The corepressors BCOR and BCORL1: two novel players in acute myeloid leukemia

Enrico Tiacci,1* Vera Grossmann,2* Maria Paola Martelli,1 Alexander Kohlmann,2 Torsten Haferlach,2 and Brunangelo Falini

¹Institute of Hematology, University of Perugia, Italy; ²MLL Munich Leukemia Laboratory, Munich, Germany

E-mail: faliniem@unipg.it doi:10.3324/haematol.2011.057901

* E. Tiacci and V. Grossmann contributed equally to BCOR gene studies

cute myeloid leukemia (AML) is a disease characterized by high molecular heterogeneity. About one-third of AML patients harbor well-defined chromosomal translocations and are included as a distinct entity named "AML with recurrent genetic abnormalities" in the 2008 World Health Organization (WHO) classification of myeloid neoplasms.¹ During the past decade, there have been major efforts to better define the genetic lesions underlying the large group of AML with normal cytogenetics (CN-AML) that accounts for 40-50% of all AML cases. Mutations associated with CN-AML include those affecting NPM1, FLT3, MLL, CEBPA, TET2, ASXL1, IDH1, IDH2, DNMT3A, RUNX1 and other genes.² Because of their distinct biological and clinical features, "AML with mutated NPM1" and "AML with mutated CEBPA" are already recognized as provisional entities in the 2008 WHO classification.^{1,3,4}

The increasing use of next-generation sequencing technologies applied to the study of cancer genomes is making a remarkable contribution to our knowledge of the molecular landscape of CN-AML. Following the identification of *IDH1* and *DNMT3A* mutations,⁵⁷ this strategy has recently led to the discovery that two homologous genes, i.e. BCOR and BCORL1, are recurrently mutated in AML.⁸⁹ Their involvement in AML emerged from in-solution whole-exome capture followed by massively parallel sequencing of paired leukemic cells at diagnosis and normal hematopoietic cells at the time of complete remission from patients with AML. However, the strategies leading to the discovery of *BCOR* and *BCORL1* mutations in AML differed. We identified mutated *BCOR* through whole-exome sequencing of a CN-AML patient who was selected for analysis because of lack of any known mutations.⁸ Instead, Li *et al.*⁹ found *BCORL1* to be mutated by searching for recurrent mutations in a discovery cohort of 8 patients with secondary AML (s-AML) that were subjected to whole-exome sequencing. In both studies, these mutations were subsequently studied in larger series of AML patients.⁸

The structures of BCOR and BCORL1 are shown in Figure 1 and their main features are summarized in Table 1. Both BCOR and BCORL1 genes are located on the X-chromosome and encode for large nuclear proteins that are ubiquitously expressed in human tissues.^{10,11} The BCOR protein acts as corepressor of BCL6,¹⁰ it can bind to other transcriptional factors¹²⁻¹⁴ and appears to play a key role in the regulation of early embryonic development,¹⁵ mesenchymal stem cell function¹⁶ and hematopiesis.¹⁵ BCORL1 is also a transcriptional corepressor and functional studies have shown that it can bind to class II histone deacetylases (HDAC4, HDAC5, HDAC7), to interact with the CTBP1 corepressor, and to affect the repression of Ecadherin.¹¹ In spite of their similarities, the BCOR and BCORL1 proteins show a number of different features, including their capability to interact with BCL6, their expression levels in human tissues, and their localization within subnuclear structures (Table 1). These findings strongly suggest that, although BCOR and BCORL1 are homologous genes, they encode for

Figure 1. Schematic representation of the BCOR (top) and BCORL1 (bottom) transcriptional corepressors with their respective domains and the location and type of mutations occurring in AML patients. The numbers above the arrows indicate the presence, in more than one case, of the same type of mutation occurring at the same exonic location or involving the splicing of the same intron. *BCORL1* mutations also include five mutations that were found in four AML cell lines and in the Jurkat T-lymphoblastic leukemia cell line. The specific type (i.e. frameshift, nonsense, missense or splice-site) of *BCORL1* mutations was inferred from Li et al.⁹

<u>CBS</u>: CTBP1 binding site <u>NLS</u>: nuclear localization signal <u>LXXLL</u>: nuclear receptor recruitment motif <u>ANK</u>: ankyrin repeats

proteins that are likely to play distinctly different roles in normal human cells.

