
H
ematopoiesis, the production of blood
cells, is a dynamic process that reflects a
balanced response to competing stimu-

latory, enhancing, and suppressing influences.1

Mature blood cells are derived in a hierarchical
fashion from relatively immature cells, referred
to as stem and progenitor cells.2 The ultimate
marrow and blood repopulating cell is a pluri-
potential hematopoietic stem cell which has the
capacity to self-renew, differentiate into early
cells of multiple lineages as well as reconstitute
the myelo-lymphopoietic system in a lethally
irradiated host.3 Stem cells give rise to multipo-
tential progenitors which in turn give rise to
more lineage-restricted progenitors. Progenitor
cells appear to have little or no self-renewal
capacity, but they give rise to precursor cells, the
first morphologically recognizable cells in a
given cell lineage.1 Stem and progenitor cells
express the CD34 antigen, which identifies a
transmembrane glycoproteic structure.4,5 On the
basis of CD34 expression and low or high
expression of non lineage specific antigens,
including Thy1, CD38, HLA-DR, CD45RA,
CD71, hematopoietic cells can be fractionated
into primitive, intermediate and late progeni-
tors.6,7

After two decades of in vitro studies, it is
apparent that much of the regulation of
hematopoiesis at the level of stem, progenitor,
precursor and mature cells is mediated by a
group of glycoproteic molecules termed colony-
stimulating factors (CSFs). CSFs can be classi-
fied on the basis of their target cell population
as early- and late-acting growth factors.3 The
known regulators with proliferative effects on
one or another hematopoietic population
already exceed 20 in number, and added to
these are a variety of inhibitory factors and a

number of factors allowing selective cell-cell
adhesion.9 The relevance of CSFs to hematopoi-
etic regulation is supported by the presence of
specific CSF receptors on stem and progenitor
cells.7 Environmental components have also
been described which can affect hematopoietic
proliferation and differentiation at several lev-
els, including direct cell-to-cell interactions,
interactions of cells with extracellular matrix
molecules, and interaction of cells with soluble
growth regulatory molecules.2,9

So far, the majority of clinically available
CSFs, such as granulocyte CSF (G-CSF) or ery-
thropoietin (Epo) affect late, lineage-specific
progenitors. And even the more primitive fac-
tors interleukin-3 (IL-3) or granulocyte-macro-
phage CSF (GM-CSF) are unlikely to act on
self-renewing progenitors. Therefore, the search
for early-acting growth factors allowing selec-
tive manipulation of stem cell self-renewal and
commitment is of particular biological and
clinical relevance.

Among early-acting cytokines is a factor that
has been referred to as stem cell factor (SCF),
mast cell growth factor (MGF), Kit ligand (KL),
and Steel factor (SF).10-13 SCF is the ligand for
the receptor encoded by the c-kit proto-onco-
gene.14 Kit receptor, similarly to the CSF-1
receptor encoded by the c-fms proto-oncogene,
has an extracellular ligand-binding domain, a
hydrophobic transmembrane domain, and an
intracellular domain with protein-tyrosine
kinase (TK) activity.14

Several receptor TKs have been shown to be
important in the differentiation and prolifera-
tion of hematopoietic cells. Recently, as a step
in a strategy to isolate and clone growth factors
for human stem cells, the cDNA for stem cell
TK-1 (STK-1), a human homologue of the
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murine Flk2/Flt3 receptor which is expressed
on normal human CD34+ marrow cells has
been cloned.15-19 The human homologue of the
murine Flt3 ligand (Flt3-L), an additional
early-acting growth factor, has also been cloned
and characterized.20

SCF and Flt3-L have several characteristics in
common. By themselves, both compounds only
weakly stimulate the differentiation of stem
cells and progenitor blood cells, though both
compounds synergize with lineage-restricted
growth factors. Both compounds are biological-
ly active in soluble and membrane-bound
forms, and both are transmembrane proteins
that undergo proteolytic cleavage to generate
their soluble forms. Both have four cysteine
residues that form intramolecular disulfide
bonds to stabilize their three-dimensional
structure. And both bind to a subfamily of
tyrosine kinase receptors that have five immu-
noglobulin-like segments in their extracellular
domains. Flt3-L and SCF have one very distin-
guishing characteristic: the absence of any mast
cell stimulatory activity by Flt3-L. 

