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Review Article

miRNAs: master regulators of regulatory networks
MicroRNAs (miRNAs) are short non-coding RNAs of ~ 21

to 23 nucleotides in length that post-transcriptionally regulate
mRNA expression. The first miRNAs were discovered in
Caenorhabditis elegans in 19931,2 and only about ten years ago
it was recognized that miRNAs represent a distinct class of
biological regulators in many organisms including humans.3,4

Since then the field has evolved rapidly. Currently, 1,424 dif-
ferent human miRNAs are listed in the miRBase registry
(miRBase v17; http://www.mirbase.org/). Each miRNA has
the potential to target hundreds of different mRNAs and, con-
versely, each mRNA can be targeted by multiple miRNAs.5 It
is estimated that more than 60% of the mammalian transcrip-
tome is under miRNA control.6 This demonstrates the central
role of miRNAs within the complex regulatory networks of
gene expression. 
Biogenesis of miRNAs follows a unique and highly con-

served evolutionary pattern.7,8 Most miRNAs are encoded by
intergenic chromosomal regions. Transcription of the primary
transcript (pri-miRNA) is regulated by transcription factors and
mediated by RNA polymerases in analogy to coding genes.
The pri-miRNA contains a characteristic stem loop structure
that is already cleaved in the nucleus by the Drosha micro-
processor complex to generate a shorter pre-miRNA of about
70 nucleotides. The pre-miRNA is then exported to the cyto-

plasm where it is further processed by the endoribonuclease
Dicer into mature double-stranded miRNAs, usually with a
two-base overhang on the 3' end. Mature miRNAs are struc-
turally similar to small interfering RNAs (siRNAs) which
resemble exogenously produced dsRNAs that can be transfect-
ed into cells to specifically modulate target mRNAs. One strand
of these double stranded RNAs is integrated into the RNA-
induced silencing complex (RISC), a multiprotein compex that
uses this template to target complementary mRNA sequences
which are subsequently degraded.9,10

Despite evolutionary conservation, it is very likely that
miRNAs are regulated differently and trigger different targets in
different species, such as mice and men. A comparison of lym-
phocyte miRNA signatures in humans and mice revealed poor
concordance.11 Furthermore, it has been shown that miRNAs
play distinct roles in different cellular, developmental and phys-
iological processes.12 Here, we will focus on their role in
hematopoiesis.

miRNAs govern hematopoiesis
The biological role of miRNAs in hematopoiesis has been

studied either by complete inactivation of miRNA formation or
by selective targeting of specific miRNAs. The first approach is
based on knockout of Dicer, the key enzyme for the processing
of pre-miRNAs into mature miRNAs. As Dicer knockouts are
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ABSTRACT



embryonic lethal,13 their in vivo role in adult hematopoiesis
can only be studied by conditional knockouts. Likewise,
embryonic stem cells deficient for DGCR8, a subunit of the
microprocessor complex which mediates the biogenesis of
microRNAs from the primary microRNA transcript, accu-
mulate in the G1 phase of the cell cycle and exhibit defec-
tive differentiation.14,15 However, when Dicer was deleted
conditionally at an early stage of T-cell development using
an Lck-Cre transgenic mouse, it was shown that Dicer does
not seem to be essential for CD4/CD8 lineage commit-
ment,16 whereas it is involved in the development of regula-
tory T cells.17 Furthermore, conditional inactivation of
Ago2, a protein of the RISC complex, led to severe
hematopoietic defects.18
Genetic inactivation of selective miRNAs can also pro-