In AML, the BCOR gene is targeted by both translocations and mutations. One patient with acute promyelocytic leukemia (APL) has been reported to carry the 45,-Y,t(X;17)(p11;q12) karyotype, leading to the formation of a BCOR-RAR alpha fusion gene.¹⁷ Compared to typical APL cases with t(15;17), this patient showed distinct morphological features, i.e. rectangular body inclusions in the cytoplasm of leukemic cells and an atypical clinical course characterized by multiple relapses following chemotherapy plus all-transretinoic acid.¹⁷ BCOR mutations were detected in about 4% (10 of 262) of an unselected cohort of *de novo* CN-AML. Importantly, they occurred at a higher frequency (about 17%; 14 of 82 cases) in the subset of CN-AML devoid of NPM1, CEBPA, FLT3-ITD, and MLL-PTD mutations, and mostly also lacking *IDH1* mutations.⁸ Interestingly, the latter genotype mimicked that of the AML index patient initially used for whole-exome sequencing. BCOR mutations were demonstrated to be clonal, somatic, disruptive events involving the only functional allele, not only in male but also in female AML patients.8 Notably, the features of BCOR mutations in AML closely resembled those of the germline BCOR disruptive mutations causing the oculo-facio-cardio-dental (OFCD) X-linked syndrome¹⁸ that is characterized by microphtalmia, congenital cataracts, dysmorphic appearance, radiculomegaly, and digital and cardiac defects. Finally, BCOR mutations in AML were often associated with a decrease in BCOR mRNA levels, absence of full-length BCOR protein, and lack or low expression of a truncated BCOR protein.8 Taken together, the above features conform to those of loss-of-function mutations in a tumor-suppressor gene.

BCORL1 somatic mutations were found in about 6% of a series of 173 AML patients which included cases with secondary leukemia (showing myelodysplasia-related changes or being therapy-related) and a high incidence (approx. 65%) of abnormal karyotypes.9 Similarly to mutations of BCOR, most of the alterations affecting BCORL1 were nonsense mutations, out-of-frame insertions/deletions or splice site mutations that, although not resulting in clearly diminished mRNA levels of BCORL1, were predicted to encode truncated proteins lacking the last C-terminal LXXLL nuclear receptor recruitment motif.9 Although targeting of BCORL1 mutations to the expressed allele in female AML patients was not formally demonstrated by Li et al.9, the above findings again point to BCORL1 as a tumor-suppressor gene that is inactivated by mutations in a subset of AML.

At present, only limited information is available about the distribution of *BCOR* and *BCORL1* mutations across the main cytogenetic/molecular AML categories. Mutations of *BCOR* mainly clustered with CN-AML, were virtually mutually exclusive with *NPM1* and *FLT3*-ITD mutations and showed an association with *DNMT3A* and *RUNX1* mutations.⁸ *BCORL1* mutations mostly occurred in patients with s-AML and/or with abnormal karyotype, and carried germline *TP53*, *CEBPA* and *NPM1* genes.⁹ Because a relatively small number of CN-AML cases has been analyzed for *BCORL1* mutations,⁸ it is not yet clear whether or not mutations of these two homologous genes

Table 1. Features of the BCOR and BCORL1 transcriptional corepressors.

Feature	BCOR	BCORL1
Gene		
Location	Chromosome X (band Xp11.4)	Chromosome X (band Xq26.1)
Number of exons	15	13*
Association with a genetic syndrome	Oculo-facio-cardio-dental (OFCD) syndrome	Not reported
Protein		
Length	1755 amino acids	1711 amino acids*
Subcellular location	Nucleosol and nuclear dots of various size [#]	Speckle-like nuclear dots of consistent size*
Tissue expression	High levels in many tissues	Low levels in many tissues. High levels in testis and prostate
Major domains and motifs	BCL6-binding domain, MLLT3-binding domain [^] , tandem ankyrin repeats	CTBP1-binding site, nuclear localization signal (NLS), tandem ankyrin repeats, two LXXLL motifs
Function	Transcriptional corepressor	Transcriptional corepressor
Interactors° MLLT ZBTB	BCL6, class I and II HDACs, '3, FBXL10/JHDM1B, MLLT1/ 5, SP1, ZBTB2, ZBTB7A/Poke	Class II HDACs, ENL, CTBP1

*BCORL1a (an alternatively spliced form of BCORL1) contains additional 74 amino acids (for a total of 1785) encoded by a further exon (exon 9). 'BCOR and BCORL1 localize in different subnuclear structures. 'Shown in the Bcor murine ortholog; MLLT3 is also known as AF9 and is a fusion partner of MLL in acute leukemias.' Direct or indirect.

may occur in the same clinical-genetic AML backgrounds.

All these findings point to mutational targeting of corepressors as a new mechanism of leukemogenesis. However, the way in which BCOR and BCORL1 mutations contribute to AML development is still not clear. The observation that about half the BCOR-mutated cases also carry mutations of the DNMT3A gene suggests that these two mutations may act synergistically to induce AML, possibly interfering with epigenetic mechanisms. Indeed, DNMT3A encodes a methyltransferase enzyme catalyzing the addition of methyl groups to CpG dinucleotides.⁶ Moreover, BCOR increases the repression of transcriptional activity by interacting with class I and II HDACs, the polycomb group protein PCGF1/NSPC1 and the histone demethylase FBXL10,^{13,14,16} which implies BCOR may suppress gene transcription by epigenetic mechanisms.^{16,19} Because BCOR (and BCORL1) are ubiquitously expressed, it will be crucial to define the key targets of their corepressive transcriptional activity specifically in AML cells, in order to gain more precise insights into mechanistic role of BCOR and BCORL1 mutations in leukemogenesis.

