Down-regulation of *EVI1* is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia

Iria Vázquez,^{1*} Miren Maicas,^{1,2*} José Cervera,³ Xabier Agirre,¹ Oskar Marin-Béjar,¹ Nerea Marcotegui,¹ Carmen Vicente,¹ Idoya Lahortiga,⁴ Maria Gomez-Benito,¹ Claudia Carranza,⁵ Ana Valencia,³ Salut Brunet,⁶ Eva Lumbreras,⁷ Felipe Prosper,¹ María T. Gómez-Casares,⁸ Jesús M. Hernández-Rivas,⁷ María J. Calasanz,² Miguel A. Sanz,³ Jorge Sierra,⁶ and María D. Odero^{1,2}

¹Division of Oncology, CIMA, University of Navarra, Pamplona, Spain; ²Department of Genetics, University of Navarra, Pamplona, Spain; ³University Hospital La Fe, Valencia, Spain; ⁴Human Genome Laboratory, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium; ⁵Instituto de Investigación Genética, Milpas Altas, Guatemala; ⁶Hospital Santa Creu i Sant Pau, Barcelona, Spain; ⁷Hospital Universitario de Salamanca y CSIC, University of Salamanca, Salamanca, Spain; ⁸Hospital Dr. Negrin, Las Palmas de Gran Canaria, Spain

Citation: Vázquez I, Maicas M, Cervera J, Agirre X, Marin-Béjar O, Marcotegui N, Vicente C, Lahortiga I, Gomez-Benito M, Carranza C, Valencia A, Brunet S, Lumbreras E, Prosper F, Gómez-Casares MT, Hernández-Rivas JM, Calasanz MJ, Sanz MA, Sierra J, and Odero MD. Down-regulation of EVI1 is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia. Haematologica 2011;96(10):1448-1456. doi:10.3324/haematol.2011.040535

Online Supplementary Design and Methods

Material

Samples obtained at diagnosis from 476 patients with acute myeloid leukemia (AML), other than acute promyelocytic leukemia, were provided by the Hospital La Fe (Valencia), Hospital Santa Creu i Sant Pau (Barcelona), Hospital Universitario de Salamanca (Salamanca), Hospital Dr. Negrin (Las Palmas), and Department of Genetics of the University of Navarra (Pamplona), which belong to the Myeloid Malignancies Group of the Spanish Network of Cancer Research. Of these patients, 194 were categorized as elderly (≥65 years old), and 249 constituted the group of younger AML individuals. The study was approved by the Ethics Committee for Research with Human Subjects, (037/2008). Survival analysis was performed in the 213 AML patients who were eligible for treatment and were uniformly treated according to the Spanish Pethema Co-operative Group protocol LAM99.¹ Samples were taken anonymously.

Quantitative real-time reverse transcriptase polymerase chain reaction

Two micrograms of total RNA isolated from cell pellets with the RNeasy Mini Kit (Qiagen, Germany) were used for cDNA synthesis (SuperScript[™]II RNase HRT; Invitrogen, CA, USA). Gene expression was quantified with an ABI Prism 7,500 (Applied Biosystems, CA, USA) with 20 ng of cDNA. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was performed with predesigned TaqMan gene expression assays for EVI1-1A (Hs01118676_m1), EVI1-4B (Hs01118674_m1), EVI1-4C (Hs01118675_m1) and EVI1 11-12 (Hs01115406_m1), which includes all the EVI1 transcripts; and GATA2 (Hs00231119_m1). Specific assays-by-design were designed for EVI1-1D, EVI1-3L, and MDS1EVI1. Triplicate cycle threshold values were averaged; concentrations of the target gene were interpolated from the standard curves and normalized to GAPDH expression for each sample. Samples from the University Hospital La Fe were quantified for EVI1-4D expression using the P2 and P3 primers, as previously described.² Over-expression of EVI1 was defined when the level of at least one EVI1 transcript was higher than the average and three times the standard deviation of seven bone marrow samples from healthy volunteers.

