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Introduction

In classical Hodgkin’s Lymphoma (cHL), the neoplastic
Hodgkin Reed-Sternberg (HRS) cells are vastly outnum-
bered by cells in the surrounding reactive infiltrate. This
infiltrate is of major importance for the proliferation and
survival of HRS cells. Different chemokines and cytokines
produced by HRS cells and cells in the reactive infiltrate are
responsible for the formation and maintenance of this reac-
tive environment."

The CC chemokine ligand 17 (CCL17) or Thymus and
Activation-Regulated Chemokine (TARC) is highly
expressed by HRS cells in ¢cHL, but not by the tumor cells of
nodular lymphocyte predominant Hodgkin’s lymphoma or
other B-cell derived non-Hodgkin’s lymphomas.*® TARC
binds specifically to the CC chemokine receptor 4 (CCR4).
CCR4 is mainly expressed on regulatory T and Th2 cells
that are both abundant in the reactive infiltrate of cHL.*®
Approximately 90% of the cHL patients show positive
TARC staining in HRS cells by immunohistochemistry
(IHC) and about 85% have significantly elevated levels of
TARC in their pre-treatment serum or plasma sample com-
pared to healthy controls.”” Although patients with active
atopic diseases can also have elevated plasma TARC levels,
this is only a modest elevation which is in a significantly
lower range than the high plasma TARC levels observed in
cHL." Pre-treatment serum TARC levels correlate with
stage of disease, erythrocyte sedimentation rate, and leuko-
cyte and lymphocyte counts in cHL.”" Niens et al.’ reported
TARC levels within the normal range after successful treat-
ment in 7 cHL patients and persistent elevated TARC in a
single non-responsive patient. Weihrauch et al.’’ reported
diminished survival rates among patients with higher
TARC levels after treatment. However, nothing is known
about TARC dynamics during treatment in relation to clin-
ical treatment response.

We, therefore, prospectively collected serial plasma sam-
ples from newly diagnosed and relapsed cHL patients. The
aim of the current study was to correlate plasma TARC lev-
els with tumor burden at time of diagnosis, and to correlate
serial plasma TARC levels during and after treatment with
cHL treatment response.

Design and Methods

Patient inclusion and treatment

Serial plasma samples were prospectively collected from all
newly diagnosed and relapsed cHL patients treated at the
University Medical Center Groningen (UMCG) from January 2006
until June 2011.

Inclusion criteria for both newly diagnosed and relapsed cHL
patients were: i) receiving standard treatment regimens; ii) avail-
ability of a plasma sample before start of treatment and one or
more plasma samples during or after treatment; and iii) confirma-
tion of TARC expression in diagnostic tissue by immunohisto-
chemistry or by elevated baseline plasma TARC if diagnostic tis-
sue was not available. From 78 newly diagnosed patients treated
in the UMCG, 18 were excluded: one patient refusal, 2 were
receiving palliative treatment, 9 lacked a pre-treatment plasma
sample, 3 had negative tissue TARC staining, and 3 had no avail-
able tissue and normal pre-treatment plasma TARC levels. The
total study cohort was, therefore, made up of 60 patients. From 17
relapsed patients, 12 patients eligible for DHAP salvage treatment
followed by autologous stem cell transplantation were included,
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while 5 patients were excluded (4 were receiving only palliative
treatment and one lacked a plasma sample after treatment).

Permission for this study was obtained from the institutional
review board of the UMCG and all participating patients and
healthy controls gave their signed informed consent. Routine stag-
ing of patients at diagnosis or at relapse included diagnostic
Computer Tomography (CT) imaging, ‘whole body’ 2-[18F]fluo-
ro-2-deoxyglucose positron emission tomography (FDG-PET)
imaging, and bone marrow biopsy. Presence of bulky disease was
defined as presence of a mediastinal mass greater than one-third
of the thoracic diameter on chest X-ray (on level Th5-Th6) and/or
a nodal mass of more than 10 cm CT imaging. Response to treat-
ment was evaluated according to the revised International
Working Group response criteria.”” Evaluation included FDG-
PET/CT scanning which was interpreted according to the
International Harmonization Project criteria (IHP)." In the vast
majority of patients, FDG-PET/CT scanning was performed using
a Siemens Biograph PET/CT mCT 64 scanner.

