# Normal ranges and genetic variants of antithrombin, protein $\mathbf{C}$ and protein $S$ in the general Chinese population. Results of the Chinese Hemostasis Investigation on Natural Anticoagulants Study I Group 

Tienan Zhu, ${ }^{1}$ Qiulan Ding, ${ }^{2}$ Xia Bai, ${ }^{3}$ Xiaoyan Wang, ${ }^{4}$ Florentia Kaguelidou, ${ }^{5}$ Corinne Alberti, ${ }^{5}$ Xuqian Wei, ${ }^{2}$ Baolai Hua, ${ }^{1}$ Renchi Yang, ${ }^{4}$ Xuefeng Wang, ${ }^{2}$ Zhaoyue Wang, ${ }^{3}$ Changgeng Ruan, ${ }^{3}$ Nicole Schlegel, ${ }^{6}$ and Yongqiang Zhao ${ }^{1}$<br>${ }^{1}$ Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; ${ }^{2}$ Department of Hematology, Shanghai Ruijin Hospital, Shanghai, China; ${ }^{3}$ Department of Hematology, Jiangsu Institute of Hematology, Suzhou, China; ${ }^{4}$ Institute of Hematology, Peking Union Medical College, Tianjin, China; ${ }^{5}$ Clinical Epidemiology Unit, AP-HP Robert Debré Hospital, University Paris VII Denis Diderot, Inserm, CIE5, Paris, France, and ${ }^{6}$ Biological Hematology Department, AP-HP Robert Debré Hospital, University Paris VII Denis Diderot, Paris, France

Citation: Zhu T, Ding Q, Bai X, Wang X, Kaguelidou F, Alberti C, Wei X, Hua B, Yang R, Wang X, Wang Z, Ruan C, Schlegel N, and Zhao Y. Normal ranges and genetic variants of antithrombin, protein $C$ and protein $S$ in the general Chinese population. Results of the Chinese Hemostasis Investigation on Natural Anticoagulants Study I Group. Haematologica 2011;96(7):1033-1040. doi:10.3324/haematol.2010.037515

## Supplementary data

## Detailed description of the statistical analysis

Normal-based centile curves are given by $C_{p}=\mu_{T} \pm u_{p} \sigma_{T}$, where T is continuous age expressed in years, $\mu_{T}$ and $\sigma_{T}$ indicate the corresponding values of mean and standard deviation (SD) at age T , and up the corresponding centile of the standard Gaussian distribution. Initially, a smooth running line of the measurement of interest Y [protein activities (PC, PS and AT) and APC-R] against age $T$ depending on sex provides an impression of the shape of the mean curve and also examines the need to model each curve separately by sex.

To reduce positive skewness and heteroscedasticity of the measurement of interest, Y , an initial Box-Cox transformation is applied with natural logarithmic transformation being a particular case. A fractional polynomial of degree $m$ is then fitted by least squares regression of the measurement of interest against age to create a suitable function for $\mu_{T}$ with the powers as numbers chosen from the set $\{-2,-1,-0.5,0,0.5,1$, $2,3\}$, where $T^{0}$ denotes the natural logarithm of $T$. An appropriate fractional polynomial is selected by comparing the difference in deviance
between models having degrees $m$ and $m+1$ using a $\chi^{2}$ variate on 2 degrees of freedom (DF). The fitted values from the regression give the estimated mean curve and the 'scaled absolute residuals' $\sigma_{T}$. If the scaled absolute residuals appear to show no trend with age, the SD is estimated as that of the residual of the measurement of interest from the regression on age, otherwise fractional polynomial regression analysis is performed to estimate an appropriate curve in the same way as for the mean. The model fit is assessed by calculating the standard deviation scores (Z-score) as $Z_{-}$score $\xlongequal[\sigma_{T}]{\sigma_{T}}$. The ordered Z-scores are plotted in order to provide a graphical check of normality (QQ-plots). If normality is accepted, no further modeling is required. Estimated centile and reference intervals are calculated by substituting the fitted curves of the mean and standard deviation into equation of $C_{p}$. When the variable being modeled, $Y$, is initially Box-Cox transformed, centiles curves on the original scale are obtained by applying a back-transformation to the calculated curves, $C_{\text {amisuater }}=\left\{\left[+\theta C_{p}(t)\right\rceil\right.$ with $\theta$ being the parameter of the BoxCox transformation. Each curve is derived according to sex, except the curve for APC-R since no difference was seen.