Analysis of the methylation status of the EVI1 and MDS1EVI1 promoter regions

DNA methylation profiling of healthy donor peripheral blood (n=4), bone marrow (n=4) and CD34⁺ cells of bone marrow (n=4) samples was performed using the HumanMethylation27 Beadchip (Illumina, Inc., San Diego, CA, USA), according to the instructions of the manufacturer.³ The panel was developed to quantify the DNA methylation status of 27,578 CpG sites located within the proximal promoter regions (1 kb upstream and 500 bp downstream of transcription start sites) of 14,475 well-annotated genes. Briefly, genomic DNA was converted by sodium bisulfite treatment and whole-genome amplified using the manufacturer's instructions. Each CpG locus is represented by two bead types: one for the unmethylated (U) site and another for the methylated (M) site. After hybridization and singlebase extension using labeled nucleotides, the intensity of the U and M beads is measured with a microarray reader. The methylation status of a CpG is determined by the beta-value calculation, which is based on the ratio of the fluorescent signals of the M beads to the total locus fluorescence intensity. The beta value is a quantitative measure of DNA methylation levels of specific CpG, and ranges from 0 (completely unmethylated) to 1 (completely methylated). The methylation status of the CpG islands of EVI1 (island 1 and 2) and MDS1EVI1 (island 1 and 2) were analyzed by bisulfite sequencing PCR (Online Supplementary Table S3). DNA modification was performed with the CpGenome[™] DNA Modification Kit (CHEMICON, Millipore Corporation, MA, USA). For the treatment of the cell lines, several concentrations and time points were tested, and optimal results were obtained with 10x10⁶ cells in 10 mL of medium, cultured with 4 µM of 5-aza-2'-deoxycytidine (5-Aza), and 50 nM of trichostatin A (TSA) for 4 days; controls were cultured with dimethyl sulfoxide and glacial acetic acid.

Chromatin immunoprecipitation

HEL, TF1, OCI-AML2, NOMO-1 and MV4-11 cell lines were subjected to chromatin immunoprecipitation (ChIP) in order to assess the acetylation of H3 and H4, and the trimethylation of histone H3 lysine 4 and lysine 27 as previously described.⁴ Ten million cells were cross-linked with 1% formaldehyde for 10 min, and then 0.125 M glycine

was used to stop the reaction. Subsequently, chromatin was fragmented by sonication to obtain an average fragment length of 200-900 bp (Bioruptor Diagenode, Belgium). Antibodies used were antiacetyl- histone H4 and anti-acetyl-histone H3 (Millipore Corporation, MA, USA) and anti-trimethyl K4 and K27 of H3 (Abcam, Cambridge, UK). The relative amount of specifically immunoprecipitated DNA was quantified by SYBR-Green fluorescent dye quantitative RT-PCR, using specific primers for *EVI1* and *MDS1EVI1* promoter regions (*Online Supplementary Table S3*). PCR results were calculated using the $\Delta\Delta$ Ct method. They are presented as the fold enrichment of chromatin DNA precipitated by the specific antibody *versus* chromatin DNA precipitated by no antibody, as the control, from at least two independent experiments.

Western blot analysis

Cells were lysed in lysis buffer (Cell Signaling, MA, USA) with complete protease inhibitor (Roche, IN, USA) and 1 mM NaVO₄ (Sigma, MO, USA), and the concentration was determined using Bradford's method prior to each use (Bio-Rad Laboratories, Inc., CA, USA). Western blot analysis was carried out with 50 μ g of total proteins electrophoresed on 10% Tris/Glycine SDS-polyacrylamide solution gel, and transferred to a nitrocellulose membrane. Anti-Evi1 antibody (Cell Signaling, MA, USA) and antilamin A/C antibody were used (Cell Signaling, 2032). Detection was performed with phosphatase alkaline-conjugated anti-rabbit Ig (Sigma, MO, USA), and enhanced chemiluminescence (Amersham Pharmacia Biotech, GE Healthcare, Sweden).