Patients were treated according to European Organisation for
Research and Treatment of Cancer (EORTC) clinical trial proto-
cols. Table 1 shows patients’ characteristics and data on chemo-
and radiotherapy regimens. Briefly, standard treatment for stage
I/Il (early stage) patients consisted of 3-6 cycles of ABVD
chemotherapy with or without 30-36 Gy involved node radio-
therapy (IN-RT) according to the EORTC (20051) H10 trial."
Standard treatment for stage III/IV (advanced stage) patients con-
sisted of 6-8 cycles of ABVD without radiotherapy, or in cases par-
ticipating in the EORTC 20012 trial, patients were randomized
between 8 cycles of ABVD and 4 cycles of escalated BEACOPP
(eBEACOPP) followed by 4 cycles of base-line BEACOPP.”
Patients not enrolled in these clinical trials received conventional
treatment, which is similar to the standard arm of these trials.

In the relapsed cohort, all patients were scheduled for DHAP-
VIM-DHAP salvage chemotherapy, followed by high-dose
chemotherapy and autologous stem cell transplantation (ASCT) in
cases of at least a partial response on salvage re-induction. Three
patients who were non-responsive to DHAP received second sal-
vage chemotherapy consisting of 2 cycles of mini-BEAM before
receiving ASCT (Table 1).

Tissue and plasma collection

Diagnostic formalin fixed paraffin embedded tissue samples
were retrieved from the tissue banks of the pathology depart-
ments of the UMCG and other regional pathology laboratories
affiliated with the hospitals from which the patients were
referred for treatment (Martini Hospital Groningen, Sazinon
Hoogeveen, Isala Klinieken Zwolle, SSZOG Winschoten and
Pathology Friesland Leeuwarden. Immunohistochemistry for
TARC was performed to confirm expression of TARC by
Hodgkin tumor cells. Immunohistochemistry was performed on
formalin fixed paraffin embedded tissue samples mounted on 3-
aminopropyltriethoxysilane (APES) coated slides using a goat
anti-human TARC antibody (R&D Systems, Minneapolis, USA)
after heat-induced antigen retrieval. Ninety-four percent of ana-
lyzed tissue samples were positive for TARC. Patients with
TARC negative tumor cells also had low plasma TARC at diagno-
sis and were excluded (see above).

In the newly diagnosed patients, plasma was collected at diag-
nosis (baseline), after one cycle of chemotherapy, at mid-treatment
and after completion of first-line treatment and during routine fol-
low up. Mid-treatment was after 2 cycles of ABVD in early stage
patients and after 4 cycles of ABVD or eBEACOPP in advanced
stage patients, in parallel with formal response evaluation by FDG-
PET/CT. In the relapsed patients, plasma samples were collected
before and after salvage treatment. In addition, plasma samples
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were collected from 107 age- matched (median 31, range 19-62
years) and sex- matched (57 % female) healthy controls.

Plasma TARC analysis

Ten mL of blood was collected in ethylenediaminetetraacetic
acid (EDTA) tubes at each time point. Plasma was obtained after
centrifugation at 900 x g and stored in aliquots at -20°C. TARC lev-
els were measured by a double antibody sandwich ELISA (R&D
systems, Minneapolis, USA). To reduce variation we used mass-
calibrated standards and analyzed samples retrieved from a single
patient simultaneously. Samples were analyzed without prior
knowledge of patient identity or treatment results. To minimize a
potential influence of active atopic diseases, we set the cut off for

elevated plasma TARC levels at 1,000 pg/mL.

Determination of metabolic volume

Baseline FDG-PET studies performed at the University Medical
Center Groningen were used for the determination of the pre-
treatment metabolic volume. Reconstruction of the FDG-PET
studies was performed according to the Netherlands protocol for
standardization of FDG whole body PET studies.'® The four sites
with the most intense visual FDG uptake were selected as regions
of interest (ROI). All ROIs were analyzed for the maximum
Standard Uptake Value (SUVmax) and the corresponding metabol-

Table 1. Patients’ characteristics and treatment.

Newly diagnosed
cHL patients (n=60)

Relapsed cHL
patients (n=12)

n. (%) n. (%)

