The significance of *PTEN* and *AKT* aberrations in pediatric T-cell acute lymphoblastic leukemia

Linda Zuurbier,¹ Emanuel F. Petricoin 3rd,^{2,3} Maartje J. Vuerhard,¹ Valerie Calvert,² Clarissa Kooi,¹ Jessica G.C.A.M. Buijs-Gladdines,¹ Willem K. Smits,¹ Edwin Sonneveld, Anjo J.P. Veerman,^{4,5} Willem A. Kamps,^{4,6} Martin Horstmann,^{7,8} Rob Pieters,¹ and Jules P.P. Meijerink¹

¹Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands; ²Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA; ³NCI-FDA Clinical Proteomics Program, Food and Drug Administration, Bethesda, MD, USA; ⁴Dutch Childhood Oncology Group (DCOG), the Hague, the Netherlands; ⁵Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, the Netherlands; ⁶Department of Pediatric Oncology, University of Groningen-Beatrix Children's Hospital, Groningen, the Netherlands; ⁷German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia (COALL), Hamburg, Germany; and ⁸Research Institute Children's Cancer Center Hamburg, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Citation: Zuurbier L, Petricoin 3rd EF, Vuerhard MJ, Calvert V, Kooi C, Buijs-Gladdines JGCAM, Smits WK, Sonneveld E, Veerman AJP, Kamps WA, Horstmann M, Pieters R, and Meijerink JPP. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia. Haematologica 2012;97(09):1405-1413. doi:10.3324/haematol.2011.059030

Online Supplementary Design an Methods

Cell culture, $\gamma\text{-secretase}$ inhibitor treatment and cell cycle analysis

T-ALL cell lines (DSMZ, Braunschweig, Germany) were cultured in RMPI-1640 supplemented with 10-20% fetal calf serum (Integro, Zaandam, the Netherlands), 100 IU/mL penicillin, 100 µg/mL streptomycin and 0.125 µg/mL fungizone (Invitrogen, Life Technologies, Breda, the Netherlands) at 37°C under 5% CO₂. T-ALL cell lines (JURKAT, CEM, LOUCY, SKW3, ALL SIL, HPBALL, PF382, HSB2, PEER, MOLT3, MOLT16, P12 ICHIKAWA, KARPAS45, RPMI8402, BE13, TALL1, SUPT1, KE37 and DND41) were grown under 1 µM Compound E (Enzo Life sciences (Alexis), Lausen, Switzerland) or 0.002% DMSO for four days, and 1x10⁶ cells were harvested. Cells were fixed with 70% cold ethanol and stained with propidium iodide (Invitrogen), after trypsin (Gibco BRL, Life Technologies, Breda, the Netherlands) and RNase A (Sigma, Zwijndrecht, the Netherlands) treatment. DNA content was measured and analyzed by flow cytometry (FACSCalibur, Becton Dickson, San Jose, CA, USA).

Genomic DNA and RNA extraction

Genomic DNA and RNA were isolated from at least $5x10^6$ leukemic cells using the Trizol reagent (Invitrogen) according to the manufacturer's instructions with minor modifications.¹ Copy-DNA synthesis of 1 μ g of total RNA was performed as previously described before.¹ DNA was stored at 40°C, whereas RNA and cDNA were stored at -80°C.

Detection of mutations and splice variants

The phosphatase domain and C2-domain of *PTEN* (exons 1-9), the pleckstrin homology (PH) domain of *AKT1* (exon 4), the SH2-domain of *PIK3CA* (p85, exons 12 and 13) and the accessory domain of *PIK3RI* (p110, exon 10) were amplified and sequenced. Primers used are described in the *Online Supplementary Table S1*. PCR reactions were performed on 50 ng of DNA, 300 nM of primers, 200 μ M of dNTPs, 4 mM MgCl₂, 1.25 U of ampli*Taq* gold (Applied Biosystems, Foster City, CA, USA) in 1 x PCR buffer II (Applied Biosystems) in a volume of 50 μ L. After denaturation at 94°C for 5 min, PCR was performed for 40 cycles

at 94°C for 15 min and 60°C for 1 min. Due to the GC-rich content, PCR of *PTEN* exon 1 was followed by a second asymmetric PCR for 10 cycles, using the Forward or Reverse primer. PCR products were purified with the Millipore Vacuum Manifold filter system (Millipore, Billerica, MA, USA) and sequenced (BigDye Terminator v3.1 Cycle sequencing Kit, Applied Biosystems) on an ABI PRISM 3130 DNA Analyzer (Applied Biosystems). Amplicons of patients who demonstrated two mutations were cloned using the TOPO-TA cloning kit (Invitrogen) to determine whether mutations occurred in *cis* or *trans*.

To examine promoter mutations, one primer set was used to amplify the promoter area. PCR-reactions were carried out as described above in the presence of 2 mM MgCl² and 5% DMSO. Annealing temperature started at 63°C, and was lowered by 0.5°C each cycle till a final annealing temperature of 58°C was reached. To investigate alternative *PTEN*splicing, two primer pairs were used to amplify the complete *PTEN* transcript, using PCR conditions as described above in the presence of 2 mM MgCl². *NOTCH1* mutations were identified as described in our previous study.²

Methylation specific PCR (MSP)

For methylation specific PCR (MSP), sodium bisulfite conversion was carried out using the EZ DNA methylation kit (Zymo research, Orange, CA, USA). Primers used are listed in the *Online Supplementary Table S1*. PCR was performed using 0.6 U Hotstar Taq plus DNA polymerase (Qiagen, Venlo, the Netherlands), 1 x PCR buffer, 200 μ M dNTPs, 300 nM primers, 1 x Q-solution, 3.5 mM MgCl2 and 100 ng converted DNA in a total volume of 50 μ L. *Taq* polymerase was activated at 95°C for 5 min, followed by 35 PCR cycles at 95°C for 30 s, 59°C for 30 s and 72°C for 1 min, and a final elongation step at 72°C for 10 min. *In vitro* methylated DNA with CpG methyltransferase Sss1 and co-substrate S-adeno-sylmethionine (SAM, New England Biolabs, Ipswich, MA, USA) served as positive control, untreated genomic DNA served as negative control.