References

 Daghistani M, Marin D, Khorashad JS, Wang L, May PC, Paliompeis C, et al. EVI-1 oncogene expression predicts survival in chronic-phase CML patients resistant to imatinib treated with second-generation tyrosine kinase inhibitors.

Blood. 2010; 116(26):6014-7.

- Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003;101(3):837-45.
- 3. Bibikova M, Fan JB. Genome-wide DNA

methylation profiling. Wiley Interdiscip Rev Syst Biol Med. 2010;2(2):210-23.

 Paul TA, Bies J, Small D, Wolff L. Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML. Blood. 2010;115 (15):3098-108.

Online Supplementary Figure S1. Genomic locus of the human *EVI1* gene and *EVI1* splice variants. (A) Genomic structure of the human *EVI1* gene with the three alternative splice variants: *EVI1* $-\Delta$ 324, *EVI1* -Rp9 and the *EVI1* $-\Delta$ 324, *EVI1* -Rp9 and the *EVI1* $-\Delta$ 105. (B) Alternative mRNA 5[/]-end variants of the human *EVI1* gene. The shading in gray represents the relative position of the *EVI1* CpG islands. (Adapted from Wieser 2007, and Lugthart et al. 2008).

Online Supplementary Figure S2. Quantification of the EV/1 5'-end variants in normal tissues. (Expression levels were normalized to spinal cord).

Online Supplementary Figure S3. Analysis of *EVI1* expression in 16 myeloid cell lines. (A) Quantification of the expression levels of *EVI1* 5'-end variants. Expression levels were normalized to normal bone marrow (B) Western blot analysis of *EVI1* and *MDS1EVI1*.

MDS1EVI1 splicing (exon 2 of MDS1 - exon 2 of EVI1)

MDS1EVI1 alternative splicing (exon 1 of MDS1 - exon 2 of EVI1)

Online Supplementary Figure S4. Analysis of the MDS1EVI1 PR domain. Sequences of alternative splicings of MDS1EVI1. The previously described intergenic splicing between MDS1 (exon 2) and EVI1 (exon 2), and the novel alternative splicing between MDS1 (exon 1) and EVI1 (exon 2). Different exons are show by different colors; the sequence of MDS1 is underlined.

EVENT FREE SURVIVAL

Online Supplementary Figure S5. EVI1-1C over-expression is associated with poor survival in AML patients <65 years. In Kaplan-Meier analysis stratified by age, patients <65 years and with EVI1-1C over-expression have an inferior event-free survival in comparison to that of patients with no EVI1-1C over-expression.

Online Supplementary Figure S7. Analysis of the histone methylation of the *EVI1* locus in three myeloid cell lines after treatment with 5-Aza and TSA. (A) Quantitative real-time RT-PCR performed on fragmented chromatin, showing the levels of trimethylation of histone H3 lysine 4 (H3K4me3) and histone H3 lysine 27 (H3K27me3) on the *EVI1* promoter before and after the treatment. The results were calculated using the $\Delta\Delta$ Ct method. They are presented as the fold enrichment of chromatin DNA precipitated by the specific antibody versus chromatin DNA precipitated by no antibody, as the control, and comparing with or without the treatment.

