACATCAGTCATCTGGCAGCA-3´ 
ATM_for: 5`-AGAGGCCGGAAGATGAAACT-3´ 
ATM_rev: 5`-TGCCTTCTTCCACTCCTTTC-3´
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Online Supplementary Figure 2. siRNA knockdown of TCL1a causes 40-80% reduction of
transcript levels MEC2 cells were transfected with 1�g non-target siRNA (random) or a
siRNA specifically targeting TCL1A using Amaxa in two independent experiments. TCL1A
expression was measured by qRT-PCR and normalized to LMNB1 expression.
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