duce dramatic phenotypes. Virtually every step in
hematopoisis seems to be finely tuned by specific miRNAs,
as reviewed by other authors12,19 and summarized in Figure
1. For example, knockout of miR-155 affected T-cell differ-
entiation, germinal center B-cell responses, and responses to
bacterial and viral infection.21,22 Ectopic expression of miR-
181 in lineage negative (Lin-) hematopoietic progenitor cells
from mouse bone marrow increased the fraction of B line-
age cells (CD19+) in vitro and in vivo.23 Furthermore, it was
demonstrated that miR-150 drives megakaryocyte-erythro-
cyte progenitor (MEP) differentiation towards megakary-
ocytes at the expense of erythroid cells.24 Erythropoiesis
was reported to be promoted by miR-451, miR-16 and miR-
144, and negatively regulated by miR-150, miR-155, miR-
221, miR-222 and miR-223.25-28 The miRNA cluster miR-17-
5p-92 controls monocytopoiesis29 and miR-424 is up-regu-
lated during monocyte/macrophage differentiation. Within
the lymphoid lineage, the choice between T and B cells is
regulated by miR-150.30,31 miR-125b supports myelopoiesis
but not G-CSF-induced granulocytic differentiation and it
has been suggested that this involves targeting of the c-Jun
and Jund pathways.32 Overall, miRNA function is not only
species and tissue dependent, but it also plays distinct roles
in cells at different developmental stages.

miRNA expression in hematopoietic stem
and progenitor cells
Most of the studies that have been performed so far on

miRNA expression in hematopoietic stem and progenitor
cells focus on hematopoietic lineage differentiation. The
early steps of hematopoietic stem cell (HSC) differentiation,
e.g. the role of miRNAs in self-renewal of long-term and
short-term repopulating HSCs, is still little understood.
miRNA expression profiling in HSC is hampered by the
low number of available cells, the wide spectrum of surface
marker combinations that are used to enrich for HSC, and
the lack of human HSC marker for the isolation of a highly
purified stem cell population. Expression of miRNAs has
been analyzed in human primitive Lin-CD34+CD38-

CD90+CD45RA- cells,33,34 CD34+CD38– cells,35 CD133+

cells36,37 and murine HSCs.33,38-40 Recently, Arnold et al.41 iden-
tified miRNAs unique to various tissue-specific murine
stem cells (including LT-HSCs, skeletal muscle stem cells
and neural stem cells) and miRNAs shared by multiple tis-
sue-specific stem cells. miRNA expression profiles are fur-
ther available for CD34+ progenitor cells from bone mar-
row, peripheral blood, mobilized peripheral blood and cord
blood.42-44 miR-125b was found to be highly expressed in
HSCs (Lin−CD34+CD38−CD90+CD45RA−) and MPPs
(Lin−CD34+CD38−CD90−CD45RA−) compared to more

committed progenitor populations.34 Recently, we present-
ed the first relative and absolute miRNA copy number pro-
file of CD133+ bone marrow cells and directly compared
donor-matched CD133+ cells with the more differentiated
CD34+CD133− and CD34−CD133− cells on miRNA and
mRNA levels.45,46 Eighteen miRNAs were significantly dif-
ferentially expressed between CD133+ and CD34+CD133−

cells. These differentially expressed miRNAs are involved in
inhibition of differentiation, prevention of apoptosis, and
cytoskeletal remodeling. 
A comparison of the available miRNA profiles of primi-

tive human hematopoietic cell populations is shown in
Table 1. miR-142-3p and miR-142-5p expression was lower
in the stem cell fraction in all three data sets. miR-10 and
miR-146a were more highly expressed in CD133+ cells in
the data of Jin et al.37 and Bissels et al.45 Liao et al.35 described
22 miRNAs as down-regulated in CD34+CD38− cells and 9
as over-expressed. Notably, none of the more highly
expressed miRNAs was significantly differentially
expressed in the data set of Jin et al.37 and Bissels et al.45 Some
of this discrepancy might be due to the different stem cell
sources. A comparison between CD34+ cells from CB and
BM carried out by Merkerova et al.44 revealed 13 differential-
ly expressed miRNAs. This included, for example, miR-

Table 1. Comparison of different miRNA profiling studies in HSC. 
Jin et al.37 Liao et al.35 Bissels et al.45