· · · · · · · · · · · · · · · · · · ·	No.	No. cases	Prevalence of EVI1		Univariate	Multivariate			
Reference	cases analyzed	with EVI1 overexpression	overexpression among the cytogenetic risk groups	Global cohort	Intermediate-risk karyotype (*)	Normal cytogenetics (*)	Global cohort (*)	Intermediate-risk karyotype (*)	
Barjesteh v	an Waalwijk	van Doorn-Khosro	ovani et al., 2003	S	2				
	319	32 (10%)	good: 0% (0/57) intermediate: 7.5% (16/212) poor: 32% (16/50)	OS and EFS (-1D)	OS and EFS (-1D)			OS and EFS (-1D)	
Haas et al.,	2008								
	266	41 (15.4%)	no data	EFS (-3L) DFS (-1A, -1B, -1D, -3L, MDS1EVI1, cEVI1)	EFS (-1B) DFS (-1A, -1B, -1D, -3L, MDS1EVI1, cEVI1)	DFS (-1A, -1B, -1D, -3L, MDS1EVI1, cEVI1)			
Lugthart et	al., 2008	·					·		
	534	41 (7.8%)	good: 1.1% (1/90) intermediate: 4.7% (17/364) poor: 28.8% (23/80)	OS (-1A, -1B, -1D, -3L) EFS (-1A, -1B, -1D, -3L) DFS (-1A, -1B, -1D, -3L)			OS (-1A, -1B) EFS (-1A, -1B, -3L) DFS (-1A, -1B)		
Groschel et	al., 2010								
	1328	148 (10.7%)	good: 0.4% (1/263) intermediate: 7.4% (62/836) poor: 38% (73/198)	OS, EFS and RFS (EVI1/MDS1EVI1) <60 years			OS, EFS and RFS (EVI1/MDS1EVI1) <60 years		
Vazquez et	al., 2011							· · · · · · · · · · · · · · · · · · ·	
	476	92 (19.3%)	good: 3.6% (2/55) intermediate: 13% (35/269) poor: 36.2% (55/152)	OS and EFS (-1C) <65 years					

Online Supplementary Table S1. Review of the literature of large series of AML adult patients for whom the prevalence and prognostic value of EVI1 overexpression was reported.

(*) Significant data; overall survival (OS); event-free survival (EFS); disease-free survival (DFS); relapse-free survival (RFS); sum of all EVI1 transcripts (cEVI1)

Online Supplementary Table S2. Clinical and molecular characteristics of the 16 human myeloid cell lines, including the analysis of EVI1 expression.

Cell line	FAB Partial 3q Karyotype				Overexp	ression (q	RT-PCR)			PR d	lomain	Prote	in
			<i>EVI1-1A</i> 0.085	EVI1-1B 0.033	EVI1-1C 0.099	EVI1-1D 0.036	EVI1-3L 0.801	MDS1EVI1 1.969	GATA2 2.820	Normal	Novel splicing	MDS1EVI1	EVI1-FL
											variant		
HL-60	AML-M2	no 3q aberrations	0	0	0	0	0.001	0.069	2.566	Yes	No	No	No
Kasumi-1	AML-M2	no 3q aberrations	0	0	0	0	0.001	0	0.691	No	No	No	No
MUTZ-3	AML-M4	t(1;3)(q43;q13)inv(3) (q21q26)	0.389	0.276	1.971	0.460	0.700	0	2.620	No	No	No	Yes
OCI-AML2	AML-M4	+der(1)t(1;3)(q?;q26), inv(3)(q21q26),t(1;3)	0	0	0	0	0.004	0	1.192	No	No	No	No
		(q?;q26)											
NOMO-1	AML-M5	+der(?)t(3;?)(q21;?)	0	0	0	0	0.002	0	0.438	No	No	No	No
MOLM-13	AML-M5	no 3q aberrations	0	0	0	0	0.002	0	0.680	No	No	No	No
MV4-11	AML-M5	no 3q aberrations	0	0	0	0	0.001	0	0.021	No	No	No	No
TF-1	AML-M6	+der(?)t(?;3)(?;q21)x2	0.187	0.134	1.835	0.125	0.313	0.419	18.427	Yes	No	No	Yes
HEL	AML-M6	t(3;?6)(q21;q?),+3	0.181	0.140	0.244	0.121	0.102	0.313	21.730	Yes	Yes	Yes	Yes
F-36P	AML-M6	no 3q aberrations	0.169	0.219	0.344	0.076	0.395	0.090	5.520	Yes	Yes	No	Yes
KG-1	AML-M6	no 3q aberrations	0	0	0	0	0.017	0	9.450	No	No	No	No
EOL1	AML	no 3q aberrations	0	0	0	0	0.002	0	0.384	No	No	No	No
KYO-1	CML-BP	no 3q aberrations	0.074	0.110	0.167	0.025	0.053	0.163	19.830	Yes	Yes	No	Yes
K562	CML-BP	+der(?)t(3;?)(q26;?)	0.139	0.216	0	0.020	0.139	2.321	4.176	Yes	Yes	No	Yes
KU-812	CML-BP	no 3q aberrations	0.038	0.045	0	0.010	0.080	0.009	56.600	Yes	No	No	Yes
MEG-01	CML-BP	?inv(3)(p25q26)*	0.039	0.065	0	0.028	0.370	0.256	6.640	Yes	No	No	No

Overexpression is highlighted in bold; with the cut-offs calculated from seven normal bone marrow samples and three times the standard deviation; * not confirmed by FISH analysis.