Fluorescence in situ hybridization analysis (FISH) and RQ-PCR

Rearrangements of the *TLX1*, *TLX3*, *TAL1*, *LMO2* and *MLL* loci were determined with fluorescence *in situ* hybridization analysis (FISH) as pre-

viously described.^{1,3,4} *SET-NUP214, CALM-AF10* or *SIL-TAL1* fusion products or expression levels of *TLX1* or *TLX3* were detected by an RQ-PCR strategy as described.^{1,3,4} BAC clones and RQ-PCR primers/probes are summarized in the *Online Supplementary Table S2.* To identify *PTEN* deletions by FISH, bacterial artificial chromosomes (BAC) clones RP11-846G17 and/or RP11-124B18 were used. Probe RP11-265I15 covering the X-chromosomal *BEX1* gene was used as control. BACs were obtained from BAC/PAC Resource Center (Children's Hospital, Oakland, CA, USA).

Microarray-based comparative genome hybridization (array-CGH)

Array-CGH analysis was performed on the human genome CGH Microarray 44A (n=33), 105K (n=2), and 400 K (n=78) (Agilent Technologies, Santa-Clara, CA, USA), which consists of 60-mer oligonucleotide probes that span both coding and non-coding sequences. The procedure was carried out as previously described.³

Western blot procedure

Western blot was performed as previously described.² Antibodies were obtained from Cell Signaling Technology (Beverly, MA, USA) for PTEN (Cat#9552), phosphorylated (S380) PTEN (Cat#9551), phosphorylated (Thr308 and S473) AKT (Cat#9275 and 9271), phosphorylated (S2448 and S2481) mTOR (Cat#2971 and 2974), phosphorylated (Thr389) p70 S6 kinase (Cat#9205), phosphorylated (S65 and T70) 4E-BP1 (Cat#9451 and 9455), phosphorylated (Y1571) TSC2 (Cat#3614), phosphorylated (S256) FOXO1 (Cat#9461), intracellular NOTCH1 (ICN) Val1744 (Cat#2421), cMYC (Cat#9402) and MUSASHI1/2 (Cat#2154). To detect phosphorylated (S246) PRAS40, Cat#44-1100 from Invitrogen/Biosource was used. Total protein load was determined by staining for actin (Sigma, Cat#2547).

Reverse-phase protein microarray analysis (RPMA)

Reverse-phase protein microarray construction and analysis was performed essentially as previously described. 2,5,6

References

- Van Vlierberghe P, van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J, et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood. 2006;108(10): 3520-9.
- Zuurbier L, Homminga I, Calvert V, te Winkel ML, Buijs-Gladdines JG, Kooi C, et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia. 2010;24(12):2014-22.
- Van Vlierberghe P, van Grotel M, Tchinda J, Lee C, Beverloo HB, van der Spek PJ, et al. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood. 2008;111(9):4668-80.
- van Grotel M, Meijerink JP, Beverloo HB, Langerak AW, Buys-Gladdines JG, Schneider P, et al. The outcome of molecular-cytogenetic sub-

groups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica. 2006;91(9):1212-21.

- Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 2001;20(16):1981-9.
- Petricoin EF 3rd, Espina V, Araujo RP, Midura B, Yeung C, Wan X, et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res. 2007;67(7):3431-40.
- 7. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cavé H, Pane F, Aerts JL, De Micheli D, Thirion X, Pradel V, González M, Viehmann S, Malec M, Saglio G, van Dongen JJ. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of

fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia. 2003;17(12):2318-57

- van Grotel M, Meijerink JP, Beverloo HB, Langerak AW, Buys-Gladdines JG, Schneider P, Poulsen TS, den Boer ML, Horstmann M, Kamps WA, Veerman AJ, van Wering ER, van Noesel MM, Pieters R. The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols.Haematologica. 2006;91(9):1212-21.
- Stam RW, den Boer ML, Meijerink JP, Ebus ME, Peters GJ, Noordhuis P, Janka-Schaub GE, Armstrong SA, Korsmeyer SJ, Pieters R. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood. 2003;101(4):1270-6.
- Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448(7152): 439-44.

Online Supplementary Figure S1. PTEN deletions in T-ALL patients detected by array CGH and FISH analysis. (A) Array CGH and (B) FISH results of T-ALL patients with a clonal PTEN deletion. (C) Array CGH and (D) FISH results of patients with a subclonal PTEN deletion.

Online Supplementary Figure S2. PTEN protein expression levels in PTEN wild-type patients, PTEN monoallelic and biallelic-mutated T-ALL patients.

genomic PTEN sequence

genomic PTEN sequence similar to PTENP1 pseudogene

Online Supplementary Figure S3. Methylation-specific PCR of the PTEN promoter region T-ALL patients. in (A) Schematic overview of PTEN promoter area depicting overlapping sequences between the PTEN gene and the PTENP1 pseudogene in gray and the unique PTEN sequence in black. Primers used for methylation-specific PCR are indicated by arrows where M indicates primers used for the amplification of methylated DNA and U indicates primers used for the amplification of unmethylat-ed DNA. -1223 and -1032 indicate the numbers of base pairs before the PTEN start site. (B) PCR results of methylation-specific PCR in mono-allelic and bi-allelic mutated/deleted patients and (C) in *PTEN* wild-type patients and cell lines with and without PTEN expression. + indicates the the positive control. U shows the PCR result for unmethylated DNA (124bp) and M for methylated DNA (134bp).

Online Supplementary Figure S4. Total and phosphorylated levels of PTEN/AKT and NOTCH pathway mediators in T-ALL. (A) Schematic overview of AKT and its potential downstream signaling partners. (B) The expression of phosphory-lated AKT (T308 and S473) levels as well as the activation status of potential downstream signaling components in PTEN/AKT mutant versus PTEN/AKT non-mutated (wild-type) patients, analyzed by protein reverse-phase Potential microarray. downstream targets include mTOR (S2448 and S2481), p70 S6 kinase (T389), 4EBP1 (S65 and T70), TSC2 (Y1571), PRAS40 (S246), and F0X01 (S256). (C) The expression of intracellular NOTCH1 (ICN), the NOTCH1 target molecule cMYC, and the indirect NOTCH1 activator MUSASHI1/2 (MSI1/2), in PTEN/AKT mutant and PTEN/AKT non-mutated T-ALL patient samples. The P value for each comparison is indicated.