Do *BCOR* and *BCORL1* mutations have any clinical impact in AML? Analysis of a large series of CN-AML patients suggests that *BCOR* mutations may confer a poorer prognosis.⁸ However, due to the low frequency of the mutation, additional studies are necessary to confirm these findings. For the moment, no prognostic information is available concerning *BCORL1* mutations⁹ and this needs to be clarified.

In conclusion, BCOR and BCORL1 add to the growing list

of genes recurrently mutated in AML. These findings also highlight the cost and the huge amount of time involved to investigate the functional and clinical aspects of genetic lesions that occur at a relatively low frequency in AML. Researchers should be prepared to take on this difficult task, since in the future, novel low frequency mutations in other genes are likely to emerge from the sequencing of additional AML genomes.

Acknowledgments: this work was supported by the Italian Association for Cancer Research (AIRC).

Enrico Tiacci is a research investigator at the Institute of Hematology, University of Perugia, Italy. His present major field of interest is the application of whole-exome sequencing technology for unraveling new genetic lesions in lymphomas and leukemias. Vera Grossmann is a molecular biologist at the MLL Munich Leukemia Laboratory. Her work is dedicated to the diagnosis and research of leukemias using genomic platforms and novel deep-sequencing technologies. Maria Paola Martelli is a research investigator at the Institute of Hematology, University of Perugia, Italy. During the past years, her research activity was mainly focused on the biochemical analysis of acute myeloid leukemia (AML) with normal karyotype and in vitro testing of new anti-leukemic drugs. Alexander Kohlmann is a laboratory director at the MLL Munich Leukemia Laboratory. His research is focused on the molecular characterization of myeloid neoplasms using genomics platforms and novel deep-sequencing technologies. Torsten Haferlach is a founder and head of the MLL Munich Leukemia Laboratory. His work is dedicated to the diagnosis of leukemias and lymphomas in a national reference center. His group contributed in particular to the molecular and functional characterization of leukemia and myelodysplastic syndromes. Brunangelo Falini is the head of the Institute of Hematology, University of Perugia, Italy. He greatly contributed to the development of modern classifications of lymphohemopoietic neoplasm and he is a widely recognized authority in the molecular characterization of lymphomas and AML. Work from his group led to the landmark discovery of NPM1 mutations in AML with normal karyotype.

Financial and other disclosures provided by the author using the ICMJE (www.icmje.org) Uniform Format for Disclosure of Competing Interests are available with the full text of this paper at www.haematologica.org.

References

1. Arber DA, Brunning RD, Le Beau MM, Falini B, Vardiman JW, Porwit

A, et al. Acute myeloid leukaemia with recurrent genetic abnormalities. In: Swerdlow SH et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer (IARC); 2008.

- Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol. 2011;4:36.
- Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254-66.
- Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E, et al. Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood. 2011;117(4):1109-20.
- Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058-66.
- Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424-33.
- Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43(4):309-15.
- Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, et al. Whole-exome sequencing identifies mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood. 2011;118(23): 6153-63.
- 9. Li M, Malek SM, Collins R, Jiao Y, Ouillette P, Bixby D, et al. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia. Blood. 2011;118(22):5914-7.
- Huynh KD, Fischle W, Verdin E, Bardwell VJ. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000;14(14):1810-23.
- Pagan JK, Arnold J, Hanchard KJ, Kumar R, Bruno T, Jones MJ, et al. A novel corepressor, BCoR-L1, represses transcription through an interaction with CtBP. J Biol Chem. 2007;282(20):15248-57.
- Srinivasan RS, de Erkenez AC, Hemenway CS. The mixed lineage leukemia fusion partner AF9 binds specific isoforms of the BCL-6 corepressor. Oncogene. 2003;22(22):3395-406.
- Gearhart MD, Corcoran CM, Wamstad JA, Bardwell VJ. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol. 2006;26(18):6880-9.
- Sanchez C, Sanchez I, Demmers JA, Rodriguez P, Strouboulis J, Vidal M. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol Cell Proteomics. 2007;6(5):820-34.
- Wamstad JA, Corcoran CM, Keating AM, Bardwell VJ. Role of the transcriptional corepressor Bcor in embryonic stem cell differentiation and early embryonic development. PLoS One. 2008;3(7):e2814.
- Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol. 2009;11(18):1002-9.
- Yamamoto Y, Tsuzuki S, Tsuzuki M, Handa K, Inaguma Y, Emi N. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood. 2010;116(20):4274-83.
- Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A, et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet. 2004;36(4):411-6.
- Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 2009;10(10):697-708.

ATM and chronic lymphocytic leukemia: mutations, and not only deletions, matter

Davide Rossi and Gianluca Gaidano

Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy E-mail: gaidano@med.unipmn.it doi:10.3324/haematol.2011.057109

(Related Articles on pages 47 and 142)

hronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Though modern treatments are highly effective in most CLL, a challenging subgroup of patients shows poor response to standard regimens and a survival of less than two years.¹⁻³ Identifying chemorefractory patients early, ideally before treatment, and designing therapeutic strategies tailored to overcoming chemorefractoriness remain key issues toward an opti-