Source mPB CB BM BM
Stem cell fraction CD133+ CD34+CD38– CD133+ CD133+

Control fraction PB CD34+ CD34+CD133– CD133–CD34–

miR-10a 1 n.a. 1 1
miR-146a 1 n.a. 1 1
miR-142-3p -1 -1 -1 -1
miR-142-5p -1 -1 -1 -1
miR-130a 1 -1 0 1
miR-181a n.a. -1 0 1
miR-30b -1 n.a. 0 1
miR-19b 1 -1 0 1
miR-20a n.a. -1 0 1
miR-221 1 n.a. 0 1
miR-126-3p 1 n.a. 0 1
miR-26a 1 n.a. 0 1
miR-144 n.a. -1 0 -1
miR-15a n.a. -1 0 -1
LET-7i -1 n.a. 0 -1
miR-18a n.a. -1 0 -1
miR-191 -1 n.a. 0 -1
miR-16 -1 -1 0 0
miR-17 1 -1 0 0
miR-21 -1 -1 0 0
miR-93 1 -1 0 0
miR-19a 1 -1 0 0
miR-20b 1 -1 0 0
miR-29b -1 n.a. 1 0
miR-29a -1 n.a. 1 0

miRNAs differentially expressed by at least two of the three datasets are listed. 1: miRNAs higher
expressed in the stem cell fraction; -1: miRNA lower expressed in the stem cell fraction; 0: no dif-
ferential expression; n.a.: not analyzed. 
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520h, one of the HSC enriched miRNAs found by Liao et
al.35 that was only detected in CD34+ cells from CB. miR-
29a and miR-29b expression was lower in the CD34+CD38–

cells analyzed by Liao et al.35 but more highly expressed in
CD34+CD38− analyzed by Han et al.33 and in the CD133+

cells analyzed by Bissels et al.45 Taken together, there is con-
siderable variation in miRNA expression profiles of HSC in
different studies that can be attributed to the different stem
cell fractions used for comparison. Improved methods to
separate specific cell populations will increase our knowl-
edge about miRNA expression in HSCs. The revolution in
deep sequencing technologies facilitates the discovery of
new miRNAs in highly purified cell populations, further
evaluation of already annotated miRNAs, and the analysis
of miRNA variants such as editing events.43,47 This technol-
ogy, in combination with improved cell separation meth-
ods, may identify a common miRNA signature of HSC; if it
exists at all. Either way, the situation becomes even more
complex with the different signal cascades and pathways
which are activated in different cell types and which are
potentially regulated by specific miRNAs. 

The role of specific miRNAs in HSCs
For each miRNA, a fairly large number of potential

mRNA targets can be predicted by bioinformatic algorithms
based on sequence homology comparisons. However, such
target genes have to be functionally validated; if possible by
using the same primary cells. Despite limitations in the
material available, several target genes could be validated in
HSCs, especially in CD34+ cells (Table 2). This supports the
notion that expression of key regulatory genes in
hematopoiesis is influenced by specific miRNAs, and most
likely their action is at the same time interwoven into vari-
ous other pathways. 
The functional sequel of miRNAs in hematopoisis can

also be assessed by lineage specific colony forming unit
(CFU) assays. Georgantas and co-workers42 showed that
miR-155 transduced CD34+ cells generated fewer myeloid
and erythroid colonies. Labbaye et al.52 demonstrated that
miR-146 transduced CD34+ cells generated fewer
megakaryocytic colonies. Bissels and co-workers45 provided
the first evidence for a direct regulation of CD133 by miR-
142-3p that has a lower expression in CD133+ cells as com-
pared to CD34+CD133– cells. Overexpression of miRNAs in
CD133+ cells demonstrated that miR-142-3p has a negative
influence on the overall colony forming ability in HSC-CFU
assays. miR-520h was found to be over-expressed in
CD34+CD38– stem cells and it was suggested that miR-520h
promotes differentiation into progenitor cells by inhibiting
ABCG2 expression.35 Han et al.33 were able to show that
miR-29a induces aberrant self-renewal capacity in CMPs
and GMPs. These results support the notion that specific
miRNAs play a fundamental role in the regulation of
hematopoiesis, whereas their role in the regulation of self-
renewal and differentiation in primitive HSCs has not yet
been clearly understood.