Online Supplementary Figure S5. PTEN mutations are not necessarily related with resistance towards the y-secretase inhibitor compound E. (A) Response of indicated T-ALL cell lines towards the γ -secretase inhibitor compound E, measured by G0/G1-arrest following 96 h of y-secretase inhibitor treatment relative to DMSO-treated control cells. Cell lines that do not undergo G0/G1-arrest are indicated as resistant cell lines, whereas cell lines that do undergo G0/G1-arrest following incubation with compound E are indicated as sensitive. *Cell lines with reduced PTEN expression through muta-tions, deletions or aberrant splicing. PTEN and NOTCH1/FBXW7 mutational status. Genetic aberrations in the HPBALL cell line that result in low or loss of PTEN protein levels have not been identified. (B) Western blot analysis of PTEN protein levels. Cell lines have been ordered based on their compound E resistance with most resistant cell lines at the upper left corner to most sensitive cell lines in the lower right corner. β actin is used as loading control.

Online Supplementary Figure S6. Survival curves of T-ALL patients in both cohorts separately. (A) Relapse free survival and event free survival of *PTEN/AKT* wild-type (gray line) and mutant patients (black line) in DCOG and COALL cohorts. (B) Relapse free survival and event free survival of *PTEN/AKT* and *NOTCH1/FBXW7* wild-type patients (dark gray line), *PTEN/AKT* mutant (black line), *NOTCH1/FBXW7* mutant (light gray line) and of patients with *PTEN/AKT* as well as *NOTCH1/FBXW7* mutations (dotted black line) in DCOG and COALL cohorts.

Online Supplmentary	Table S1. Prime	's used for PCR	amplification	of PTEN, AKI	and PI3K.
---------------------	-----------------	-----------------	---------------	--------------	-----------

Exon	Forward primer sequence	Reverse primer sequence	Product (Bp)
PTEN exon 1	5'-AGCTTCTGCCATCTCTCC-3'	5'-TTTCGCATCCGTCTACTC-3'	203
PTEN exon 2	5'-ACATTGACCACCTTTTATTACTC-3'	5'-GGTAAGCCAAAAAATGATTATAG-3'	368
PTEN exon 3	5'-ATGGTGGCTTTTTGTTTGT-3'	5'-GCTCTTGGACTTCTTGACTTA-3'	229
PTEN exon 4	5'-TCAGGCAATGTTTGTTAGTATT-3'	5'-ATCGGGTTTAAGTTATACAACATA-3'	175
PTEN exon 5	5'-TTGTATGCAACATTTCTAAAGTT-3'	5'-ATCTGTTTTCCAATAAATTCTCA-3'	393
PTEN exon 6	5'-ACGACCCAGTTACCATAGC-3'	5'-TAGCCCAATGAGTTGAACA-3'	405
PTEN exon 7	5'-AATCGTTTTTGACAGTTTGAC-3'	5'-TCACCAATGCCAGAGTAAG-5'	378
PTEN exon 8	5'-GATTGCCTTATAATAGTCTTTGTG-3'	5'-TTTTTTGACGCTGTGTACATT-3'	594
PTEN exon 9	5'-GCCTCTTAAAGATCATGTTTG-3'	5'-GGTCCATTTTCAGTTTATTCA-3'	399
PTEN cDNA PCR I	5'-TCCATCCTGCAGAAGAAG-3'	5'-CAGATGATTCTTTAACAGGTAGC-3'	639
PTEN cDNA PCR II	5'-AGAGGCGCTATGTGTATTATTAT-3'	5'-GTCCATTTTCAGTTTATTCAAG-3'	764
PTEN USP	5'-TTTTGAGGTGGTTTGGGTTTTTGGT-3'	5'-ACACAATCACATCCCAACACCA-3'	124
PTEN MSP	5'-TTTTTTTCGGTTTTTCGAGGC-3'	5'-CAATCGCGTCCCAACGCCG-3'	134
PTEN promoter	5'-CCTGCATTTCCCTCTACA-3'	5'-GCTGCACGGTTAGAAAAG-3'	801
AKT1 exon 4	5'-CAGGGCCGTTTCTGTC-3'	5'-CCCAGCCAGTGCTTGT-3'	434
PIK3RI (p110) exon 10	5'-GTTGGCTAACTTCAGCAGTTAC-3'	5'-TGTGCCAACTACCAATGTAGTA-3'	605
PIK3CA (p85) exon 12+13	5'-CTGGGAAACCATAGTGAAACT-3'	5'-ATGGCACTGAGTTTATACATTTTC-3'	573

Online Supplementary Table S2. RQ-PCR primer and probes and FISH BAC-clones.

Gene	Aberration	RQ-PCR primer/probe	FISH type	BAC clones	Refs
TAL1	del(1)(p32)	FW 5'-CGC TCC TAC CCT GCA AAC A-3'	Fusion	Dako	Gabert et al ., Leukemia 20037
	or t(1;14)(p32;q11)	RV 5'-CCG AGG AAG AGG ATG CAC A-3'			
	or t(1;7)(p32;q34)	5'-(FAM)-ACC TCA GCT CCG CGG AAG TTG C-(TAMRA)-3'			
LMO2	del(11)(p12p13		Split	RP11-646J21 (telomeric)	Van Vlierberghe et al., Blood 2006 ¹
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				RP11-98C11 (telomeric)	
			-	RP11-603J2 (telomeric)	
				RP11-36H11 (centromeric)	
				RP11-769M16 (centromeric)	
				RP11-465C16 (centromeric)	
LMO2	t(11;14)(p13;q11)		Fusion	RP11-646J21	Van Vlierberghe et al., Blood 20061
	or t(7;11)(q34;p13)			RP11-98C11	
CALM-AE10	t(10:11)(p13:q14)	EW 5'-TTA ACT GGG GGA TCT AAC TG-3'	Solit	RP11-29E15 (centromeric CA/M)	Van Grotel et al Haematologica 20068
CALMPAT TO	(10,11)(p10)(11)	5' transcript BV 5'-GCT GCT TTG CTT TCT CTT C.3'	Opine	RP11_12D16 (telomeric CA/M)	
		3' transcript RV 5-CCC TCT GAC CCT CTA GCT TC-3'	Eucion	RP11-12D16 (telometic CALM)	Van Grotel et al Haematologica 20068
		5'-(FAM)-CTT GGA ATG CGG CAA CAA TG-(TAMRA)-3'	Tusion	RP11-399C16 (centromeric AF10)	
TI X1	t(10:14)(a24:a11)	EW 5'- CTC ACT GGC CTC ACC TT-3'	Split	Dako	
1211	or t(7:10)(a34:a24)	RV 5'-CTG TGC CAG GCT CTT CT-3'	opin	Dano	
	01 ((1,10)(001,021)	5'-(FAM)-CCT TCA CAC GCC TGC AGA TC-(TAMRA)-3'			
TI X3	t/5:14)(a35:a32) #	EW 5'-TCT GCG AGC TGG AAA A-3'	Split	Dako	
TEXO	1(0,14)(00,002)#	BV 5'-GAT GGA GTC GTT GAG GC-3'	Opine	Dako	
		5'-(FAM)-CCA AAA CCG GAG GAC CAA GT-(TAMRA)-3'			
MLL	11o23 rearrangements		Split	Dako	
	li i que roaniangenterne		- Prot		
SET-NUP214	del(9)(q34)	FW 5'-TTC CCG ATA TGG ATG ATG-3'			Van Vlierberghe et al., Blood 2008 ³
		RV 5'-CTT TGG GCA AGG ATT TG-3'			
GAPDH		FW 5'-GTC GGA GTC AAC GGA TT-3'			Stam et al ., Blood 2003 ⁸
		RV 5'-AAG CTT CCC GTT CTC AG-3'			
		5'-(FAM)-TCA ACT ACA TGG TTT ACA TGT TCC AA-(TAMRA)-3'	2		