Median age (range) 33 (16-66) 47 (25-64)
Female 36 (60) 5 (42)
Histology
Nodular sclerosis 42 (70) 10 (83)
Mixed cellularity 4(7 2(17)
Lymphocyte rich 3(9) -
cHL NOS 11 (18) -
Ann Arbor stage
[-II (early stage) 39 (63) 3 (25)
[1I-IV (advanced stage) 21 (39) 9 (75)
B symptoms present 25 (42) 4 (33)
Bulky disease 22 (37) 1(8)
Treatment stage /I patients (n=39):
ABVD 3-4 cycles + IN-RT 26 (67) -
ABVD 4-6 cycles 11 (28) -
ABVD 2 cycles, EscBEACOPP 2 (5) -
2 cycles + IN-RT
Treatment stage III/IV patients (n=21):
ABVD 6-8 cycles 15 (71) -
BEACOPP 5 cycles 15 -
EscBEACOPP 4 cycles, 5 (24) -
BEACOPP 4 cycles
Treatment relapsed patients (n=12):
DHAP-VIM-DHAP + BEAM+ ASCT - 9.(75)
DHAP-VIM-Mini-BEAM (2x) - 3(25)
+BEAM + ASCT

cHL: classical Hodgkin’s Lymphoma; NOS: not otherwise specified; ABVD: adriamycin-
bleomycin-vinblastine-dacarbazine containing chemotherapy regimen; IN-RT: involved
node radiotherapy; BEACOPP: bleomycin-etoposide-adriamycin-cyclophosphamide-
vincristine-procarbazine-prednisone containing chemotherapy regimen; eBEACOPP:
escalated (dose intensified) BEACOPP; DHAP: dexamethason-citarabine-cisplatin con-
taining salvage re-induction regimen; VIM: etoposide-ifostamide-methotrexate contain-
ing regimen; ASCT: autologous stem cell transplantation; BEAM: carmustine-etoposide-
cytarabine-melphalan myeloablative chemotherapy.

ic volume at a fixed threshold of 70% of the SUVmax. The total
metabolic volume was calculated by adding up the volumes of the
ROIs. All scans were analyzed without knowledge of plasma
TARC levels.

Statistics

We used non-parametric analyses because of the skewed distri-
bution of the plasma TARC levels. Baseline plasma TARC levels
were correlated to Ann Arbor stage of disease, presence of bulky
disease, metabolic volume and SUVmax. Differences in plasma
TARC levels between categorical variables were analyzed using
the Mann-Whitney U test. Linear correlation coefficients (r)
between plasma TARC levels and the metabolic volume were
determined using Spearman’s rank correlation test. All statistical
analyses were performed using SPSS 16.0.

Results

Patients’ characteristics

Basic characteristics and treatments of the 60 newly diag-
nosed (39 early stage and 21 advanced stage) and 12
relapsed cHL patients are summarized in Table 1. Median
age among the newly diagnosed patients was 33 years
(range 16-75) with slightly more females than males. Most
patients had nodular sclerosis subtype.

Baseline plasma TARC levels and tumor burden
in newly diagnosed patients

Baseline plasma TARC was elevated (>1,000 pg/mL) in 55
out of 60 newly diagnosed patients (92%) and was signifi-
cantly higher in cHL patients (median 28,013; range 69-
269,048 pg/mL) compared to healthy controls (median 118
pg/mL, range 7-470; P<0.001; Figure 1).

Significantly higher levels of baseline plasma TARC levels
were observed in patients with stage II-IV disease com-
pared to patients with stage I disease (P<0.001, Figure 2A),
as well as in patients with bulky disease compared to
patients without bulky disease (P=0.02, Figure 2B). Baseline
plasma TARC levels directly correlated with the metabolic
FDG-PET volume (r=0.61, P<0.001, Figure 2C) and not with
IPS score or presence of B symptoms.
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Figure 1. TARC expression in plasma from newly diagnosed cHL
patients and healthy controls. Plasma TARC levels among 107
healthy controls and 60 pre-treatment newly diagnosed cHL
patients. The median plasma TARC level was 118 pg/mL (range: 7-
470) and 28,013 pg/mL (range 69-269,048) in the healthy con-
trols and the cHL patients’, respectively. Pre-treatment patient sam-
ples were significantly higher compared to the healthy controls
(P<0.001).




Plasma TARC as a response marker in early
stage patients

Of 39 newly diagnosed patients with early stage dis-
ease, 37 achieved a complete response (CR), one a partial
response (PR; UPN 38) and one had progressive disease
(PD; UPN 39). In all patients with a CR, reduction in plas-
ma TARC levels could be observed as early as after one
cycle of chemotherapy (Figure 3 and Online Supplementary
Table S1). Thirty-one of 37 patients with a final CR already
had a CR at mid-treatment. The other 6 patients (of whom
2 with bulky disease) had a PR at mid-treatment, while
TARC levels were already low after one cycle of
chemotherapy. Thirty-six out of 37 patients with a CR had
a continuous remission (median follow up 33 months,
range 6-66). One patient (UPN 4) relapsed at 27 months
follow up with concomitant re-elevation of plasma TARC.

