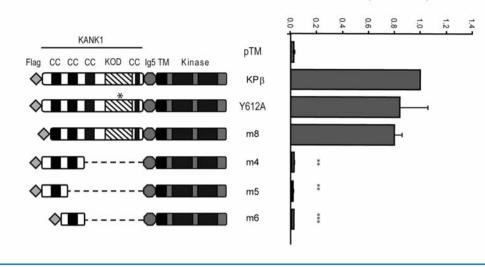
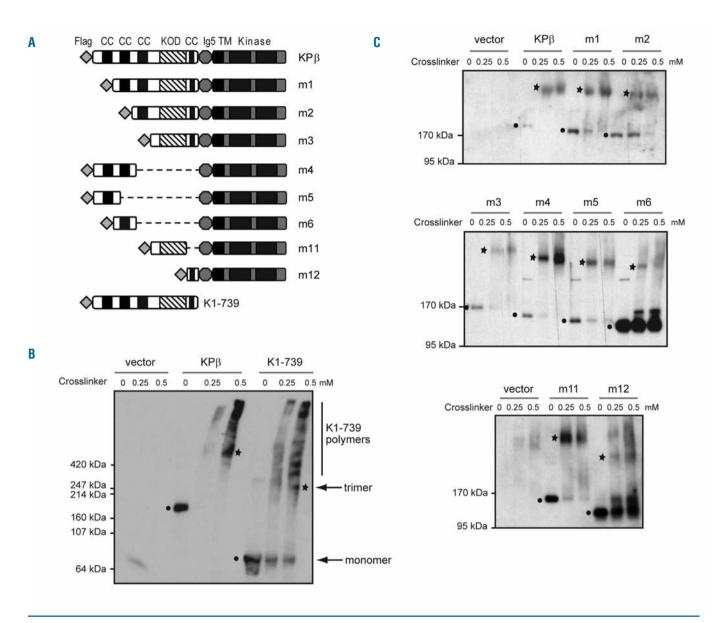

Multiple oligomerization domains of KANK1-PDGFR β are required for JAK2-independent hematopoietic cell proliferation and signaling via STAT5 and ERK

Sandrine Medves,¹ Laura A. Noël,¹ Carmen P. Montano-Almendras,¹ Roxana I. Albu,^{1,2} Hélène Schoemans,^{3,4} Stefan N. Constantinescu,^{1,2} and Jean-Baptiste Demoulin¹


¹de Duve Institute, Université Catholique de Louvain, Brussels; ²Ludwig Institute for Cancer Research, Brussels Branch; ³Hematology Department, University Hospitals Leuven, Leuven; and ⁴Leuvense Navelstrengbloed Bank, Leuven, Belgium

Citation: Medves S, Noël LA, Montano-Almendras CP, Albu RI, Schoemans H, Constantinescu SN, and Demoulin J-B. Multiple oligomerization domains of KANK1-PDGFR β are required for JAK2-independent hematopoietic cell proliferation and signaling via STAT5 and ERK. Haematologica 2011;96(10):1406-1414 doi:10.3324/haematol.2011.040147



Online Supplementary Figure S1. Role of SRC in KP β -induced signaling and proliferation. Ba/F3 cells were transduced with KP β and grown in the absence of cytokines. Cells were treated with imatinib, SU6656 (both at 1 μ M) or vehicle for 4 h. The phosphorylation of STAT5 and ERK was monitored by flow cytometry. The average of three experiments is shown with SEM. ***P<0.001 compared to control (Student's t-test).