Primer and probe combinations to identify the SIL-TAL1 deletion, CALM-AF10 5'or 3' fusion transcripts, TLX1 transcripts, TLX3 transcripts, or the SETNUP214 gene fusion by RQ-PCR analysis. For the detection of mRNA transcripts, GAPDH is used as normalization control. BAC clones for the various FISH analyses to identify TAL1 rearrangements (including the SIL-TAL1 deletion) the LMO2 deletion or translocation variants, the CALM-AF10 translocation, TLX1 translocations, the TLX3 translocation and #other TLX3 translocation or MLL rearrangements.

Patient	PTEN mut	ation	Affected	PTEN	PTEN	PTEN	AKT	NOTCH/FBXW7
	Allele A	Allele B	exon(s)	deletion	splicing	protein	mutation	mutation
335	R129G	T231fsX24	ex5 & ex7	WT/WT	ND	+	WT	WT
344	F144fsX37	R232fsX23	ex5 & ex7	subcional	ND	absent	ND	PEST
531*	P246fsX11	-	ex7	del/WT	ND	absent	WT	WT
750	D235fsX9	P245fsX12	ex7	ND	ND	absent	WТ	PEST
1032	R232fsX13	Q244fsX8	ex7	WT/WT	ND	absent	WT	WТ
1959	R129fsX4/P245fsX3	WT/-	ex5 & ex7	subcional	ND	ND	WT	WT
2759	R232*	WT	ex7	WT/WT	WT	ND	WT	WT
2775	R233fsX10	P245fsX9	ex7	WT/WT	ND	ND	WT	HD
2792	R232fsX10	P243fsX18	ex7	WT/WT	ND	ND	WT	WT
9160	C249fsX10	WT	ex7	WT/WT	WT	absent	WT	WT
9376	R232fsX10	P245fsX14	ex7	WT/WT	ND	absent	WT	FBXW7
9577	L180fsX2	1305fsX7	ex6 & ex8	WT/WT	ND	absent	WT	HD
9919	T231fsX14	WT	ex7	WT/WT	WT	absent	WT	HD/FBXW7
9963	T276A	WT	ex8	WT/WT	WT	absent	WT	WT
10111	C104fsX2	K236fsX5	ex5 & ex7	WT/WT	ND	absent	WT	WT
2852	P245fsX3	WT	ex7	WT/WT	altered/WT	ND	WT	WT
321	WT	-	-	del/WT	WT	absent	WT	PEST
2486	-	-	-	del/del	ND	absent	WT	WT
8815	WT	-	-	del/WT	altered	absent	WT	WT
9243	WT	WT	-	WT/WT	altered	absent	WT	WT
769	WT	WT		WT/WT	WT	absent	WT	FBXW7
8629	WT	WT	-	WT/WT	WT	absent	WT	HD
2781	WT	WT	-	WT/WT	ND	ND	E17K	WT
2787	WT	WT	-	ND	ND	ND	E17K	WT
3028	WT	WT		ND	ND	ND	E17K	FBXW7

Online Supplementary Table S3. PTEN and AKT aberrations in pediatric T-ALL.

Homozygous mutations are marked by an asterisk; ND: not done; WT: wild-type; Del: deletion. NOTCH1-activating mutations are indicated as heterodimerization domain (HD) or proline, glutamic acid, serine, and threonine rich domain (PEST) mutations or mutations that occur in the E3-ubiquitin ligase FBXW7 gen.

Online Supplementary Table S4. PTEN genetics of T-ALL cell lines.

Patient	PTEN mu	utation	Affected	PTEN	PTEN	PTEN	AKT	NOTCH/FBXW7	PTEN
	Allele A	Allele B	exon(s)	splicing	deletion	protein	mutation	mutation	reference
JURKAT	P245fsX9	WT	ex7	ND	ND	ND	ND	JM/FBXW7	new
MOLT16	P245fsX12	P245fsX12	ex7	ND	ND	absent	ND	WT	new
MOLT3	D267fsX?	WT	ex8	ND	ND	absent	ND	HD/PEST	18
PF382	V84fsX?	WT	ex4	ND	ND	absent	ND	HD/PEST	23
CEM	Y28fsX?	WT	ex2	ND	ND	absent	ND	HD/FBXW7	18,23
P12ichikaw a	W274X	WT	ex8	ND	ND	absent	ND	FBXW7	18,23
KARPAS45	R334*	WT	ex7	ND	ND	absent	ND	HD/FBXW7	18
RPMI8402	K236fsX?	R159S	ex7	ND	ND	low present	ND	FBXW7	18,23
SUPT1	R172C	WT	ex6	ND	del/WT/WT/WT	low present	ND	WT	new
LOUCY	WT	-		altered	del/WT	absent	ND	WT	18+confirmed
SKW3	ND	-	-	ND	del/WT	absent	ND	PEST	ND
KE37	WT	WT		no transcript	del/WT/del/WT	absent	ND	PEST	18
HPBALL	WT	WT	· · ·	WT	WT/WT	low present	ND	HD/PEST	18,23
HSB2	WT	WT	-	no transcript	WT/WT	+	ND	HD/FBXW7	new
PEER	WT	WT	-	ND	ND	+	ND	HD/FBXW7	new
ALLSIL	WT	WT	-	ND	ND	+	ND	HD/PEST	23
DND41	WT	WT	12	ND	ND	+	ND	HD/PEST	18,23
TALL1	WT	WT	-	ND	ND	+	ND	WT	18+confirmed
BE13	WT	WT		ND	ND	+	ND	HD/FBXW7	18+confirmed

