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SUPPLEMENTARY APPENDIX

Online Supplementary Design and Methods

Materials
We used the following products (with sources): hematin (Alfa

Aesar, Ward Hill, MA, USA), arachidonic acid (AA; Bio/Data
Corporation, Horsham, PA, USA), biotin-AA, cyclo-oxygenase
(COX) activity assay buffer (Cayman Chemical, Ann Arbor,
MI, USA), BSA fraction V (BSA) and fatty acid free-BSA (FAF-
BSA), 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocya-
nine iodide (JC-1), indomethacin, luminol (Sigma-Aldrich, St
Louis, MO, USA), BSA for blotting (MP Biomedicals, Solon,
OH, USA), cell tracker green, (Molecular Probes, Invitrogen,
Carlsbad, CA, USA), 5-chloromethyl fluorescein diacetate
(CMFDA), lipo-oxygenase-inhibitor 5, 8, 11-eicosatriynoic acid
(ETI, Cayman Chemical, Ann Arbor, MI, USA), Odyssey block-
ing buffer (LI-COR Biosciences, Lincoln, NE, USA), prostacyclin
(PGI2, Cayman Chemical, Ann Arbor, MI, USA), P38MAPK
substrate ATF-2 fusion protein, kinase buffer (Cell Signaling
Technology, Danvers, MA, USA), P38MAPK-inhibitor
SB203580 and cytochrome P450 mono-oxygenase inhibitor
SK&F96365 (Alexis Biochemicals/Enzo Lifesciences BVBA,
Zandhoven, Belgium), o-sialoglycoprotein endopeptidase
(OSGE, Cederlane Laboratories, Hornby, Ontario, Canada), and
TxA2 Enzyme Immuno Assay (EIA) kit (Assay Designs, Ann
Arbor, MI, USA). Thromboxane receptor (TPα) antagonist
SQ30741 was a kind gift from Bristol-Meyers-Squibb
(Maarssen, The Netherlands).

Antibodies used for western blotting were directed against
GPIbα (clone SZ2, Beckman Coulter, Marseille, France), COX-
1 (Abcam, Cambridge, UK), phospho ATF-2 (Thr 171), total Bad
(Zymed, Invitrogen, Carlsbad, CA, USA), Bad Ser 136,

Phospho-P38MAPK (Thr180/Tyr182), total P38MAPK, second-
ary horseradish peroxidase-labeled anti-rabbit antibodies (Cell
Signaling Technology, Danvers, MA, USA), Bad (Enzo life sci-
ence, Farmingdale, NY, USA), 14-3-3ζ (C-16, Santa Cruz
Biotechnology, Santa Cruz, CA, USA). Secondary antibodies
were: Alexa-680 (Molecular Probes, Invitrogen, Carlsbad, CA,
USA) and IRDYe 800CW (LI-COR Biosciences, Lincoln, NE).
Antibodies for immunoprecipitation were against GPIbα (AK2,
Santa Cruz Biotechnology), total Bad (Cell signaling
Technology, Danvers, MA, USA) and 14-3-3ζ (V-16, Santa Cruz
Biotechnology). 

For studies shown in the Supplementary Appendix, we used the
following products (with sources): calcium ionophore A23187
(Calbiochem, Darmstadt, Germany), fibrinogen (Enzyme
Research Laboratories, South Bend, IN, USA), thrombin recep-
tor (PAR1)-activating peptide (TRAP, SFLLRN, Bachem,
Switzerland), and TxA2-mimetic U46619 (Cayman Chemical,
Ann Arbor, MI, USA). The P2Y12 blocker AR-C69931MX was a
kind gift from Astra Zeneca, Loughborough, UK. 

Hemostatic properties after arachidonic acid
depletion/repletion

AA-depleted platelets were prepared by incubation with FAF-
BSA using BSA as a control. AA-repleted platelets were pre-
pared by subsequent incubation with AA. In non-stirred sus-
pensions, TxA2 was measured upon stimulation with 5 μM
TRAP (10 min, 37°C). Aggregation induced by 20 μM TRAP
was measured in an optical aggregometer (Chronolog
Corporation, Haverford, PA, USA) at 37°C with stirring at 900
rpm in the presence of 100 nM AR-C69931MX and 100 μg/mL
fibrinogen. 



Online Supplementary Figure S1. Reversible modulation of TxA2 formation by AA de-/repletion. (A) Depletion of platelet-AA. Platelets were incubat-
ed in buffer with BSA (open bars) and FAF-BSA (gray bars) for the indicated times at 0ºC. Samples were washed in the presence of PGI2, placed at
37ºC for 30 min to restore responsiveness and incubated with 5 μM TRAP (10 min, 37ºC ) to induce TxA2 formation. (B) Repletion of platelet-AA.
Platelets incubated with FAF-BSA for 1 h at 0ºC were washed and incubated in buffer containing 1 mM AA for the indicated times. Following a sec-
ond washing step, TRAP induced TxA2 formation was measured. (C) Reversible modulation of aggregation. Room temperature-stored platelets (RT),
AA-depleted platelets (60 min with FAF-BSA, 0ºC) and AA-repleted platelets (AA-depleted platelets incubated for 1 h with 1 μM AA, 37ºC) were stim-
ulated with 20 μM TRAP in the presence of the P2Y12 blocker AR-C69931MX and aggregation was measured at 37ºC. Mean aggregations were
57.3 ± 2.1, 42.3±3.1 and 60.0±2.8 % respectively. (D) AA-repletion does not initiate apoptosis. The change in mitochondrial membrane potential
(DΨ) was measured in platelets incubated under the conditions described for (C). Data are means ± SEM (n=3) with statistically significant differ-
ences indicated by an asterisk (P<0.05).

Online Supplementary Figure S2. Free arachidonic acid contributes to agonist-induced platelet apoptosis. Effect of AA-depletion on
apoptosis induction at 37°C in the absence (A) and presence (B) of the TPα-blocker SQ30741. Platelets were incubated at 0°C for 4
h with normal BSA (open bars) and FAF-BSA (gray bars) and then washed: apoptosis induction was analyzed by measuring the change
in mitochondrial membrane potential, DΨ. Platelets were stimulated without stirring with Ca2+-ionophore A23187 (3 μM, with 2 mM
extracellular Ca2+), TRAP (20 μM) and the TxA2-analog U46619 (10 μM).
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Online Supplementary Figure S3. Arachidonic acid dissociates the [14-3-3ζ-COX-1] complex. Measurement of the [14-
3-3ζ - COX-1] association. (A) Fresh, 0°C- and 0/37°C-treated platelets. (B) Fresh platelets and platelets incubated with
100 nM, and 1, 10 and 50 μM AA for 10 min at 0°C. (C) Fresh and 0°C-treated platelets incubated with normal BSA
(open bars) and FAF-BSA (AA depl, gray bars). (D) Effect of indomethacin. Fresh platelets and platelets incubated with
50 μM AA (10 min, 0°C) in the absence and the presence of indomethacin.

Online Supplementary Figure S4. Arachidonic acid triggers apoptosis in murine platelets. (A) Addition of AA induces DΨ-
change in murine platelets. The DΨ-change in fresh platelets and platelets incubated with 10, 50 and 100 μM AA for 10
min at 0°C. (B) AA depletion lowers the induction of cold-induced apoptosis. The DΨ-change in fresh 0/37°C-treated
platelets incubated with FAF-BSA to lower platelet-AA (AA depl, gray bars) and normal BSA (open bars). Data are means ±
SEM (n=3) with significant differences (P<0.05) compared with fresh platelets and between treatments indicated by (*).
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