The single patient with a PR at end of treatment (UPN
38) also showed a reduction of plasma TARC to normal
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range levels after one cycle of chemotherapy. This patient
did not receive additional therapy and remained limited
FDG-PET positive at serial post-treatment imaging studies
but did not progress (21 months of follow up).

In the patient with PD (UPN 39), plasma TARC was per-
sistently elevated during and after treatment. After pro-
gression during salvage chemotherapy, this patient died of
progressive lymphoma.

Plasma TARC as a response marker in advanced
stage patients

Of 21 patients with advanced stage disease, 18 patients
had a CR, one a PR (UPN 58) and 2 had PD (UPN 59 and
60). Similar to early stage patients, reduction in plasma
TARC was significant after one cycle of chemotherapy in
all CR patients (Figure 3B and Online Supplementary Table
S2). Seventeen of 18 patients with a final CR already had
a CR at mid-treatment and one patient with a final CR had
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Figure 2. Baseline plasma TARC levels in relation to tumor burden. (A) In newly diagnosed patients, plasma TARC levels in stage II-IV disease
were significantly higher compared to stage | disease (P<0.01). (B) Patients with bulky disease had significantly higher baseline plasma
TARC levels compared to patients without bulky disease (P<0.01). (C) Baseline plasma TARC levels significantly correlated with the pre-treat-
ment metabolic volume as determined by quantification of the FDG-PET results.
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Figure 3. Plasma TARC dynamics in early and advanced stage newly diagnosed and relapsed cHL patients. (A) Plasma TARC dynamics before
treatment, after one ABVD cycle, at mid-treatment (after 2 ABVD cycles) and after treatment among 39 newly diagnosed early stage cHL
patients. All responsive patients had a decline in plasma TARC to normal range levels, while one non-responsive patient (UPN 39) had persistent
high plasma TARC levels and could already be identified after one cycle of ABVD. (B) Plasma TARC dynamics before, after one ABVD or (e)BEA-
COPP cycle, at mid-treatment (after 4 ABVD or 4 (e)BEACOPP cycles) and after treatment among 21 newly diagnosed advanced stage cHL
patients. Again, the 2 non-responsive (UPN 59 and 60) patients could be distinguished from all responsive patients already after one cycle of
chemotherapy by persistent high plasma TARC levels. (C) TARC dynamics at relapse and after relapse treatment in 12 relapsed cHL patients.
All 12 relapsed patients had moderate to high elevated plasma TARC levels at relapse. Four final non-responsive patients had persistent high
plasma TARC levels after second-line treatment, while all responsive patients had a decline in plasma TARC to normal range levels.
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a PR at mid-treatment (UPN 57). Plasma TARC was slight-
ly elevated at mid-treatment and low at end-treatment in
this patient. None of the patients with a CR relapsed
(median follow up of 31 months, range 7-75).

The single patient with a final PR (UPN 58) showed low
plasma TARC levels during and after treatment. After sec-
ond-line chemotherapy including ASCT and IN-RT this
patient remained FDG-PET positive in the same spots as
observed after first-line treatment. Repeated FDG-PET
studies showed that FDG uptake faded out over time and
at 10 months post radiotherapy, FDG uptake disappeared.

The 2 patients with PD (UPN 59 and 60) had persistent-
ly high TARC levels during and after treatment. Both
patients switched to second-line chemotherapy and one of
them achieved a CR (UPN 60) with a concomitant reduc-
tion of plasma TARC to normal levels. The second patient
(UPN 59) is still being treated and TARC results have to be
awaited.

Plasma TARC as a response marker
in relapsed patients

All 12 patients with relapsed disease had elevated levels
of TARC at relapse (Figure 3C). Eight patients achieved a
CR after salvage therapy with a concomitant reduction of
plasma TARC to normal range levels after treatment (Figure
3C). These 8 patients had a continuous remission (median
follow up 28 months, range 3-62). Plasma TARC levels in
one patient with SD (UPN 69) and 3 patients with PD (UPN
70, 71 and 72) remained elevated. Three of these patients
died of lymphoma and one patient ultimately achieved a
CR (UPN 71) after additional radiotherapy with concomi-
tant normalization of plasma TARC.

Discussion

In this study, we show that plasma TARC levels closely
correlate with Hodgkin’s lymphoma metabolic tumor vol-
ume, and that serial TARC levels correlate with clinical
response to treatment. Interestingly, all responsive
patients already had a decrease in plasma TARC after one
cycle of chemotherapy while TARC levels remained high
in the 3 non-responsive patients, indicating that plasma
TARC might be a potential marker for very early response
assessment in cHL. In addition, we show that plasma
TARC is also elevated at relapse, and again correlates well
with clinical response.