Online Supplementary Table S5. Patients' characteristics and mutation overview for 146 pediatric T-ALL patients.

Table Patients	Stratum	Gender	Age	WBC	GEP	Unsupervized cluster	TAL	LMO	TUG	HOXA	MEF2C	TLXI	NKX2-1/NKX2-2	unknown	NOTCH1/FBXW7	PTEN/AKT/Jow PTEN protein	NOTCH1/FBXW7/PTEN/AKT status	del(9)(p21)	WT1	PHF6
1	1	1	7,5	130	1	1	1	0	0	0	0	0	0	0	1	0	HD/PEST	1	0	0
3	1	1	3.3	590	1	1	1	0	0	0	0	0	0	0	0	1	PTEN	9999	0	0
4	1	1	13,4	41	1	1	1	0	0	0	0	0	o	0	1	0	HD	1	o	0
5	1	1	11,9	110	1	1	1	0	0	0	0	0	0	0	0	0	WT	1	0	0
7	1	1	10.4	112	1	1	1	0	0	0	0	0	0	0	0 3333	9333	9999 WT	1	0	0
8	1	z	9,8	28	0	9999	1	0	0	0	0	0	0	0	1	0	PEST	1	ō	0
9	1	2	13	95	1	1	1	0	0	0	0	0	0	0	1	0	HD	1	0	0
10	1	1	14.9	188	0	9999	1	0	0	0	0	0	0	0	1	0	HD/PEST/FBXW7	9999	0	0
12	1	1	11,3	192	1	1	1	0	0	0	0	0	0	0	1	0	PEST	1	0	0
13	1	1	9,3	310	1	1	1	0	0	0	0	0	0	0	1	0	HD/FBXW7	9999	0	1
14	1	1	15,4	200	1	1 9999	1	0	0	0	0	0	0	0	1	0	HD/FBXW7	9999	0	0
16	1	1	7,9	124	1	2	0	0	0	1	0	0	0	0	1	0	HD/PEST	1	0	o
17	1	1	10,1	14	1	4	0	0	0	1	0	0	0	0	0	o	WT	0	0	0
18	1	1	5,5	185	1	2	0	0	1	0	0	0	0	0	0	0	WT	1	0	1
20	1	1	5,9	276	1	2	õ	0	1	0	ō	0	0	0	1	0	FBXW7	1	ō	ō
21	1	2	12,3	34	0	9999	0	0	1	0	0	0	0	0	1	0	HD/PEST	9999	0	0
22	1	1	6,3	174	1	2	0	0	1	0	0	0	0	0	1	0	PEST	1	0	1
23	1	1	5,3	32	0	9999	0	0	1	0	0	0	0	0	1	0	HD/F8XW7	9999	1	0
25	1	2	8,8	89	1	2	0	0	1	0	0	0	0	0	1	0	HD/FBXW7	o	0	0
26	1	1	5,1	45	0	9999	0	0	1	0	0	0	0	0	1	0	HD/FBXW7	1	0	0
27		1	5.8	140	0	9999	0	0	1	0	0	0	0	0	1	0	HD	1	1	0
29	1	1	4,5	405	1	2	ō	0	î	0	0	0	0	0	î	0	IM	9999	1	1
30	1	1	7,2	354	0	9999	0	0	1	0	0	0	0	0	0	0	WT	1	0	9999
31	1	1	6,2	69	0	9999	0	0	1	0	0	0	0	0	1	0	HD HD/EDOW7	9999	0	0
33	1	2	7,8	90	1	2	õ	0	1	0	0	0	0	0	9999	9999	9999	9999	ō	9999
34	1	2	6,4	98	1	2	0	o	1	0	0	0	0	0	1	0	HD	1	1	0
35	1	1	10,3	149	0	9999	0	0	0	0	0	1	0	0	1	0	HD HD	1	0	0
37	1	1	9.9	27	1	í	0	0	ő	0	0	1	0	0	ô	1	AKT1	1	1	1
38	1	1	3,5	57	1	3	0	0	0	0	0	1	0	0	0	1	PTEN	1	0	0
39	1	2	4,4	280	1	2	0	0	0	0	0	1	0	0	1	0	HD/PEST	1	0	1
40	1	2	7,8	153	0	2 9999	0	0	0	1	0	1	0	0	9999	9999	99999 WT	99999	0	0
42	î	2	12	41	0	9999	0	0	0	1	0	0	0	0	1	0	HD	1	0	0
43	1	1	9	95	1	1	0	1	0	0	0	0	0	0	1	0	PEST	1	0	0
44	1	1	1,8	250	0	9999	0	1	0	0	0	0	0	0	0	0	WT	0	0	0
46	î	1	2,3	125	1	i	0	1	0	0	0	0	0	0	ô	0	WT	1	ő	a
47	1	2	16,7	86	1	1	0	۵	۵	0	0	0	0	1	0	0	wr	9999	٥	٥
48	1	1	13,8	129	0	9999	0	0	0	0	0	0	0	1	0	1	PTEN	9999	0	0
50	- î	1	1.5	135	1	3	ő	ō	0	0	0	õ	0	1	ō	0	WT	1	ő	0
51	1	1	15,7	129	1	3	0	0	0	0	0	0	1	0	1	0	HD	0	0	1
52	1	1	3,8	92	3	3	0	0	0	0	0	0	0		1	0	HD	1	0	0
54	î	2	2.8	58	0	9999	0	0	0	0	0	0	0	1	0	0	WT	9999	0	0
55	1	1	6,2	191	0	9999	0	1	0	0	0	0	0	0	1	0	FBXW7	1	0	0
56	1	1	3,9	435	1	4	0	0	0	0	0	0	0	1	0	0	WT	1	0	0
57	1	1	13,2	530	0	9999	0	0	0	0	0	0	0	1	0	0	WT	9999	0	0
59	1	2	5,3	60	0	9999	0	0	0	0	0	0	0	1	1	0	HD	9999	1	0
60	1	2	8,4	15	1	4	0	0	Ó	0	1	0	0	0	1	0	PEST	1	0	0
61	1	2	3,8	158	1	1 0000	1	0	0	0	0	0	0	0	1	1	FBXW7/No PTEN protein	9999	0	0
63	1	1	13,9	600	1	1	0	1	0	0	o	0	0	ô	ō	1	PTEN	1	õ	0
64	1	1	13,7	0.7900	1	1	1	1	0	0	0	0	0	0	0	0	WT	1	0	9999
65	1	2	1,9	387	0	9999	0	0	0	0	0	0	0	1	1	0	HD	1	0	9999
67	î	2	4.7	212	ò	9999	0	1	0	0	0	0	ô	0	1	0	PEST	9999	0	0
68	1	2	15,9	231	0	9999	0	0	0	0	0	0	0	1	1	0	HD	1	0	9999
69	1	2	4,3	5	0	9999	0	0	0	0	0	0	0	1	0	1	PTEN	0	0	0
70	1	1	6,2	167	1	1 9999	0	1	0	0	0	0	0	0	0	1	AKT1	9999	0	9999
72	1	1	1,3	177	0	9999	0	õ	0	0	0	0	0	1	1	0	HD/FBXW7	0	0	9999
73	2	1	2,2	63	1	3	1	0	0	0	0	0	0	0	1	1	PTEN/PEST	1	0	9999
74	2	1	4,3	252	1	1	1	0	0	0	0	0	0	0	0	0	WT	1 0000	0	9999
75	2	2	9.9	246	1	1	1	0	0	0	0	0	0	0	0	1	PTÉN	1	0	9999
77	2	1	7,5	156	1	i	1	1	0	0	0	ō	0	0	1	0	PEST	ĩ	0	9999
78	2	1	4,6	57	1	1	1	0	0	0	0	0	0	0	0	0	WT	9999	0	9999
79	2	1	4,3	178	1	1	1	0	0	0	0	0	0	0	0	1	PTEN	1	0	9999
81	2	1	4,3	450	1	1	1	0	0	0	0	o	0	0	0	1	WT /No PTEN protein	9999	0	9999
82	2	1	7,3	118	1	1	1	0	0	0	0	0	0	0	0	1	PTEN	1	0	9999
83	2	1	4,9	30	1	1	1	0	0	0	0	0	0	0	1	1	HD/No PTEN protein	0	0	9999
85	2	1	15,4	16	1	1	1	0	0	0	0	0	0	0	0	0	WT	1	0	9999
0.6			67				0	0		0	0	0	0	0			un Marcore			0000