Online Supplementary Table S3. Sequence of the primers used to analyze the PR domain of MDS1EVI1, the methylation status of CpG islands of EVI1 (Island 1 and Island 2) and MDS1EVI1 (Island 1 and Island 2), and primers used for qRT-PCR on ChIP.

Primer Name	Oligonucleotide sequence (5´-3´)	AT(°C)
PR domain F	CACAGCATGAGATCCAAAGG	50
PR domain R	AAGAGCGAAGACTATCCCCA	- 59
PR domain R2	CCAGCGAATCTAATGTACTTGAGC	59.5
EVI1-Island1 F	TGTTGAGTTGAGGTTATAGAAATTTAAAG	50
EVI1-Island1 R	CCCACAATCTAACCAAAAAATC	- 59
EVI1-Island2 F	GTAGGTTTGGTTAAATTAGGATTT	55
EVI1-Island2 R	CCTAAACTACAATATACCTTCCTCTC	- 55
MDS1EVI1-Island1 F	TTTGTTTAAGTTTTTTTAATTTTTTTT	55
MDS1EVI1-Island1 R	CTCTCCAACATTATCAATTTAAACAC	- 55
MDS1EVI1-Island2 1F	GGAAGGGATTTTAAGAGGTTTAAATT	50
MDS1EVI1-Island2 1R	ACCCATAAAATTAAAAAAACCATTTC	- 56
MDS1EVI1-Island2 2F	TTTTATATATATATATAGAAGTTGGATGGGA	50
MDS1EVI1-Island2 2R	TATAAACACACATCCAAACAACAAC	- 59
ChIP -724(EVI1) F	CATTGGAACTGGGAAGGAGA	60
ChIP -724(EVI1) R	CGCGTTTCGGATTTATTGTC	00
ChIP -5000(MDS1EVI1) F	GGGGAGGGAGTAGGATTGTA	60
ChIP -5000(MDS1EVI1) R	CTTGCCGTTTTGTAAATTGC	00

AT: annealing temperature. The relative position of the amplicon in the ChIP primers is specified before the name of the gene.

Online Supplementary Table S4. Quantification of the EVI1 5'-end variants in 18 patients with AML.