miRNAs in the hematopoietic stem cell niche
It is commonly accepted that HSC function is tightly con-

trolled by their cellular microenvionment, i.e. the
hematopoietic stem cell niche.57,58 Hence, the cellular com-
position in the bone marrow has a direct impact on
hematopoiesis. Mesenchymal stromal cells (MSC) are pre-
cursors for osteoblasts, adipocytes and chondrocytes59 and
there is sound evidence that interaction of HSC and MSC is

involved in maintenance and regulation of stem cell func-
tion.60-63
MicroRNAs regulate proliferation and differentiation of

MSC;64 miR-125b, miR-146a and miR-196a affect
osteogenic differentiation and cell proliferation.65-67
Adipogenic differentiation is stimulated by miR-14368 and
miR-20469 whereas miR- 21 and miR-27 have been shown
to down-regulate adipogenesis by directly targeting the adi-
pogenic transcription factor PPARG.70,71 Recently, Bork and
co-workers72 have for the first time identified miR-369-5p
and miR-371 as two additional adipogenic regulators.
Adipogenic differentiation was significantly impaired by
miR-369-5p, whereas it was enhanced by miR-371.
However, it has to be stated that MSC are very heteroge-
neous and that the function of specific miRNAs might vary
between different cell preparations or even between differ-
ent subpopulations within MSC.73
The stromal function of MSC changes in the course of

cellular aging.74 Early passages have been shown to main-
tain a primitive CD34+CD133+ immunophenotype upon
culture expansion, whereas later passages stimulate prolif-
eration and differentiation.75 These functional changes are
accompanied by continuous changes in their gene expres-
sion profile76 and DNA-methylation pattern.77 Furthermore,
miRNA expression profiles vary in the course of culture
expansion78,79 and these may contribute to the supportive
hematopoiesis function of MSC. Interestingly, secretion of
the chemo-attractant stromal derived factor 1 (SDF1 or
CXCL12) is also influenced by miRNAs: miR-886-3p specif-
ically targets the 3´untranslated region of SDF1 mRNA
thereby modulating the expression of this chemokine
which plays a critical role in hematopoietic regulation.80
Thus, miRNAs do not only regulate the cellular constituents
of HSC and their niche, they are also involved in their
crosstalk.

Intercellular communication via miRNA
containing vesicles
Extracellular vesicles, including exosomes, microvesicles

and apoptotic bodies, are emerging as important mediators
of intercellular communication.81 Microvesicles derived
from embryonic stem cells have been reported to repro-
gram hematopoietic progenitors and to enhance their pro-
liferation through the delivery of mRNA.82 Besides mRNA
and proteins, the embryonic stem cell microvesicles have
often been reported to transfer miRNAs.74 Exosomes may
also contain AGO2 and GW182, two main components of
the RISC complex.84,85 Recent reports indicate that exosomal
miRNAs can be transferred to other hematopoietic cells and
modulate their function. Mittelbrunn et al.86 demonstrated
the existence of antigen-driven unidirectional transfer of
miRNA-loaded exosomes from T cells to antigen-present-
ing cells. A miRNA transfer between T and B cells was
shown by Rechavi et al.87 The transfer of miR-126a via
apoptotic bodies derived from endothelial cells induces pro-
duction of the chemokine CXCL12 leading to progenitor
mobilization from bone marrow.88 Data obtained by Chen
et al.89 showed that MSCs secrete microvesicles enriched in
pre-miRNAs and suggested that MSCs can exert miRNA-
mediated biological effects on other cells through the pre-
miRNA containing microvesicles. A specific pattern of
miRNAs seems to be involved in this shuttling via
microvesicles.90 On the other hand, HSCs also release small
membrane vesicles containing CD133 during differentia-
tion. It is still not clear whether the CD133 containing vesi-
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cles carry miRNAs. Such vesicles might be internalized by
MSC feeder cells and miRNAs might thereby be further
implicated in the crosstalk of stem cells with their niche.91
There is also evidence that a significant fraction of extracel-
lular miRNAs resides outside of vesicles92 and that Ago2
complexes carry the extracellular circulating miRNAs inde-
pendent of vesicles in human plasma.93, 94 However, whether
these complexes are released on purpose with the aim of
targeting specific cell surface receptors needs to be further
investigated. Taken together, intercellular communication
via miRNA containing vesicles is an exciting new research
field but cell type specificity and functional relevance need
to be further validated. 