Online Supplementary Table S1. Equations for estimating reference values for PC activity (A for men and B for women), PS activity ( $C$ for men and D for women), AT activity (E for men and F for women) and APC-R for all (G).

| A | $\begin{aligned} \ln (Y) & =1.876171+1.258097 \text { age }^{0.5}-0.21849 \text { age }^{0.5} \ln (\text { age }) \\ \sigma_{\ln (Y)} & =0.1725551 \end{aligned}$ | $\begin{aligned} \mathrm{B} & =7.306372+0.0000214 \mathrm{age}^{3}-0.00000465 \text { age }^{3} \ln (\text { age }) \\ \sigma_{\mathrm{B}} & =0.4339694 \\ \theta & =0.19063 \end{aligned}$ |
| :---: | :---: | :---: |
| C | $\begin{aligned} \mathrm{B} & =35.22298+0.0018746 \mathrm{age}^{2}-0.0000367 \text { age }^{3} \\ \sigma_{\mathrm{B}} & =5.107575 \\ \theta & =0.7014403 \end{aligned}$ | $\begin{aligned} \mathrm{B} & =29.1174+45.35696 \text { age }^{-0.5}-34.78935 \text { age }^{-0.5} \ln (\text { age }) \\ \sigma_{\mathrm{B}} & =1.9457 \\ \theta & =0.4898306 \end{aligned}$ |
| E | $\begin{aligned} B & =76972.75-0.0455784 \text { age }^{3} \\ \sigma_{B} & =16398.51 \\ \theta & =2.585277 \end{aligned}$ | $\begin{aligned} \mathrm{B} & =4755.6+3274359 \text { age }^{-2}-1144520 \text { age }^{-2} \ln (\text { age }) \\ \sigma_{\mathrm{B}} & =3962.369-1564.426 \text { age }^{0.5}+282.8304 \text { age }^{0.5} \ln (\text { age }) \\ \theta & =1.913772 \end{aligned}$ |
| G | $\begin{gathered} \mathrm{B}_{\mathrm{B}}=2.657075-692.7044 \mathrm{age}^{-2}+465.2072 \mathrm{age}^{-2} \ln (\text { age })-79.80275 \mathrm{age}^{-2} \ln ^{2}(\text { age }) \\ \sigma_{\mathrm{B}}=-0.1343263+0.3371941 \text { age }^{-0.5}+0.0294884 \ln (\text { age }) \\ \theta=-0.295014 \end{gathered}$ |  |

(A) needs a natural logarithmic transformation of the measurement and all others a Box-Cox transformation for which $\theta$ are given.

Online Supplementary Table S2. Reference values for PC, PS, AT activities (\%) and APC-R (sec) according to age and sex.
2A: PC activity in men.

