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SUPPLEMENTARY APPENDIX

Online Supplementary Appendix

The basic mathematical model
We utilized a mathematical model of the treatment response

of chronic myeloid leukemia (CML) cells to imatinib therapy,1,2

which describes four layers of the differentiation hierarchy of
the hematopoietic system. Stem cells give rise to progenitors,
which produce differentiated cells, which in turn produce ter-
minally differentiated cells. This hierarchy applies to both nor-
mal and leukemic cells. Only stem cells have the potential for
indefinite self-renewal, but progenitor and differentiated cells
have the capability to undergo limited reproduction, which,
together with differentiation, leads to an expansion of the cell
number at each level of the differentiation hierarchy. The BCR-
ABL oncogene is present in all leukemic cells, leading to slow
clonal growth of leukemic stem cells and accelerating the rate
at which leukemic progenitors and differentiated cells are gen-
erated. Imatinib therapy reduces the production rates of
leukemic progenitors and differentiated cells, and potentially
also inhibits the expansion of leukemic stem cells.
The abundances of normal hematopoietic stem cells, progen-

itors, differentiated cells, and terminally differentiated cells can
be denoted by x0, x1, x2, and x3. Their respective leukemic abun-
dances are given by y0, y1, y2, and y3. We assume that homeosta-
tic mechanisms maintain the hematopoietic stem cell popula-
tion at a constant level and, therefore, introduce a density
dependence term, φ, in the stem cell production rate. Leukemic
stem cells grow at a slow pace until reaching their maximum
number, which may be larger than that of normal stem cells;
afterwards, their number is also held constant by a density
dependence mechanism. The system containing stem cells
(SC), progenitor cells (PC), differentiated cells (DC) and termi-
nally differentiated cells (TC) is then described by: 

healthy cells leukemic cells

Here density dependence in the stem cell population is given
by φ = 1/[1+px (x0 + y0)] and = 1/[1+py (x0 + y0)]. The potentially dif-

ferent carrying capacities of normal and leukemic stem cells are
represented by the parameters px and py. Imatinib dramatically
reduces the differentiation rates of cells, ay to ay’ and by to by’.
This change in rates leads to a bi-phasic decline of the leukemic
cell burden.1 The parameters during imatinib therapy are denot-
ed by ry’, ay’, by’ etc., and the parameters after cessation of ima-
tinib therapy are denoted by ry’’, ay’’, by’’ etc. For comparison
with experimental polymerase chain reaction (PCR) data, we
calculate the BCR-ABL to ABL ratio as y3/(2x3 + y3)  times 100%;
a healthy cell has two copies of ABL, while a leukemic cell nor-
mally has one copy of ABL and one copy of BCR-ABL. Since
most cells that are sampled by the PCR assay are terminally dif-
ferentiated cells, the calculation of the BCR-ABL/ABL ratio
using the mathematical framework includes the abundance of
terminally differentiated cells only. The time of loss of a com-
plete molecular response (CMR) is defined as the time at which
the BCR-ABL/ABL transcript level exceeds 10-5: i.e. when

.

This definition of the BCR-ABL/ABL transcript level when
reaching CMR can be varied to obtain a different cut-off; if a
different cut-off is chosen, then the estimation of the parame-
ter values that replicate the trial dynamics (see Statistical analy-
sis section) would lead to slightly different numerical results, but
the basic conclusions would hold. This system of equations
was numerically solved using a fourth-order Runge-Kutta inte-
gration scheme.  