ID	Sex	FAB	sAML	Karyotype	EVI1-1A 0.085	EVI1-1B 0.033	EVI1-1C 0.099	EVI1-1D 0.036	EVI1-3L 0.801	MDS1EVI1 1.969
43	F	AML-M4	sAML	45,XX,t(3;10)(q24;q24),del(5)(q31),-7,del(13)(q21)	2.330	34.960	12.150	2.369	0.299	18.381
269	м	AML- NOS	sAML	46,XY	0.070	0.004	0.161	0.058	0.298	1.222
270	M	AML-M5	sAML	46,XY,add(11)(q24)	0.574	20.690	0.465	0.296	4.606	6.752
271	F	AML-M4	de novo	46,XX	0.038	0.001	0	0.017	0.127	1.047
273	M	AML-M4	de novo	46,XY	0.012	0.001	0	0.004	0.038	0.313
276	F	AML-M5	de novo	46,XY	0.003	0	0	0.002	0.035	0.022
277	F	AML-M5	sAML	48,+3,+8,t(9;11)(p21;q23)/46,XX	0.903	0.003	0.440	0.136	0.690	13.767
278	F	AML-M5	de novo	43,X,-X,der(3)t(3;10)(p23;q11),-10,del(12)(p11),-20	0.002	0	0	0.002	0.370	0.042
280	м	AML-M5	sAML	46,XY,del(3)(p21),del(5q21q34),-13,-18,add(19)(q13),+2mar/ 45,XY,-3,del(5)(q21q34),der(6),-17,-17,-18,-19,-20,+5mar	0.044	0.001	0.108	0.023	0.148	0.469
281	м	AML- NOS	sAML	46,XY	0.072	0.001	0.053	0.012	0.201	6.984
282	F	AML-M2	de novo	45,XX,t(4;11)(p12;q23),-7	0.993	0.002	2.170	0.299	0.201	0.330
284	M	AML-M2	de novo	47,XY,+4,t(8;21)(q22;q22)	0.014	0.000	0	0.004	0.511	0.124
286	F	AML-M0	de novo	46,XX,t(5;16)(q14;q24)	8.767	0.025	7.960	2.086	4.523	0.157
289	M	AML-M2	de novo	46,XY,t(8;21)(q22;q22)	0.019	0.003	0.150	0.012	0.060	0.367
290	M	AML-M4	de novo	46,XY,t(10;11)(p14;q21)	0.066	0.002	0	0.030	0.263	3.107
291	F	AML-M6	de novo	45,XX,-7	2.188	19.570	10.770	1.568	1.025	0.049
292	M	AML-M1	de novo	46,XY	0.007	0	0.169	0.004	0.012	0.108
471	M	AML-M5	de novo	46,XY,add(11)(q23)	0.024	0.001	0	0.009	0.131	0.112

AML-NOS: acute myeloid leukemia, not otherwise specified; Over-expression is highlighted in bold; with the cut-offs calculated from seven normal bone marrow and three times the standard deviation.

Online Supplementary Table S5. Correlations between the expression levels of the *EVI1* transcripts in AML patients and cell lines.

Correlations between the expression levels of EVI1 transcripts in 18 AML cases:

	EVI1-1B	EVI1-1C	EVI1-1D	EVI1-3L	MDS1EVI1
EVI1-1A	0.860(**)	0.792 (**)	0.965 (**)	0.631 (**)	0.550 (*)
EVI1-1B		0.759 (**)	0.902 (**)	0.557 (*)	0.593 (**)
EVI1-1C			0.824 (**)	0.473 (*)	0.294
EVI1-1D				0.597 (**)	0.542 (*)
EVI1-3L					0.267

Correlations between the expression levels of EVI1 transcripts in 16 AML cell lines:

	EVI1-1B	EVI1-1C	EVI1-1D	EVI1-3L	MDS1EVI1
EVI1-1A	0.970(**)	0.852(**)	0.987(**)	0.877(**)	0.677(**)
EVI1-1B		0.783(**)	0.943(**)	0.889(**)	0.660(**)
EVI1-1C			0.852(**)	0.672(**)	0.374
EVI1-1D				0.889(**)	0.657(**)
EVI1-3L					0.567(*)

Spearman's Rho correlation coefficients were calculated for the 18 samples from AML patients and 16 myeloid cell lines in which the EVI1 transcripts had been measured. P<0.05 (*); P<0.001 (**)

Online Supplementary Table S6. Multivariate analysis of *EVI1*-1C over-expression as a prognostic marker for survival in the cohort of AML patients under 65 years old.

Prognostic Marker	P (univariate)	P (multivariate)	HR	95% CI
Overall survival ¹				
Cytogenetic risk group	<0.001	<0.001	2.026	1.410-2.371
EVI1-1C overexpression	0.006	0.211	1.436	0.814-2.942
Event-free survival ¹				
Cytogenetic risk group	<0.001	0.002	1.756	1.226-2.517
EVI1-1C overexpression	0.018	0.235	1.403	0.802-2.456

¹Other parameters such as sex, type of AML, FLT3-ITD mutations and NPM1 mutations were not significantly associated with survival in the univariate analysis and were not included in the multivariate model. HR: hazard ratio; CI: confidence interval.

Online Supplementary Table S7. Multivariate analysis of *EVI1* expression groups (patients with no basal expression *versus* patients with expression/over-expression) as a prognostic marker for survival in the global cohort of AML patients, and in AML patients under 65 years old.