Online Supplementary Figure S2. Identification of the KANK1 domains required for Ba/F3 cell transformation by KP β . Additional deletion mutants of KP β were generated as described in the *Design and Methods* section: m8: residues 100 to 739 of KANK1; m4: residues 2 to 287; m5, residues 2 to 202 and m6, residues 159 to 287 (according to SWISS-PROT accession number #Q6PIB3). The KP β -Y612A mutant contains a point mutation corresponding to the tyrosine 612 to alanine substitution. Mutagenesis was performed using the QuickChange XL-II kit (Stratagene) according to the manufacturer's instructions. All mutants were checked by sequencing. (A) A schematic representation of KP β and mutants. CC: coiled-coil domain; KOD, KANK1 oligomerization domain; Ig5 (octagon): Ig-like domain 5 of PDGFR β ; TM: transmembrane domain; Kinase: split tyrosine kinase domain. (B) Ba/F3 cells were transduced with KP β , mutants or the pTM-898-neo empty vector as a control. Cells were grown for 72 h in the absence of IL3 and proliferation was estimated by thymidine incorporation. All cell lines proliferated to a similar extent in the presence of IL3 (*data not shown*). The average of multiple independent experiments is shown with SEM. ***P*<0.01 compared to KP β (Student's t-test).

Online Supplementary Figure S3. Analysis of KP β oligomerization by protein cross-linking. Cross-linking assays were performed in the presence of bis(sulfosuccinimidyl)-suberate (BS3, Pierce) as described elsewhere.¹ Briefly, 2×10⁵ cells were washed once with ice-cold PBS and then lysed in 200 µL of 50 mM HEPES pH 7.5, 150 mM NaCl, glycerol 10% w/v, Triton 1% w/v, EDTA 1 mM, 1 mM Pefabloc (Roche), 1 µg/mL aprotinin and 1 mM Na₃VO₄. After clearing by centrifugation, lysates were incubated with 0.25 or 0.5 mM BS3 for 1.5 h at 4 °C. Reactions were stopped by addition of 50 mM Tris-HCI for 15 min at room temperature. Sample proteins were separated on a gradient gel (4-12%, Invitrogen) and analyzed by western blot with anti-FLAG antibodies (Sigma) or with the anti-PDGFR antiserum CED.² High molecular weight protein standards (Invitrogen) were used to evaluate the molecular weight of the KP β complexes. (A) A schematic representation of KP β and mutants. CC: coiled-coil domain; KOD, KANK1 oligomerization domain; Ig5 (octagon): Ig-like domain 5 of PDGFR β ; TM: transmembrane domain; Kinase: kinase domain. (B-C) Lysates of Ba/F3 cells expressing the indicated mutant were treated with BS3 (0.25 or 0.5 mM) to cross-link protein complexes. Lysates were run on a gradient denaturing polyacrylamide gel and subjected to western blotting with anti-FLAG (B) or anti-PDGFR β and m11) is indicative of efficient oligomerization.

References

1. Toffalini F, Hellberg C, Demoulin JB. Critical role of the platelet-derived growth factor recep-

tor (PDGFR)-beta transmembrane domain in the TEL-PDGFRbeta cytosolic oncoprotein. J Biol Chem. 2010;285(16):12268-78.

2. Demoulin JB, Seo JK, Ekman S, Grapengiesser E, Hellman U, Ronnstrand L, et al. Ligandinduced recruitment of Na+/H+-exchanger regulatory factor to the PDGF (plateletderived growth factor) receptor regulates actin cytoskeleton reorganization by PDGF. Biochem J. 2003;376(Pt 2):505-10.

KANK1	PDGFRB		Oligomers	Proliferation	STAT5	ERK1/2	Phosphorylation
Flag CC CC CC KOD CC	Clg5TM Kinase	ΚΡβ	+	+++	++	++	+
		Y612A	nd	+++	++	nd	+
		m8	+	+++	++	nd	+
		m1	+	++	++	+	+
		m2	+	++	+	+	+
		m3	+	+	+	+	+
¢ 		m4	+	-	-	nd	+
¢ 		m5	+	-	-	nd	+
¢ ⊡		m6	-	-	-	nd	- 1
\$ <u></u>		m11	+	+	+	+	+
\diamond		m12	-	-	÷.	· •	.
		m13	+	+++	++	nd	+
¢		m14	+	++	++	-	+