| $\begin{aligned} & \text { Age } \\ & \text { (years) } \end{aligned}$ | $1{ }^{\text {a }}$ | $2.5{ }^{\text {min}}$ | $10^{11}$ | $25^{\text {¹ }}$ | $\begin{gathered} \text { Percentile } \\ 50^{\prime \prime} \end{gathered}$ | 75 ${ }^{\text {ti }}$ | $90^{\text {¹ }}$ | 97.5 ${ }^{\text {mim}}$ | 994 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15-20 | 62 | 66 | 74 | 82 | 92 | 103 | 115 | 129 | 138 |
| 20-25 | 68 | 72 | 81 | 90 | 101 | 114 | 126 | 142 | 151 |
| 25-30 | 72 | 77 | 86 | 96 | 107 | 121 | 134 | 151 | 160 |
| 30-35 | 75 | 79 | 89 | 99 | 111 | 125 | 139 | 156 | 166 |
| 35-40 | 76 | 81 | 91 | 101 | 113 | 127 | 141 | 159 | 169 |
| 40-45 | 76 | 81 | 91 | 102 | 114 | 128 | 142 | 160 | 170 |
| 45-50 | 76 | 81 | 91 | 101 | 114 | 128 | 142 | 159 | 170 |
| 50-55 | 75 | 80 | 90 | 100 | 112 | 126 | 140 | 158 | 168 |
| 55-60 | 74 | 79 | 88 | 98 | 110 | 124 | 138 | 155 | 165 |
| 60-65 | 72 | 77 | 86 | 96 | 108 | 121 | 134 | 151 | 161 |
| 65-70 | 70 | 75 | 84 | 93 | 105 | 118 | 131 | 147 | 156 |
| 70-75 | 68 | 72 | 81 | 90 | 101 | 114 | 127 | 142 | 152 |
| 75-80 | 66 | 70 | 78 | 87 | 98 | 110 | 122 | 137 | 146 |

2B: PC activity in women.

| Age (years) | Percentile |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1{ }^{\text {st }}$ | $2.5{ }^{\text {ti }}$ | $10^{\text {ti }}$ | $25^{\text {m }}$ | $50^{\prime \prime}$ | $75^{\text {th }}$ | $90^{\text {h }}$ | 97.5 ${ }^{\text {m }}$ | 99 ${ }^{\text {¹ }}$ |
| 15-20 | 64 | 69 | 78 | 87 | 99 | 112 | 124 | 139 | 148 |
| 20-25 | 65 | 70 | 79 | 89 | 100 | 113 | 126 | 141 | 150 |
| 25-30 | 66 | 71 | 81 | 91 | 102 | 115 | 128 | 144 | 153 |
| 30-35 | 68 | 73 | 83 | 93 | 105 | 118 | 131 | 147 | 156 |
| 35-40 | 70 | 75 | 85 | 95 | 107 | 121 | 134 | 150 | 160 |
| 40-45 | 72 | 77 | 87 | 98 | 110 | 124 | 138 | 154 | 164 |
| 45-50 | 74 | 79 | 90 | 100 | 113 | 127 | 141 | 158 | 168 |
| 50-55 | 76 | 81 | 92 | 103 | 116 | 130 | 145 | 162 | 172 |
| 55-60 | 78 | 83 | 94 | 105 | 119 | 133 | 148 | 165 | 175 |
| 60-65 | 79 | 85 | 96 | 107 | 121 | 136 | 150 | 168 | 178 |
| 65-70 | 80 | 86 | 97 | 108 | 122 | 137 | 152 | 170 | 180 |
| 70-75 | 80 | 86 | 98 | 109 | 122 | 137 | 152 | 170 | 181 |
| 75-80 | 80 | 85 | 97 | 108 | 121 | 136 | 151 | 169 | 179 |
| 80-85 | 78 | 84 | 95 | 106 | 119 | 134 | 148 | 166 | 176 |

2C: PS activity in men.


2D: PS activity in women.