Prognostic Marker (global cohort)	P (univariate)	P (multivariate)	HR	95% CI
Overall survival ¹	63 % ² 16.			
Age	<0.001	<0.001	2.038	1.489- 2.790
Cytogenetic risk group	<0.001	<0.001	1.828	1.410-2.371
EVI1 with no basal expression	0.037	0.642	1.080	0.781-1.493
Prognostic Marker (under 65)	P (univariate)	P (multivariate)	HR	95% CI
Overall survival ¹				
Cytogenetic risk group	<0.001	<0.001	1.941	1.395-2.702
EVI1 expression groups	0.006	0.100	1.428	0.934-2.183

¹Other parameters such as sex, age (only for the global cohort), type of AML, FLT3-ITD mutations and NPM1 mutations were not significantly associated with survival in the univariate analysis and were not included in the multivariate model. HR: hazard ratio; CI: confidence interval.

3q26 tel.	82C9 115B16 196F13	(EVI1) (MDS1) (TRAIL)	X	X	X	x	X	X	x	X X	X der(6)	X der(2)	X der(3p)	X der(12)	X der(21)	X der(2)	X der(?) der(?)	del del del	n.d. der(5)	n.d. der(9p)			der(5) der(5) der(5)	der(12?) der(12?) der(12?)	X der(12) der(12) der(12)		
	689D3	(RPN1)																del	der(5)	del		del	der(5)	der(12?)			
q21	175N22	GATA2)	×	×	del		×	×										del	der(5)	del		del	×	×			
30	4	5)			×				×													×					
		390G14																del	der(5)	del							
centr.																		×	×	×	×						
		in FAB	AML-M0	AML-M7	AML-M0	AML-NOS	AML-NOS	MDS	RAEB-1	AML-NOS	AML-M0	AML-M0	AML-M7	CML-BP	MDS	RAEB-2	AML-M5	AML-M2	AML-M2	AML-M4	RAEB-2	RAEB-2	AML-M6	MDS	AML-M1	AMI ME	
	Gene	overexpressio	E+ME	E+ME	ш	E+ME	ш	ш	E+ME	NO	ш	E+ME	E (ME n.d.)	E+ME	E+ME	ш	ш	ш	NO	ш	ш	NO	NO	NO	NO	Q	
		Partial karyotype after FISH	der(3)t(?;3)(?;q21)inv(3)(q21q26)	der(3)inv(3)(q21q26)t(3;17)(q27?;q12)	der(3)inv(3)(q21q26)del(3)(q21)	inv(3)(q21q26)	t(3;3)(q21;q26)	t(3;3)(q21;q26)	ins(3;3)(q21q26)	t(3;3)(q21;q26)	t(3;?6)(q26;?q25)	t(2;3)(p23;q26)	t(3;3)(q26;p?)	t(3;12)(q26;p13)	t(3;21)(q26;q21)	t(2;3)(p15;q26)	der(3)t(3;?)(q26;?)	del(3)(q21q26)	der(3)t(3;5)(q26q21;q31)	der(3)del(3)(q21)t(3;?9)(q26;?)	inv(3;3)(p?;q21)	del(3)(q21)	der(3)t(3;?)(q26q21;?)	-3,der(3)t(3;12)(q13;p13)	t(3;12)(q?21;q?)	der(3)ins(3;3)(q26;p?) (probes 3q26 in	
		Case	18352	15525	8689s	18707s	15845s	10357s	30840	21872s	21029s	3666v	28783	562v	19491s	1389v	19130	14066s	24188	24316	25704	12201	30157	12826	15285	10100	
				9	2p	£ 3	11	; 7 b	5									l	.7p	3			3d				

EVI1 (E); MDS1EVI1 (ME); No gene overexpression (NO); no data (n.d.); centromere (centr), telomere (tel.), the crosses (X) show the positions of the breakpoints.

Online Supplementary Table S8. Schematic representation of the FISH breakpoints in 25 cases with 3q aberrations.