Extent of hematopoietic involvement by TET2 mutations in JAK2 ${ }^{\text {V617F }}$ polycythemia vera

Sabina I. Swierczek, ${ }^{1}$ Donghoon Yoon, ${ }^{1}$ Christine Bellanné-Chantelot, ${ }^{2}$ Soo Jin Kim, ${ }^{1}$ Cécile Saint-Martin, ${ }^{2}$ Francois Delhommeau, ${ }^{3}$ Albert Najman, ${ }^{3 *}$ and Josef T. Prchal ${ }^{1 *}$
${ }^{1}$ University of Utah School of Medicine and VAH, Salt Lake City, UT, USA; ${ }^{2}$ Département de Génétique, Groupe Hospitalier Pitié Salpêtrière, Paris, and INSERM U1009, Villejuif, France; and ${ }^{3}$ Département d'Hématologie, AP-HP Hopital Saint Antoine, Université Pierre et Marie Curie, Paris, France

Citation: Swierczek SI, Yoon D, Bellanné-Chantelot C, Kim SJ, Saint-Martin C, Delhommeau F, Najman A, and Prchal JT. Extent of hematopoietic involvement by TET2 mutations in JAK2 ${ }^{\text {V617F }}$ polycythemia vera. Haematologica 2011;96(05):775-778.
doi:10.3324/haematol.2010.029678

Online Supplementary Table S1. Mutation-specific primers used to quantify mutant TET2 alleles. Determination of allelic frequencies was reproducible (SD =1.4\% (P1), 1.5\% (P2), 1.9\% (P3), 1.7\% (P4)), and sensitive (0.3\% (P1), 0.5\% (P2), 0.7\% (P3) and 0.5\% (P4)) mutant allele detected in 50 ng of DNA.

Primers/Probe	Sequence $5^{\text {' to }}{ }^{3}$
Patient 1 (P1)	
FAM-AS-TET2-P1-MGB	6FAM-CTTCCTTGGGATCTTG-MGBNFQ
R-WT-TET2-LNA-P1	CGATTATACATCAGGAAGTAAACATT
R-MT-TET2-LNA-P1	CGATTATACATCAGGAAGTAAACAtA
F-TET2-P1	СТССТTСТСТTTTGGTTGTTC
Patient 2 (P2)	
FAM-AS-TET2-P2-MGB	6FAM-CTCAAATCACAGAAGCAA-MGBNFQ
F-WT-TET2-LNA-P2	CGTTATTTGACCATAAGGCTG t $^{\text {T }}$
F-MT-TET2-LNA-P2	CGTTATTTGACCATAAGGCTGTA
R-TET2-P2	GTTCTGCAGCAGTGGTTTGTCTAGTC
Patient 3 (P3)	
FAM-AS-TET2-P3-MGB	6FAM-AAGGCCTCAGAATAA-MGBNFQ
F-WT-TET2-LNA-P3	TAAACCTGAGGCACCACgTT
F-MT-TET2-LNA-P3	TAAACCTGAGGCACCACgTC
R-TET2-P3	CTGGCAGTTGTCCTGTAGCTCT
Patient 4 (P4)	
FAM-AS-TET2-P4-MGB	6FAM-CCAGACTAAAGTGGAAGAA-MGBNFQ
F-WT-TET2-LNA-P4	CAGACTTTTCCTCACCCCgA
F-MT-TET2-LNA-P4	CAGACTTTTCCTCACCCCgC
R-TET2-P4	CTGACTATAAGGGGAATTTCTACGATT

The mismatched nucleotide is depicted in lower case and the locked nucleic acid base is underlined and italicized.

Online Supplementary Table S2. Clonal analysis of granulocytes and erythroid progenitors after in vitro expansion. "X-chromosome marker" denotes the polymorphic X-chromosome gene informative (heterozygous) for clonality studies in PV JAK22V617F-positive patients without known TET2 mutations and PV patients with JAK2V617F and TET2 mutations.

Patient	GNC	Terminal enythropoiesis	X-chromosome marker
P1	PV patients with JAK2V617F and TET2 mutations		
P2	Clonal	Clonal	FHL1
P3	Clonal	Clonal	FHLI, IDS
P4	Clonal	Clonal	MPP1
			IDS, G6PD
	PV patients JAK2V617F-positive and		
P5	Clonal	Polyclogative mutations	BTK
P6	Clonal	Polyclonal	FHL1
P7	Clonal	Polyclonal	BTK
P8	Clonal	Polyclonal	FHL1
P9	Clonal	Polyclonal	FHL1
P10	Clonal	Polyclonal	IDS
P11	Clonal	Polyclonal	FHL1

Online Supplementary Figure S1. Analysis of single EPO-independent colonies for mutations in TET2 and JAK2. Each colony is represented by a single dot and represents one of six different genotypes: wild-type (WT), heterozygous (Het), and homozygous (Hom) for JAK2V617F on the horizontal axis, and TET2 mutations on vertical axis. Allelic ratio (T\%) JAK2V617F on the horizontal axis, and allelic ratio (MT\%) and TET2 mutations (WT, Het. Hom) on the vertical axis. (A) PV patient (P1) with c.3954+2T>A TET2 mutation. (B) JAK2V617F-positive PV patient (P2) with c.3138delT TET2 mutation. (C) JAK2V617F-positive PV patient (P3) with c.1378deIT TET2 mutation. (D) JAK2V617F-positive PV patient (P4) with c.2290dupC TET2 mutation.

Online Supplementary Figure S2. Expression of TET2 tumor suppressor gene in patients with MPNs in circulating granulocytes and platelets. Relative gene expressions (fold changes) were calculated against arbitrary control. *denotes $P<0.05$ compared to mean of controls. PV subjects without known TET2 mutations; P1-P4 PV subjects with known TET2 mutations. (A) PV, ET and PMF granulocytes and normal controls. (B) PV, ET and PMF platelets and normal controls. All experiments were repeated and each experiment was performed in duplicate.

A

B