| Age (years) | Percentile |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1{ }^{\text {a }}$ | $2.5{ }^{\text {th }}$ | $10^{\prime \prime}$ | $25^{\text {m }}$ | $50^{\text {min }}$ | $75^{\text {im}}$ | $90^{\text {ti }}$ | 97.5 ${ }^{\text {mim}}$ | 99 ${ }^{\text {¹ }}$ |
| 15-20 | 49 | 54 | 64 | 75 | 87 | 100 | 113 | 128 | 137 |
| 20-25 | 46 | 51 | 62 | 72 | 84 | 97 | 110 | 125 | 133 |
| 25-30 | 46 | 51 | 61 | 71 | 83 | 96 | 109 | 124 | 132 |
| 30-35 | 46 | 51 | 62 | 72 | 84 | 97 | 109 | 124 | 133 |
| 35-40 | 47 | 52 | 63 | 73 | 85 | 98 | 111 | 126 | 134 |
| 40-45 | 48 | 53 | 64 | 74 | 86 | 99 | 112 | 127 | 136 |
| 45-50 | 49 | 54 | 65 | 75 | 88 | 101 | 114 | 129 | 138 |
| 50-55 | 50 | 55 | 66 | 77 | 89 | 102 | 115 | 131 | 139 |
| 55-60 | 51 | 57 | 67 | 78 | 90 | 104 | 117 | 133 | 141 |
| 60-65 | 52 | 58 | 69 | 79 | 92 | 106 | 119 | 134 | 143 |
| 65-70 | 53 | 59 | 70 | 81 | 93 | 107 | 120 | 136 | 145 |
| 70-75 | 54 | 60 | 71 | 82 | 95 | 109 | 122 | 138 | 147 |
| 75-80 | 55 | 61 | 72 | 83 | 96 | 110 | 124 | 140 | 149 |
| 80-85 | 56 | 62 | 74 | 84 | 98 | 112 | 125 | 141 | 150 |

2E: AT activity in men.


2F: AT activity in women.

| Age (years) | Percentile |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1{ }^{\text {st }}$ | $2.5{ }^{\text {ti }}$ | $10^{\text {ti }}$ | $25^{\text {T}}$ | $50^{\text {\#1 }}$ | $75^{\text {mim}}$ | $90^{\text {\# }}$ | 97.5 ${ }^{\text {m }}$ | 99 ${ }^{\text {¹ }}$ |
| 15-20 | 90 | 95 | 103 | 110 | 117 | 124 | 130 | 136 | 139 |
| 20-25 | 84 | 88 | 96 | 103 | 110 | 116 | 122 | 128 | 131 |
| 25-30 | 84 | 88 | 95 | 102 | 108 | 114 | 119 | 125 | 128 |
| 30-35 | 85 | 89 | 96 | 102 | 108 | 114 | 119 | 125 | 128 |
| 35-40 | 85 | 90 | 97 | 103 | 109 | 115 | 120 | 126 | 128 |
| 40-45 | 86 | 90 | 97 | 103 | 110 | 116 | 121 | 127 | 130 |
| 45-50 | 86 | 90 | 97 | 104 | 110 | 117 | 122 | 128 | 131 |
| 50-55 | 85 | 90 | 97 | 104 | 111 | 118 | 123 | 129 | 133 |
| 55-60 | 84 | 89 | 97 | 104 | 112 | 119 | 125 | 131 | 134 |
| 60-65 | 82 | 88 | 97 | 104 | 112 | 120 | 126 | 133 | 136 |
| 65-70 | 81 | 86 | 96 | 104 | 113 | 121 | 127 | 134 | 138 |
| 70-75 | 79 | 85 | 96 | 104 | 113 | 121 | 128 | 136 | 140 |
| 75-80 | 76 | 83 | 95 | 104 | 113 | 122 | 130 | 138 | 142 |
| 80-85 | 74 | 81 | 94 | 104 | 114 | 123 | 131 | 139 | 144 |

2G: APC-R in all subjects.


Online Supplementary Table S3. Normal ranges of AT, PC and PS in different populations (large series).