continue	d from	the	previo	us pa	ge																
96	1		0.7			,		0		0	0						40/50/04/2			0000	
87	3	1	6.8	77	÷.	2	0	0	- ÷	0	0	0	0	0	î	0	HD	1	ô	9999	
88	2	2	11.7	81	1	2	0	0	1	0	0	0	0	0	1	0	PEST	1	1	0000	
89	2	1	8.6	46	1	2	0	0	1	0	0	0	0	0	0	0	WT	1	0	9999	
90	2	1	5.3	3	1	2	0	0	1	0	0	0	0	0	1	0	HD	1	0	9999	
91	2	1	5	64	1	3	0	0	1	0	0	0	0	0	1	0	HD/F8XW7	9999	1	9999	
92	2	1	14,9	30	1	1	0	0	1	0	0	0	0	0	1	1	FBXW7/AKT1	9999	1	9999	
93	2	1	10,5	2	1	2	0	0	1	0	0	0	0	0	0	0	WT	1	0	9999	
94	2	1	12	350	1	2	0	0	1	0	0	0	0	0	1	0	HD	9999	1	9999	
95	2	1	7,5	120	1	2	0	0	1	0	0	0	0	0	1	0	HD	9999	0	9999	
96	2	2	14,1	289	1	2	0	0	1	0	0	0	0	0	9999	0	9999	9999	0	9999	
97	2	1	5,8	170	1	2	0	0	1	0	0	0	0	0	1	0	HD	1	1	9999	
98	2	2	13,2	107	1	2	0	0	0	D	0	1	0	0	0	0	WT	1	0	9999	
99	2	2	5,5	89	1	3	0	0	0	0	0	1	0	0	1	0	HD	1	0	9999	
100	2	1	8	180	1	1	0	1	0	0	0	0	0	0	1	0	HD	1	0	9999	
101	2	2	12,1	388	1	1	0	1	0	0	0	0	0	0	0	0	WT	1	0	9999	
102	2	1	2,1	235	1	1	0	1	0	0	0	0	0	0	0	0	WT	1	0	9999	
103	2	1	13,4	110	1	1	0	1	0	0	0	0	0	0	1	8	FBXW7	1	0	9999	
104	4	4	14,9	109	1	1	0	1	0	0	0	0	0	0	1	0	PD/PDXW7	1	0	33339	
105	÷.		2,0	185		99999	0	- ÷	0	0		0	0	0		1	PTEN/PEST	1 C	0	9999	
100	â	1	35.4	109	- C	4	0		0	0	0	0	0	0	\$	0	DEET		0	9999	
109	2		12.4	94		2	0	0	0	0	0	ő	0	4		1	DTEN/DECT	1	0	9999	
100	2	2	64	207	-		0	0	0	0	1	0	0	0	1	0	HDIPEST	0	0	9999	
110	5	2	10.8	248	÷.	4	0	0	0	0	- P	0	0	0	÷	0	PEST	0	0	9999	
111	3	ĩ	10.9	2	- G		0	0	0	0	÷.	0	0	0	â	0	WT	0	0	9999	
112	2	î.	4.2	108	1	4	0	0	0	0	0	0	0	1	ĩ	0	HD/PEST	0	0	9999	
113	2	î	3.1	88	1	4	0	0	0	0	1	0	ō	0	ò	0	WT	0	ō	9999	
114	2	2	10.5	213	1	1	0	0	0	0	0	0	0	1	0	0	WT	1	0	9999	
115	2	2	3.7	137	1	4	0	0	0	0	1	0	0	0	1	1	PTEN/HD	1	0	9999	
116	2	1	16,1	9	1	4	0	0	0	0	0	0	0	1	1	0	PEST	0	0	9999	
117	2	2	17,1	15	1	2	0	0	0	1	0	0	0	0	1	0	HD/PEST	1	0	9999	
118	2	2	15,1	46	1	4	0	0	0	1	0	0	0	0	0	0	WT	0	0	9999	
119	2	1	16,7	69	1	3	0	0	0	1	0	0	0	0	1	0	FBXW7	1	0	9999	
120	2	1	17,8	57	1	2	0	0	0	1	0	0	0	0	1	0	IM	0	0	9999	
121	2	1	13,2	6	1	4	0	0	0	1	0	0	0	0	1	0	PEST	0	0	9999	
122	2	1	7,5	234	1	2	0	0	0	1	0	0	0	0	1	D	PEST	1	1	9999	
123	2	2	10,5	142	1	2	0	0	0	1	0	0	0	0	1	0	HD/FBXW7	0	1	9999	
124	2	2	15,4	213	1	2	0	0	0	1	0	0	0	0	1	0	HD/FBXW7	0	0	9999	
125	2	1	/	152	1	1	0	0	0	0	0	0	0	1	0	0	WT	1	1	9999	
126	2	1	7,8	119	1	1	0	0	0	0	0	0	0	1	1	0	1M/PEST	0	0	3333	
127	÷	-	10	10		1	0	0	0	0	0		0			5	441	9999		3333	
120	5	1	10.1	204	÷.	1	0	0	0	0	0	0	0	1			HD	1	0	9999	
130	2	1	77	491	÷.		0	0	ő	0	0	ő		1	1	0	iM	1	0	99999	
131	2		14.9	221	-	1	0	0	0	0	0	0	ő		0	0	WT	î.	0	0000	
132	2	1	5.2	36		1	0	0	ő	0	o.	0	0	1	0	0	WT	1	0	9999	
133	2	1	7.6	41	1	1	ő	0	ŏ	0	0	0	0	1	1	0	FRXW7	1	õ	9999	
134	2	1	2.2	89	1	1	0	0	0	0	0	0	0	1	0	1	PTEN	1	0	9999	
135	2	1	2.9	183	1	1	0	1	0	0	0	0	0	0	1	1	PTEN/FBXW7	1	0	0000	
136	2	1	9.4	287	1	1	0	0	0	0	0	0	0	1	0	1	PTEN	1	0	9999	
137	2	1	4,6	57	1	3	0	0	0	0	0	0	1	0	1	0	HD	1	0	9999	
138	2	1	3,8	76	1	3	0	0	0	0	0	0	0	1	1	0	HD/PEST	1	0	9999	
139	2	2	11,1	214	1	1	0	0	0	0	0	0	0	1	0	0	WT	1	0	9999	
140	2	2	5,4	15	1	4	0	0	0	0	0	0	0	1	0	0	WT	1	0	9999	
141	2	1	6,9	30	1	3	0	0	0	0	0	0	1	0	1	o	HD	0	0	9999	
142	2	2	6,3	67	1	3	0	0	0	0	0	0	1	0	1	1	PTEN/HD/FBXW7	0	0	9999	
143	2	2	1,7	29	1	3	0	0	0	0	0	0	1	0	1	0	PEST	0	0	9999	
144	2	2	12,8	192	1	3	0	0	0	0	0	0	1	0	0	0	wt	1	0	9999	
145	2	1	7,5	295	1	2	0	0	1	0	0	0	0	0	1	0	HD	9999	0	9999	
146	1	4	17,3	40	0	9999	0	0	0	0	0	0	0	1	1	0	FBXW7	1	0	9999	