Since TARC is specifically produced and excreted by
Hodgkin Reed-Sternberg cells, we hypothesized that
plasma TARC might closely reflect cHL tumor burden.
Consistent with previous studies, we showed that base-
line plasma TARC levels correlate with classical clinical
parameters of tumor burden, such as stage of disease and
presence of bulky disease.”’” However, there was a con-
siderable overlap in plasma TARC levels between the dif-
ferent groups defined by stage and bulk, probably
because these clinical parameters are poor substitutes for
total tumor load. Quantified pre-treatment FDG-PET
images, reflecting metabolic tumor volume, correlated
much better with plasma TARC levels. This indicates that
plasma TARC levels do indeed reflect cHL tumor burden
and might be an ideal marker to determine cHL disease
activity.

A proportion of patients with stage I disease had low
baseline plasma TARC levels, similar to those we had

observed in an independent cohort in a previous study.’
Since we now only included patients with TARC positive
HRS cells, the lack of elevated plasma TARC is not caused
by lack of TARC production by the tumor cells.
Consistent with the correlation of plasma TARC with the
metabolic tumor volume, it might be envisaged that, in
some early stage cases, almost all TARC producing tumor
cells are removed by the diagnostic lymph node biopsy
and/or that the limited (remaining) amount of tumor cells
are not capable of producing amounts of TARC that
exceed the capture capacity of the surrounding or circulat-
ing CCR4+ T cells.

Early interim FDG-PET response is a predictor of final
outcome in cHL.”?** Treatment adaptation based on the
interim FDG-PET result is currently the focus of investiga-
tion in several clinical trials. Although the introduction of
FDG-PET imaging has been a great breakthrough in
response evaluation of malignant lymphoma, a disadvan-
tage of using this type of imaging is the relatively high
number of false positive scans during treatment.”® By
applying more sophisticated interpretation methods, such
as the five point scale, the number of false positive scans
seems to be markedly reduced compared to the dichoto-
mous “negative or positive” evaluation that is currently
used in the THP criteria.*** In contrast to FDG-PET imag-
ing, TARC is specific for cHL tumor cell activity and seems
not to be influenced by concurrent infections or inflamma-
tion caused by chemo- or radiotherapy, making plasma
TARC an ideal biomarker to assess cHL treatment
response.

Early plasma TARC response might be applied in the
clinic to determine prognosis or to guide treatment, similar
to FDG-PET imaging. In our cohort, all patients with a
reduction in TARC after start of treatment had a favorable
prognosis, while all patients with persistently high TARC
levels failed treatment. Moreover, the 6 patients who had
a PR at mid-treatment (based on FDG-PET/CT imaging)
and achieved a CR at end of treatment already had low
plasma TARC levels after one cycle of chemotherapy.
Therefore, it is tempting to speculate that, given current
FDG-PET interpretation criteria (the IHP), both positive
and negative predictive value of interim plasma TARC
might even be better than interim FDG-PET imaging.
However, in agreement with the current favorable treat-
ment results in cHL, our small cohort contained only 7
non-responsive patients (3 newly diagnosed and 4
relapsed). Therefore, the prognostic impact of plasma
TARC could not be directly compared to interim FDG-
PET images or other prognostic factors such as the IPS.
Future clinical trials including both new FDG-PET inter-
pretation criteria such as the five point scale and plasma
TARC evaluation are needed to directly compare the prog-
nostic value of these two response markers.

Our separate cohort of relapsed cHL patients showed
that plasma TARC is also elevated at time of relapse, and
TARC levels after salvage treatment corresponded with
clinical response. Monitoring of TARC during follow up
might be a minimally-invasive and effective method for
evaluation of disease recurrence, potentially reducing the
burden of imaging studies during follow up. Indeed, 2
relapsed patients showed elevation of plasma TARC levels
months prior to actual clinical diagnosis of relapse (data not
shown).

In conclusion, we have for the first time shown that
plasma TARC levels closely reflect cHL tumor load, and



that serial plasma TARC levels correlate with treatment

response. Interestingly, a change in TARC levels could

already be observed after one cycle of chemotherapy, indi-
cating its potential to serve as a very early response marker
in newly diagnosed patients. However, future prospective
studies should be carried out to examine the true potential
of plasma TARC in response evaluation and follow up of
cHL in relation to current evaluation methods.
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