| References | Population |  | Method |  | $\begin{aligned} & \text { Mean } \\ & \pm 2 S D \end{aligned}$ | Median <br> $2.5^{\text {th }} / 97.5^{\text {th }}$ percentile |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Country | Number | Technique | Units | Men Women | Men Women |
| 22, 23 |  |  |  |  | 106.4105 .1 |  |
|  | Scotland | 9669 | activity | IU/dL | 84-129 83-127 |  |
|  |  |  |  |  | 105.6 (83.2-128) |  |
| 24 |  |  |  |  |  | $1.10 \quad 1.07$ |
|  | England | 1381 | activity | IU/mL |  | 0.72/1.65 0.75/1.69 |
|  |  |  |  |  |  | 0.85/1.37 |
| 26 | Netherlands | (474) | activity | $\mathrm{U} / \mathrm{mL}$ | Lower limit of normal : 0.80 |  |
| 27 | Italy | 4000 | activity | IU/dL | $\begin{gathered} 92.0 \\ 72.4-111.6 \end{gathered}$ | 72.0/ 76.7 - 109.4/112.0 |
| 28 | Scotland | 1564 | activity | IU/dL |  | 99 100 <br> $(83-121)$ $(82-117)$ <br> 96 105 <br> $(72-120)$ $(84-119)$ |
| 20, 32 | Japan | 4517 | activity | \% | $\begin{gathered} 106.1 \\ 81.5-130.7 \\ \hline \end{gathered}$ |  |
| Our study | China | 3493 | activity | \% | 109 109 <br> $89-129$ $89-129$ | 110 110 <br> $88-132$ $89-131$ |
|  |  |  |  |  | 109 | 110 |
|  |  |  |  |  | 89-129 | 89-131 |

[^0]
## 3B: Protein C

| References | Population |  | Method |  | $\begin{aligned} & \hline \text { Mean } \\ & \pm 2 \text { SD } \\ & \hline \end{aligned}$ | Median <br> $2.5^{\text {th }} / 97.5^{\text {th }}$ percentile |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Country | Number | Technique | Units | Men Women | Men Women |
| 21 | USA | 5422 | antigen | $\mu \mathrm{g} / \mathrm{mL}$ <br> (\%) |  | $\begin{gathered} 2.82 / 5.65 \\ (70) \\ \hline \end{gathered}$ |
| 24 | England | 1381 | activity | $\mathrm{u} / \mathrm{mL}$ |   <br> 1.07 1.01 <br> $0.72 /$ $0.74 /$ <br> 1.38 1.49 |  |
|  |  |  |  |  | 0.72/1.47 |  |
| 26 | Netherlands | (474) | activity | $\mathrm{U} / \mathrm{mL}$ | Lower limit of normal : 0.67 |  |
| 25 | Scotland | 9648 | activity | iu/mL | $\begin{gathered} 1.00 \\ 0.68 / 1.34 \\ \hline \end{gathered}$ |  |
| 27 | Italy | 4000 | activity | IU/dL | $\begin{gathered} 93.5 \\ 46.5 / 140.5 \end{gathered}$ | $\begin{gathered} 57.0-69.8 \\ / \\ 123.0- \\ 148.4 \\ \hline \end{gathered}$ |
| 28 | Scotland | 1564 | activity | IU/dL |  | 99 98 <br> $(68 / 148)$ $(64 / 155)$ <br> to 108 to 117 <br> $(66 / 175)$ $(59 / 172)$ |
| 20,32 | Japan | 4517 | activity | \% | 122.4 $(80.2-164.6)$ N. lower limit : $59.3 \%$ and AT/PC>3SD |  |
| $\begin{aligned} & \text { Our } \\ & \text { study } \end{aligned}$ | China | 3493 | activity | \% | $\begin{array}{cc} \hline 111 & 109 \\ 71 / 151 & 67 / 150 \\ \hline \end{array}$ | 109 108 <br> $76 / 142$ $74 / 142$ |
|  |  |  |  |  | $\begin{gathered} 110 \\ 70 / 150 \\ \hline \end{gathered}$ | $\begin{gathered} 110.18 \\ 69.4 / 150.9 \\ \hline \end{gathered}$ |

All PC activity assays were carried out using the same type of technique: amidolytic assay and chromogenic substrate, but the equipment and reagents differed between studies. Reference 26 (number of patients between parentheses): this study was not designed to establish normal ranges but to analyze the risk of thrombosis associated with PC deficiency; 474 controls were included in this study but the authors did not give details and/or references about the number of healthy people included for the previous establishment of the lower limit of normal PC values. Reference 27: the $2.5^{\text {th}}$ - $97.5^{\text {th }}$ percentile were calculated using a non-parametric method. Reference 28: expression of the results: lowest value = $5^{\text {th }}$ percentile and highest value $=95^{\text {th }}$ percentile. References 20, 32: the authors considered two criteria for defining the N. (normal) lower limit of PC activity and identifying people with suspected deficiency: i) PC activity level > 3SD (59.3\%) and ii) AT activity/PC activity ratio > 3 SD (1.27).