Extensions of the mathematical model
We investigated the possibility of an explicitly heterogeneous

leukemic stem cell population within each patient as a possible
mechanism for the imatinib selection effect. To this end, we
considered a system with two leukemic stem cell populations:
type-1 leukemic stem cells having an intrinsic growth rate ry,1
and type-2 leukemic stem cells having a growth rate ry,2 both
before and after treatment with imatinib (ry,1’’ = ry,1, ry,2’’ = ry,2).
The two cell populations have distinct growth kinetics, ry,2 < ry,1,
so that at diagnosis and the start of treatment the majority of
leukemic stem cells are of type-1. To bear out the imatinib
selection hypothesis, we assumed that the effect of imatinib is
stronger on the more aggressive type-1 cells than the more
indolent type-2 cells such that ry,1’ < ry,2’. Online Supplementary

y3 > 10-5
2x3 + y3



Figures S1 and S2 demonstrate the effect of this hypothesis on
the composition of the stem cell population. Online
Supplementary Figure S1A shows the terminally differentiated
leukemic cell population over time for a system with a two-
type heterogeneous leukemic stem cell compartment as
described above, as well as for a homogeneous stem cell popu-
lation. Note that heterogeneity in cell phenotypes is also includ-
ed in the basic mathematical model incorporating only a single
type of stem cells, since the kinetics of the stem cell population
can be described by a distribution of growth and differentiation
rates rather than a single value. Online Supplementary Figure S1B
shows the sizes of the leukemic stem cell population in both
cases. Note that effects of a heterogeneous stem cell compart-
ment on the observable quantities (terminally differentiated
cells) may be minimal (Online Supplementary Figure S1A), even
though dramatic differences may be taking place at the level of
leukemic stem cells (Online Supplementary Figure S1B). Online
Supplementary Figure S2 shows the composition of the leukemic
stem cell compartment in the heterogeneous system, both
before imatinib treatment at detection and after treatment at
the time of relapse. In this system, the effect of imatinib is to
select a less aggressive population of stem cells, which was
undetectable prior to treatment. This subpopulation comprises
the majority of the leukemic stem cell compartment after treat-
ment, therefore lowering the effective stem cell growth rate.

The parametric cure model
Let us now consider the scenario in which imatinib has the

potential to eradicate leukemic stem cells in some patients and
CML can be cured by imatinib therapy alone. The possibility of
cure is equivalent to the assumption that the population relapse
time distribution is improper – i.e. as time goes to infinity, the
probability of relapse is less than 1. 
To investigate this scenario, we first fitted parametric cure

models to the data, assuming that the cure rate p is greater than
zero. Based on the cure model, the population of patients is
made up of a mixture of two sub-populations, one that can be
cured of their disease and one that will relapse sooner or later
after imatinib discontinuation. We call subjects in the sub-pop-
ulation that will always relapse the ‘susceptibles’. The survival
function of the relapse time under the assumption of a cure
model is a mixture of a parametric survival function for the sus-
ceptibles and a cure mass, i.e. S(t) = p + (1 - p) S0(t), where S0(t)
denotes the survival function of the susceptibles and p repre-
sents the cure rate. We then used the maximum likelihood esti-
mation method to fit the cure model to the clinical data and
chose for S0(t)  the most commonly used distributions including
Weibull, lognormal, exponential, logistic and log logistic distri-
butions. Of these distributions, the cure model with S0(t)  being
the survival function of the log logistic distribution exhibited
the best fit with both the largest likelihood and lowest AIC
(Akaike Information Criterion3) (Figure 1B). The estimated cure
rate based on this log logistic cure model was 0.41.

Testing for sufficient follow-up
To make any conclusions regarding the cure of some of the

patients enrolled in the STIM trial, we tested whether there
were clinical data from a sufficiently long follow-up. We uti-
lized the non-parametric method, i.e. no assumptions were

made on the type or shape of the underlying survival or censor-
ing distributions, to estimate the cure rate p and tested whether
the follow-up data of the STIM trial were sufficient.
Throughout this paper, we assumed random (or non-informa-
tive) censoring, i.e. each subject’s censoring time is statistically
independent of the failure time.
We first obtained the non-parametric estimator of the cure