Legend for Table 55 Stratum, patients treated in DCOG [1] or COALL protocols [2]: Gender, Male [1] or Temple [2]: Ags in years; WBC, while blood cell courts ("2005/liter); GB7, Gene expression data present [1] or absent [0]; Unsupervised classing, TAL/LMO [1], TLX [2], proferative [3], Immature [4] (ref Hommings et al., Cancer Cell. 2011, 19(4):464-497.]; IX Organomics: Table 2011; Table 2012, Table 2012, Table 2014; Tab

Online Supplementary Table S6. Clinical and immunophenotypic data of *PTEN/AKT* and *NOTCH1/FBXW7*-mutated *versus* wild-type patients.

	W	ī	PTEN/AKT+NOTC	<i>H/FBXW7</i> abe Mut	erration
Total n. patients (n=141)	36	;		105	Р
Male	24			73	0.75
Female	12			32	
Median age (range)	7.1 (1.1-	-16.7)	7.6 (1.3-17.8)	0.05
Median WBC (range)	125 (2.0-	649.0)	124 (3	8.0-900.0)	0.61
Events (n=49)	WT n 9	(%)	Mu	t n(%) 40	Р
Relapse (%)	2	(22%)	33	(83%)	0.002 ⁺
Toxic death / 2nd malignancy (%)	4/3	(78%)	4/3	(17%)	0.03
Immunophenotypic (n=138)	WT n(%)	Mut n(%)	Р		
Pre-T/Pro-T +	9	(23%)	30	(77%)	0.61
Cortical T +	12	(21%)	46	(79%)	0.20
Mature T +	15	(37%)	26	(63%)	0.06

Significant P values are indicated in bold. All P values were calculated using Pearson's χ^2 test, unless indicated; WT: wild-type; Mut, mutant; P: P value; Median age indicated in years; \Box Mann-Whitney-U test; WBC: white blood cell count; white blood cell counts are indicated as number of blasts (x10°/L); 'Fisher's exact test.

Online Supplementary Table S7. Relapse free survival of patient groups based on clinical, (cyto)genetic or biological characteristics.