## 3C: Protein S

| References | Population |  | Method |  | Mean $\pm 2 \mathrm{SD}$ | Median <br> $2.5^{\text {th }} / 97.5^{\text {th }}$ percentile |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Country | Number | Technique | Units | Men Women | Men | Women |
| 26 | Netherlands | (474) | antigen ELISA | U/mL | Lower limit of N (mean-1.96 SD) TPS: 0.67; FPS: 0.57 |  |  |
| 28 | Scotland | 1564 | activity | \% |  | $\begin{gathered} 113 \\ (83 / 149) \\ \text { to } 117 \\ (81 / 152) \\ \hline \end{gathered}$ | $\begin{gathered} 92 \\ (47 / 128) \\ \text { to } 112 \\ (69 / 149) \\ \hline \end{gathered}$ |
| 29 | Scotland | 3788 | antigen ELISA | \% |  | TPS 108 $72 / 164$ | TPS: " hormone" 87 $(57 / 142)$ "non $\frac{\text { hormone" }}{96(68 / 142)}$ |
|  |  |  |  |  |  | $\begin{gathered} \text { FPS : } 115 \\ 68 / 178 \\ \hline \end{gathered}$ | $\begin{aligned} & \text { FPS : } 96 \\ & 54 / 155 \\ & \hline \end{aligned}$ |
| 20, 31 | Japan | 2688 | activity | \% | 92.6 82.9 <br> $49.8 /$ $47.4 /$ <br> 135.4 118.5 |  |  |
|  |  |  |  |  | $\begin{gathered} 87.4 \\ 45.8 / 129 \end{gathered}$ |  |  |
| Our study | China | 3493 | activity | \% | 104 87 <br> $61 / 145$ $49 / 127$ | $\begin{gathered} 103 \\ 66 / 140 \end{gathered}$ | $\begin{gathered} 86 \\ 53 / 119 \end{gathered}$ |
|  |  |  |  |  | $\begin{gathered} 95 \\ 53 / 137 \\ \hline \end{gathered}$ |  | $\begin{aligned} & 94 \\ & / 132 \end{aligned}$ |

All PS activity assays were carried out using the same type of technique: amidolytic assay and chromogenic substrate, but the equipment and reagents differed between studies except for both Japanese studies $(20,31)$ and the Chinese study. Reference 28: expression of the results: lowest value $=5^{\text {t" }}$ percentile and highest value $=95^{\text {t" }}$ percentile. Reference 29:" "hormone": women taking oral contraceptive "non hormone": women not taking oral contraception. Oral contraception had a lowering effect on total protein $S$ (TPS) but not on free protein $S$ (FPS).


[^0]:    All AT activity assays were carried out using the same type of technique: amidolytic assay and chromogenic substrate, but the equipment and reagents differed between studies. Reference 23: most cases of inherited deficiencies had AT activities between 40\% and 50\%, i.e much lower than mean - 2SD. Reference 26 (number of patients between parentheses): this study was not designed to establish normal ranges but to analyze the risk of thrombosis associated with PC deficiency. 474 controls were included in this study and AT activity was also assayed but the authors did not give details and/or references about the number of healthy people included for the previous establishment of the lower limit of normal AT values. Reference 27: the $2.5^{\text {th }}$ - $97.5^{\text {th }}$ percentiles were calculated using a non-parametric method. Reference 28: expression of the results: lowest value $=5^{\text {th }}$ percentile and highest value $=95^{\text {th }}$ percentile .