rate for the STIM data and then tested whether there was suf-
ficiently long follow-up to identify the existence of a cure,
based on the measurement of the distance between the largest
observed time and the largest uncensored relapse time. To be
specific, let n be the total number of observations; t(n) be the
largest observed time (relapse or loss of follow-up); and Ŝ(t) be
the Kaplan-Meier Estimator (KME) of the survival function for
the relapse time. For the STIM trial data, n = 100 and t(n) = 911.
The non-parametric estimator of the cure rate p is then given
by p̂ = Ŝ(t(n)) = 0.39.4 We then applied the procedure outlined in
Section 4.3 of the article by Maller et al.4 to test for the existence
of a sufficiently long follow-up, which is based on the measure
of the distance between the largest observed time t(n) and the
largest uncensored relapse time t*(n). Let Nn be the number of
uncensored observations in the interval (2 t*(n) - t(n), t*(n)]  and qn =
Nn / n be the proportion of uncensored observations in that
interval. Following arguments in Section 4.3 of the article by
Maller et al.4 large values of qn generally lead to the conclusion
that there was sufficiently long follow-up while small values of
qn represent insufficient follow-up. More specifically, if the
observed value of qn is greater than the 95% quantile of the sim-
ulated distribution of qn, then there is strong evidence that there
was sufficiently long follow-up in the sample. If, on the other
hand, the observed qn is less than the 5% quantile of the simu-
lated distribution, then there is good evidence that follow-up is
insufficient. If, however, the observed value of qn resides
between the 10% and 90% quantiles, then we conclude that
the data are inconclusive. In that case, it is doubtful that data
have leveled off sufficiently to make any conclusions about the
existence of a cure, but there is also no strong evidence that the
follow-up is insufficient. For the clinical data utilized here, t*(n) =
678; (2 t*(n) - t(n), t*(n)] = (445, 678]; Nn = 2 and qn = 0.02. 
We then conducted simulations to obtain the distribution of

qn, where survival times were generated from a log logistic dis-
tribution (the log logistic distribution was chosen because as
outlined in the above section, it exhibited the best fit with both
the largest likelihood and lowest AIC) for a number of observa-
tions of n = 100 and cure rate of p = 0.39. We simulated censor-
ing times using a sampling with replacement procedure with
samples representing the censoring times in the STIM trial data.
We also simulated censoring times from a uniform distribution
over the range of the censoring times in the STIM trial data and
reached the same conclusions. With 100,000 replicates, the 5%,
10%, 90% and 95% percentiles of the simulated qn values for
this simulation setting were 0.01, 0.01, 0.59 and 0.59, respec-
tively. Since qn for the STIM trial data is 0.02, falling between
the 10% and 90% percentiles, we thus reached the conclusion
that it is doubtful that the STIM data had leveled off sufficient-
ly to make any conclusions about the existence of a cure.
Worded differently, there was no strong evidence for either suf-
ficient or insufficient follow-up in the STIM trial data, which
represents an interim report of this clinical trial. When longer



follow-up becomes available, we will repeat the above proce-
dure to test for the existence of sufficient follow-up in the
updated data.

Statistical analyses
Our mathematical model represents between-patient hetero-

geneity via variability in patient-specific cell growth and differ-
entiation kinetics. Two patients with identical parameter values
will have identical model-predicted cell growth profiles over
time. Given a particular set of parameter values, the mathemat-
ical model can be computationally solved to evaluate the result-
ing relapse time; however, from a given relapse time it is not
possible to determine a unique set of corresponding parameter
values. In addition, the characteristics of the underlying param-
eter distributions for the growth and differentiation kinetics are
unknown. For these reasons, we utilized a retrospective statis-
tical approach to determine the parameter distributions given
the observed relapse time data. 
Since our goal was to identify the set of parameters that are

consistent with the observed distribution of the time of CMR
loss, we needed a complete estimate for the distribution of CMR
loss times (i.e, defined for all times). Since traditional Kaplan-
Meier estimates are defined up to the maximum event time, we
were unable to use them. Instead we utilized the maximum like-
lihood estimation method to fit a parametric distribution to the
observed data and chose between the most commonly used dis-
tributions including Weibull, lognormal, exponential, logistic and
log logistic distributions. Of these distributions, the lognormal
distribution exhibited the best fit with both the largest likelihood
and lowest AIC3 for the non-cure model (Figure 1C) while the
log logistic distribution exhibited the best fit for the cure model
(Figure 1B), as outlined in the section above. 
We then numerically solved the differential equation system

