Extent of hematopoietic involvement by *TET2* mutations in *JAK2*^{V617F} polycythemia vera

Sabina I. Swierczek,¹ Donghoon Yoon,¹ Christine Bellanné-Chantelot,² Soo Jin Kim,¹ Cécile Saint-Martin,² Francois Delhommeau,³ Albert Najman,³* and Josef T. Prchal¹*

¹University of Utah School of Medicine and VAH, Salt Lake City, UT, USA; ²Département de Génétique, Groupe Hospitalier Pitié Salpêtrière, Paris, and INSERM U1009, Villejuif, France; and ³Département d'Hématologie, AP-HP Hopital Saint Antoine, Université Pierre et Marie Curie, Paris, France

Citation: Swierczek SI, Yoon D, Bellanné-Chantelot C, Kim SJ, Saint-Martin C, Delhommeau F, Najman A, and Prchal JT. Extent of hematopoietic involvement by TET2 mutations in JAK2^{V617F} polycythemia vera. Haematologica 2011;96(05):775-778. doi:10.3324/haematol.2010.029678

Patient

GNC

Online Supplementary Table S1. Mutation-specific primers used to quantify mutant TET2 alleles. Determination of allelic frequencies was reproducible (SD =1.4% (P1), 1.5% (P2), 1.9% (P3), 1.7% (P4)), and sensitive (0.3% (P1), 0.5% (P2), 0.7% (P3) and 0.5% (P4)) mutant allele detected in 50 ng of DNA.

Online Supplementary Table S2. Clonal analysis of granulocytes and erythroid progenitors after *in vitro* expansion. *"X-chromosome marker"* denotes the polymorphic X-chromosome gene informative (heterozygous) for clonality studies in PV JAK22V617F-positive patients without known *TET2* mutations and PV patients with JAK2V617F and *TET2* mutations.

Terminal

erythropoiesis

PV patients with JAK2V617F and TET2 mutations

X-chromosome

marker

Primers/Probe	Sequence 5' to 3'	
Patient 1 (P1)		
FAM-AS-TET2-P1-MGB	6FAM-CTTCCTTGGGATCTTG-MGBNFQ	
R-WT-TET2-LNA-P1	CGATTATACATCAGGAAGTAAAC <u>A</u> tT	
R-MT-TET2-LNA-P1	CGATTATACATCAGGAAGTAAACAA	
F-TET2-P1	CTCCTTCTCTTTTGGTTGTTC	
Patient 2 (P2)		
FAM-AS-TET2-P2-MGB	6FAM-CTCAAATCACAGAAGCAA-MGBNFQ	
F-WT-TET2-LNA-P2	CGTTATTTGACCATAAGGCT G tT	
F-MT-TET2-LNA-P2	CGTTATTTGACCATAAGGCT <u>G</u> tA	
R-TET2-P2	GTTCTGCAGCAGTGGTTTGTCTAGTC	
Patient 3 (P3)		
FAM-AS-TET2-P3-MGB	6FAM-AAGGCCTCAGAATAA-MGBNFQ	
F-WT-TET2-LNA-P3	TAAACCTGAGGCACCA <u>C</u> gTT	
F-MT-TET2-LNA-P3	TAAACCTGAGGCACCA C gTC	
R-TET2-P3	CTGGCAGTTGTCCTGTAGCTCT	
Patient 4 (P4)		
FAM-AS-TET2-P4-MGB	6FAM-CCAGACTAAAGTGGAAGAA-MGBNFQ	
F-WT-TET2-LNA-P4	CAGACTTTTCCTCACCCCCgA	
F-MT-TET2-LNA-P4	CAGACTTTTCCTCACCC C gC	
R-TET2-P4	CTGACTATAAGGGGAATTTCTACGATT	

The mismatched nucleotide is depicted in lower case and the locked nucleic acid base is underlined and italicized.

P1	Clonal	Clonal	FHL1
P2	Clonal	Clonal	FHL1, IDS
P3	Clonal	Clonal	MPP1
P4	Clonal	Clonal	IDS, G6PD
	PV natients <i>IAK2</i> V	/617F-nositive and	TET2 -negative mutations
	-	-	
P5	Clonal	Polyclonal	BTK
P6	Clonal	Polyclonal	FHL1
P7	Clonal	Polyclonal	BTK
P8	Clonal	Polyclonal	FHL1
P9	Clonal	Polyclonal	FHL1
P10	Clonal	Polyclonal	IDS
P11	Clonal	Polyclonal	FHL1

Online Supplementary Figure S1. Analysis of single EPO-independent colonies for mutations in *TET2* and *JAK2*. Each colony is represented by a single dot and represents one of six different genotypes: wild-type (WT), heterozygous (Het), and homozygous (Hom) for *JAK2*V617F on the horizontal axis, and *TET2* mutations on vertical axis. Allelic ratio (T%) *JAK2*V617F on the horizontal axis, and allelic ratio (MT%) and *TET2* mutations (WT, Het. Hom) on the vertical axis. (A) PV patient (P1) with c.3954+2T>A TET2 mutation. (B) *JAK2*V617F-positive PV patient (P2) with c.3138de/T *TET2* mutation. (C) *JAK2*V617F-positive PV patient (P3) with c.1378de/T TET2 mutation. (D) *JAK2*V617F-positive PV patient (P4) with c.2290dupC TET2 mutation.

Online Supplementary Figure S2. Expression of *TET2* tumor suppressor gene in patients with MPNs in circulating granulocytes and platelets. Relative gene expressions (fold changes) were calculated against arbitrary control. *denotes P<0.05 compared to mean of controls. PV subjects without known *TET2* mutations; P1-P4 PV subjects with known *TET2* mutations. (A) PV, ET and PMF granulocytes and normal controls. (B) PV, ET and PMF platelets and normal controls. All experiments were repeated and each experiment was performed in duplicate.