	DCOG		COALL		Overall stratified ana	alysis
Clinical (n=146)	5-year RFS (%±SD)	Р	5-year RFS (%±SD)	Р	5-year RFS (%±SD)	Р
Male (n=100) <i>vs.</i> female (n=46)	84±8 <i>vs</i> . 66±7	0.19	91±6 <i>vs.</i> 62±9	0.03	88±5 <i>vs</i> . 65±5	0.01
Age <10 (n=96) <i>vs.</i> \geq 10 year (n=50)	62±11 vs. 74±6	0.53	82±8 vs. 69±8	0.31	74±7 <i>vs.</i> 72±5	0.81
WBC <50 (n=31) <i>vs.</i> ≥50 *10 ⁹ /L (n=114)	69±6 vs. 80±13	0.4	70±7 vs. 84±10	0.13	70±5 <i>vs.</i> 83±8	0.09
Cytogenetics (n=146)						
TAL1 + (n=27) vs. TAL1 - (n=119)	92±7 vs. 66±6	0.07	62±15 <i>vs</i> . 76±6	0.27	79±9 vs. 71±5	0.47
<i>LMO2</i> + (n=14) <i>vs. LMO2</i> - (n=132)	57±19 <i>vs</i> . 73±6	0.43	75±22 vs. 74±6	0.73	64±15 <i>vs</i> . 74±4	0.70
TLX3 + (n=29) vs. TLX3 - (n=117)	57±12 vs. 75±6	0.11	54±17 <i>vs</i> . 78±6	0.17	56±10 vs. 77±4	0.04
TLX1 + (n=8) vs. TLX1 - (n=138)	80±18 vs. 70±6	0.54	73±6 vs. 100±0	0.46	86±13 <i>vs</i> . 72±4	0.37
HOXA + (n=13) vs. HOXA - (n=133)	40±23 vs. 74±6	0.15	83±15 <i>vs</i> . 73±6	0.62	64±15 vs. 74±4	0.53
\square <i>MEF2C</i> + (n=6) <i>vs. MEF2C</i> - (n=140)	73±6 <i>vs</i> . 71±6	0.56	80±18 vs. 100±0	0.85	83±15 <i>vs</i> . 72±4	0.65
□ <i>NKX2-1</i> + (n=7) <i>vs. NKX2-1</i> - (n=139)	100±0 vs. 70±6	0.40	100±0 vs. 71±7	0.20	100±0 vs. 71±4	0.13
⁺ Unknowns (n=42) <i>vs.</i> knowns (n=104)	75±10 vs. 70±7	0.81	78±10 vs. 73±7	0.88	77±7 vs. 71±5	0.78
Gene expression clusters (n=117) [‡]						
TAL/LMO + (n=53) vs. TAL/LMO - (n=64)	73±10 vs. 67±10	0.70	69±10 vs. 79±7	0.36	71±7 vs. 75±6	0.70
TLX + (n=30) vs. TLX - (n=87)	60±14 vs. 74±8	0.25	65±13 vs. 79±6	0.36	63±9 vs. 77±5	0.15
Proliferative + (n=19) vs. Proliferative - (n=98)	83±15 vs. 68±8	0.40	89±11 vs. 73±7	0.34	87±9 vs. 71±5	0.20
Immature/(ETP)ALL + (n=15) vs. Immature/(ETP)ALL - (n=102)	50±35 vs. 70±7	0.97	91±9 <i>vs.</i> 72±7	0.23	85±10 vs. 71±5	0.32
Type B mutations						
PTEN/AKT mutant (n=25) vs. wild-type (n=117)	60±16 vs. 71±6	0.38	57±15 <i>vs.</i> 78±6	0.14	59±11 vs. 75±4	0.09
NOTCH1/FBXW7 mutant (n=90) vs. wild-type (n=51)	62±8 vs. 82±8	0.10	70±8 vs. 80±9	0.41	66±5 <i>vs</i> . 81±6	0.08
PTEN/AKT/NOTCH1/FBXW7 mutant (n=105) vs. wild-type (n=36)	62±7 vs. 93±7	0.03	68±7 vs. 90±10	0.07	65±5 vs. 92±6	0.005
PHF6 mutant (n=12) vs. wild-type (n=51)	73±13 vs. 67±7	0.69	ND		ND	
WT1 mutant (n=17) vs. wild-type (n=129)	63±17 vs. 72±6	0.47	49±23 <i>vs</i> . 77±6	0.21	59±13 <i>vs.</i> 75±4	0.17
Del 9p21 (n=88) vs. wild-type (n=25)	72±7 vs. 63±17	0.67	68±8 vs. 94±6	0.06	70±5 <i>vs.</i> 84±7	0.24

Significant log rank P values for DCOG or COALL cohort analyses are indicated in bold; RFS: relapse free survival; SD: standard deviation; P: P value; WBC: white blood cell count; Different genetic aberrations have been identified that all result in the activation of the MEF2C or NKX2-1/NKX2-2 oncogenes that define novel genetic TALL subtypes⁽ⁿ⁾; All patients who have one of the above described cytogenetic aberrations (known) versus all patients without any of these above described aberrations (unknown); 113 out of 117 TALL patients included in the gene expression profiling study⁽ⁿ⁾ had a known PTEN and AKT mutation status. TALL patients were assigned to the TAL/LMO group based on the presence of TAL1 or LMO2 rearrangements or by having a TAL/LMO expression signature.⁽ⁿ⁾

	Univa	riate analyses using Cox's re	gression model	
	Ν.	Hazard ratio	95% CI	Р
Male gender	146	0.3	0.122-0.820	0.02
TLX3	146	2.1	1.030-4.339	0.04
PTEN/AKT/NOTCH1/FBXW7	141	6.1	1.456-25.310	0.01
	M. 145.		and the second	
	INIUITIV	ariate analyses using Cox's I	regression model	
	N.	ariate analyses using Cox's I Hazard ratio	egression model 95% Cl	Р
Male gender	N. 141	Ariate analyses using Cox's I Hazard ratio 0.37	egression model 95% Cl 0.141-0.959	P 0.04
Male gender <i>TLX3</i>	N. 141 141	Arlate analyses using Cox's I Hazard ratio 0.37 1.7	0.141-0.959 0.843-3.629	P 0.04 0.13

Online Supplementary Table S8. NOTCH1-activating and PTEN/AKT mutations predict for poor outcome in pediatric T-ALL.

Univariate and multivariate Cox's regression analyzes using relapse free survival for various parameters that were significantly associated with good or poor relapse free survival (see Online Supplementary Table S6).