to obtain the relapse time for different parameter sets. A fine
grid was used to sample the five-dimensional parameter space,
and the corresponding times of loss of CMR were determined
using the mathematical model. We then selected randomized
subsets (denoted as S.time) of outcomes from these times that
recapitulated the fitted lognormal (for the non-cure model) or
the fitted log logistic (for the cure model) survival curves up
until the maximum follow-up. The set S, which contains
parameter vectors resulting in the above selected survival times

in the set S.time via the mathematical model, then represents a
set of samples from the joint density of the five parameters. To
compare the Kaplan-Meier curve obtained from our sampling
procedure to the Kaplan-Meier survival curve of the clinical
data, the one-sample log-rank test as implemented in the survd-
iff function in R was used. 
More specifically, we defined possible ranges of the five

parameters, based upon our mathematical model: ay’’ varies in
the range (0, 1.6], by’’ in (0, 10], cy’’ in (0, 200], ry’ in [0,0.003], and
ry’’ in [0, 0.016], with the restrictions that ay’’≤ by’’≤ cy’’ and ry’≤
ry’’. A fine grid (over 260 million samples) was used to sample
the five-dimensional parameter space from these ranges. Let G
denote this grid. For each g ε G, we numerically solved the dif-
ferential equation system to obtain the relapse time and the
censoring indicator (Tg, Cg). The case of Cg = 1 denotes the situ-
ation in which CMR is lost; the corresponding Tg represents the
relapse time. The case Cg = 0 denotes the situation in which
CMR is not reached; then the corresponding Tg represents the
last follow-up time of the patient. Let P denote the set of (Tg, Cg)
pairs obtained through this process. We then tagged each
relapse time in P according to its corresponding 18-quantile in
the fitted density and considered it for acceptance into the sam-
ple set S.time. To ensure that S.time correctly recapitulates the
fitted lognormal (for the non-cure model) versus log logistic (for
the cure model) density function, samples were drawn from
each bin uniformly at random, and a set of samples was accept-
ed into the set S.time proportionally according to the contribu-
tion of each quantile to the density. The final set S, which con-
tains parameter vectors corresponding to relapse time points in
the set S.time, behaves like a random sample from the joint dis-
tribution of the parameter estimates. The marginal densities of
each parameter were estimated using the non-parametric ker-
nel density estimation technique (a.k.a. Parzen-Rosenblatt win-
dow method5). Multiple resamplings of the set S resulted in lit-
tle or no change in the marginal densities, indicating robustness
of the resulting distributions to this procedure. A randomly
obtained sample of points chosen from a uniform distribution
could have been used instead of the regular grid G for the pur-
poses of obtaining (Tg, Cg). Using a regular grid is similar to latin
hypercube sampling6 and is more efficient than random sam-
pling in most computational problems that require repeated
evaluations from a sample space.7
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Online Supplementary Figure S1. The effects of a heterogeneous leukemic stem cell population. (A)
Terminally differentiated leukemic cell population over time, for a homogeneous leukemic stem cell com-
partment (ry = 0.008, ry’ = 0.0015), and a heterogeneous two-type leukemic stem cell compartment (ry,1 =
0.008, ry,2 = 0.007, ry,1’ = 0.0005, ry,2’ = 0.0025). For both systems, ay’’ = 0.8, by’’ = 5, cy’’ = 100, and all other
parameters are the same as throughout the paper. (B) Leukemic stem cell population over time for a homo-
geneous stem cell compartment and for each type in a heterogeneous stem cell compartment. Parameters
are as in (A).

Online Supplementary Figure S2. The time evolution of a heterogeneous
leukemic stem cell population. Composition of leukemic stem cell compart-
ment (frequency of type-1 and type-2 cells) before imatinib treatment and
at the time of relapse (post-imatinib).  Parameters are as in Online
Supplementary Figure S1.
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