By itself, SCF has little proliferative activity
on hematopoietic progenitor cells in terms of
number and size of colonies. However, SCF is a
potent co-stimulator and in most cases is a syn-
ergistic factor when used with a number of
other CSFs to stimulate the growth of hemato-
poietic progenitors in vitro and blood cell pro-
duction in vivo.21,22 SCF synergizes with inter-
leukin-3 (IL-3), interleukin-6 (IL-6), granulo-
cyte-macrophage colony-stimulating factor
(GM-CSF), granulocyte colony-stimulating fac-
tor (G-CSF), erythropoietin (Epo) to stimulate
myeloid, erythroid as well as megakaryocytic
progenitors.23 In this issue of Haematologica,
Grossi et al. show that SCF administration
enhances both the proliferation and maturation
of murine megakaryopoiesis in vivo.24 SCF syn-
ergizes with interleukin-7 (IL-7) to stimulate
pre-B lymphocyte colony formation,21 directly
acts on a highly immature population of CD34+

progenitors and supports the growth of multi-
potential progenitors with high replating
potential.23,25

SCF could find use in a number of clinical
settings ranging from chemotherapy recovery

to gene therapy. Following high-dose chemo-
therapy and autologous stem cell transplanta-
tion, SCF could accelerate hematopoietic recov-
ery. However, as may be anticipated on the
basis of in vitro studies, the target of SCF is a
very early cell population and there is no reason
to assume that following stem cell transplanta-
tion SCF alone can accelerate hematopoietic
recovery, as has been shown for IL-3, GM-CSF,
PIXY321 or G-CSF. Indeed, in the context of
allo- or autografting, SCF can be expected to
synergize with more lineage-restricted blood-
cell growth factors such as EPO and G-CSF.
Patients with engraftment failure or severe
aplastic anemia could benefit from in vivo SCF-
induced stem cell proliferation and expansion.
In addition, SCF as well as Flt3-L could allow
further escalation of the concentration of
chemical agents used for marrow purging, pav-
ing the way for hyper-purging strategies in an
attempt to improve the clinical efficacy of mar-
row decontamination.26

SCF has been shown to be very efficient in
stem and progenitor cell mobilization.27 The
combined use of low-dose SCF and G-CSF
could efficiently influence both the quality and
the quantity of mobilized cells. In fact, SCF
could enhance the mobilizing effect of G-CSF,
permitting collection of large amounts of early
progenitors with in vivo repopulating potential.
This would result in an overmobilization of
stem and progenitor cells that could eventually
reduce the 4-7 days of aplasia following high-
dose therapy and autologous stem cell rescue.

SCF stimulates mast-cell proliferation, where-
as Flt3-L does not. In early phase I trials of SCF,
mast-cell-induced inflammation was observed
at doses of SCF >10 eg/kg/d and, subsequently,
in phase I/II trials premedicating patients with
an antihistamine was a mandatory step.28 All in
vivo uses of SCF will be limited by mast cell
activation and in all future clinical trials SCF
should be used at low doses in combination
with lineage-restricted cytokines. 

The recent cloning of cDNAs for both human
and murine thrombopoietin (c-Mpl ligand) will
probably lead to strategies based on the com-
bined use of low-dose SCF and c-Mpl ligand in
order to achieve a significant and long-lasting
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stimulation of megakaryocytopoiesis and mega-
karyocyte maturation.29,30

SCF might be of relevant clinical value in two
ex vivo applications that would overcome all
problems related to mast cell activation. SCF,
once again in combination with other CSFs, has
been shown to be a factor essential to the ampli-
fication of progenitor cells as well as the mainte-
nance, or even slight amplification, of stem
cells.31 The ex vivo amplification of stem and
progenitor cells is now considered an essential
step in the context of therapeutic strategies
based on high-dose sequential chemotherapy
and double autografting procedures.32 In gene
therapy, SCF could help multiply a patient’s
stem cells, which make up less than 0.01 percent
of bone marrow cells, thereby making them eas-
ier to isolate. Self-renewing stem cells would be
the ideal cells to genetically engineer since the
goal of gene therapy is to produce a permanent
genetic alteration.31

In conclusion, early-acting factors are now
available for clinical use. By definition, these
factors exert pleiotropic effects, some of which
could be clinically dangerous. However, the
possibility of manipulating stem cells is now a
reality and opens fascinating scenarios.
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