Application potential of miRNAs in hematopoiesis
There is evidence that specific miRNAs harbor prognostic

significance to predict response to therapy or to provide
indicators of clinical outcome.95 Several studies indicate that
expression profiling of miRNAs is a suitable method for
cancer subtype classification with prognostic value.96,97
miRNAs can be detected in body fluids including serum
and, therefore, are promising novel non-invasive biomark-
ers for diagnosis. A few studies have described the miRNA
expression profiles of plasma98 and serum,99 and provide a
basis for further analysis. In addition, a number of studies
analyzed miRNA levels in the circulation and correlated
them to physiological conditions. A summary of these stud-
ies has been provided by Schöler et al.100

Apart from such biomarker approaches, miRNAs can
also be used to generate induced pluripotent stem cells
(iPS). In 2006, it was discovered that somatic cells could be
reprogrammed into iPS cells by ectopic expression of Oct4,
Soc2, Klf4 and Myc.101 Several studies have analyzed the

roles of miRNAs in reprogramming, as summarized by
Mallanna and Rizzino.102 Oct4 and Sox2 bind to a con-
served promoter region of miR-302 cluster and are required
for the transcriptional regulation of miR-302a.103 It has been
demonstrated that miR-302 and miR-372 promote repro-
gramming of human fibroblasts to iPS by accelerating mes-
enchymal-epithelial transition.104,105 Furthermore, introduc-
tion of miRNAs specific to embryonic stem cells, such as
subsets of the miR-290 cluster, increases the generation of
mouse iPS cells in combination with Sox2, Oct4 and Klf4.106
Recently, it has even been shown that expression of the
miR302/367 cluster can directly reprogram mouse and
human somatic cells to a pluripotent stem cell state in the
absence of the commonly used transcription factors.107 It
has also been shown that the miRNA-based reprogram-
ming approach is two orders of magnitude more efficient
than standard methods. Reprogramming of murine and
human cells is even feasible by direct transfection of
mature miRNAs with a non-viral approach.108 Other
authors demonstrated that ectopic expression of Oct4,
together with treatment by specific transcription factors
can directly mediate conversion of human fibroblasts to
multipotent hematopoietic progenitor cells.109 It is, there-
fore, conceivable that miRNAs may also be used for direct
conversion into hematopoietic cell types. 
Another possible application for miRNAs is the in vitro

expansion of HSCs. Generation of higher cell numbers
may enhance engraftment and reconstitution upon
hematopoietic stem cell transplantation, especially with
small volume transplants, e.g. those derived from cord
blood: despite the progress achieved over the last decades,
there are still no validated and clinically approved protocols
available for HSC expansion. Overexpression of miR125
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Table 2. miRNAs in human HSCs and their targets.
miRNA Function Cell type expressing miRNA Target Genes Reference

miR-10a Down-regulated during megakaryocytopoiesis CD34+ cells HOXA1 [48]
miR-15a Overexpression of miR-15a blocked erythroid CD34+ cells MYB [49]

and myeloid colony formation 
miR-24 Inhibits erythropoiesis CD34+ cells ALK4 [50]
miR-29a Promotes progenitor proliferation Lin-CD34+CD38-CD90+CD45RA- cells HBP1 [33]

CD133+ cells FZD5, TPM1 [36]
miR-34a Up-regulated during megakaryocyte differentiation, CD34+ cells CDK4, CDK6, MYB [51]

involved in regulation of dendritic cell differentiation 
miR-125b Expansion of HSCs Lin-CD34+CD38-CD90+CD45RA- cells BMF, KLF13 [34]
miR-130a Down-regulated during megakaryocytopoiesis CD34+ cells MAFB [48]
miR-142-3p Negative influence on the proliferation of CD133+cells CD133+ cells PROM1 [36]
miR-146 Down-regulation during megakaryopoises CD34+ cells CXCR4 [52]
miR-150 Drives differentiation towards megakaryocytes MEP (CD34+CD38+IL-3Rα–CD45RA–) MYB [24]
miR-155 Inhibition of myeloid and erythroid colony CD34+ cells Ets-1, MEIS1 [42, 53]

generation by CD34+ cells
miR-221 Inhibits erythropoiesis CD34+ cells KIT [25, 27]
miR-222 Inhibits erythropoiesis CD34+ cells KIT [25, 27]
miR-223 Inhibits granulocyte and erythroid differentiation CD34+ cells LMO2, NFI-A [54, 55]
miR-424 Up-regulated during monocyte/macrophage CD34+ cells NFI-A [56]

differentiation
miR-451 Promotes erythroid differentiation CD34+ cells n.a. [25, 26, 28]
miR-520h Promotes differentiation of HSCs into progenitor cells CD34+CD38– cells ABCG2 [35]
miR-17-92 cluster Controls monocytic differentiation CD34+ cells AML1, M-CSFR [29]
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Figure 1. The role of miRNAs in hematopoietic development. miRNAs that regulate different steps of hematopoiesis are indicated in red.
These miRNAs were mainly identified using in vitro assays with human cells - only those miRNAs labeled with ‡ were identified in the murine
system. Some transcription factors are demonstrated in green according to Orkin and Zon.20 LT-HSC: long-term hematopoietic stem cell; ST-
HSC: short-term hematopoietic stem cell; MP: multipotent progenitors; CMP: common myeloid progenitor; CLP: common lymphoid progen-
itor; MEP: megakaryocyte-erythroid progenitor; GMP: granulocyte-macrophage progenitor; ErP: erythroid progenitor; MkP: megakaryocyte
progenitor; RBC: red blood cells; NK: natural killer.



has been suggested to increase HSC numbers in vivo by
more than 8-fold, potentially through targeting of multiple
proapoptotic genes.38 Starczynowski et al.110 have over-
expressed miR-146a in murine HSC. As mentioned above,
this miRNA was up-regulated in HSC-fractions of various
different studies. Overexpression of miR-146a in HSC, fol-
lowed by bone marrow transplantation, resulted in a tran-
sient myeloid expansion, decreased erythropoiesis,
impaired bone marrow reconstitution in recipient mice,
and reduced survival of HSC.110 So far, miRNAs have not
enhanced the stem cell pool and it is conceivable that they
have to be applied in combinations or in a time dependent
manner. The complex mechanism of miRNAs acting in a
cell type dependent manner in an orchestra of target genes
and pathways make miRNAs a challenging tool for culture
expansion. However, the recently achieved breakthroughs
in the generation of iPS cells by using miRNAs raises hopes
for successful in vitro expansion of HSCs with miRNAs.

Conclusion
miRNAs are master regulators of hematopoiesis with a

high potential for use in regenerative medicine. Many
miRNAs have been implicated in lineage choices of

hematopoietic development. They can act through numer-
ous pathways that synergize to regulate and enforce cell
fate decisions, if the corresponding target mRNAs are tran-
scribed and accessible at the time. There is also growing
evidence that miRNAs resemble targets as well as effectors
in epigenetic changes such as DNA methylation.72,111,112
Thus, a mono-causal relation between a miRNA targeting a
specific gene and thereby developing a specific function is
unlikely. Quantitative miRNA data derived from highly
purified cell populations, together with sophisticated bioin-
formatic analysis and systems biology, appear to be neces-
sary to understand how miRNA shape the hematopoietic
landscape.
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