Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma

Dirk Hose,^{1,2} Thierry Rème,^{3,4} Thomas Hielscher,⁵ Jérôme Moreaux,^{3,4} Tobias Messner,¹ Anja Seckinger,¹ Axel Benner,⁵ John D. Shaughnessy Jr,⁶ Bart Barlogie,⁶ Yiming Zhou,⁶ Jens Hillengass,¹ Uta Bertsch,¹ Kai Neben,¹ Thomas Möhler,¹ Jean François Rossi,^{3,4} Anna Jauch,⁷ Bernard Klein,^{3,4} and Hartmut Goldschmidt^{1,2}

¹Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany; ²Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany; ³CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, Montpellier, France; ⁴INSERM U847, Montpellier, France; ⁵Abteilung für Biostatistik, Deutsches Krebsforschungszentrum Heidelberg, Heidelberg, Germany; ⁶Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA; and ⁷Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Germany

Citation: Hose D, Rème T, Hielscher T, Moreaux J, Messner T, Seckinger A, Benner A, Shaughnessy Jr. JD, Barlogie B, Zhou Y, Hillengass J, Bertsch U, Neben K, Möhler T, Rossi JF, Jauch A, Klein B, and Goldschmidt H. Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma. Haematologica 2011;96(1):87-95. doi:10.3324/haematol.2010.030296

Supplementary Design and Methods

Statistical analysis

Gene-expression data were preprocessed by GC-RMA.^{1,2} The use of a modified version of the "documentation by value" (docval)^{1,2} package allowed the assessment of gene expression as if a new patient's *cel-file had been part of the initial GC-RMA preprocessed gene-expression dataset. This enables calculation of gene expression-based proliferation indices (see below) or risk scores and usage of previously validated thresholds for a patient not part of the initial analysis-set. An R-script allowing this calculation can be found in *Online Supplementary* File S1. To assess the presence or absence of gene expression, the "Presence-Absence calls with Negative Probesets (PANP)" algorithm³ was used. P values were adjusted for multiple testing controlling the false discovery rate, as defined by Benjamini and Hochberg, at a level of 5%.⁴ For myeloma cells, the association of chromosomal aberrations and clinical parameters with gene expression was assessed using two-sample t-statistics. Differences in clinical parameters between defined groups were investigated using the exact Wilcoxon's rank-sum test. Correlations were assessed using Pearson's correlation coefficient, or Kendall's tau coefficient (for categorical variables), the relationship between categorical variables by Fisher's exact test. The presence of a translocation t(4;14) within the LR group was assessed using a call-based predictor.⁵ The indices by Bergsagel et al.6 (GEP-B), Shaughnessy et al.7 (GEP-SH) and Hose et al.8 (GPI; see below and Online Supplementary Table S6) were calculated as published. The HM1 cohort was used as a reference myeloma dataset for the initial calculation of the GPI (see also below).

Gene expression profiling-based classifications

The group attribution according to the molecular classification of myeloma was assessed on the same dataset and using the same method as within the original series.⁷ It can also be found under the accession number Series GSE4581. TC-class assessment was performed as described by Bergsagel *et al.*⁹ Probe-sets for Affymetrix HGU95A arrays were shifted to the corresponding probe-sets on U133 2.0 and MAS5 normalized data used. High-risk scores by Shaughnessy *et al.* (Shaughnessy-HR)¹⁰ and Decaux *et al.* (Decaux-HR)¹¹ were calculated as described by the respective authors, i.e. using normalization protocols (MAS5 in the case of the Shaughnessy-HR score) and cut-offs. An optimal threshold for LDH was calculated by maximum log-rank statistics, (R, maxstat-package). An effect was considered as statistically significant if the *P* value of its corresponding statistical test was not higher than 0.05. All statistical computations were performed using R¹² version 2.8.1, and Bioconductor,¹³ version 2.3.

Calculation of the gene expression-based proliferation index

The gene expression-based proliferation index was calculated as follows. In brief, genes were selected from those overexpressed in proliferating cells [malignant: human myeloma cell lines (HMCL), benign: polyclonal plasmablastic cells (PPC)] compared to in non-proliferating cells [normal bone marrow plasma cells (BMPC) and memory B cells (MBC)]. Here, four comparisons between the groups were made, (i) HMCL versus MBC, (ii) HMCL versus BMPC, (iii) PPC versus BMPC and (iv) PPC versus MBC by a one-sided t-test, with the alternative hypothesis that expression values of HMCL and PPC are greater than those for BMPC and MBC in each comparison. P values were permutation-adjusted regarding a family wise error rate with an α -level of 0.025. To adjust for comparing each group twice, the α -level was halved to 0.0125. Only genes statistically significant in each of the four comparisons were retained for the index. To select biologically relevant genes (in terms of proliferation) only genes with the gene-ontology term "cell proliferation" or "cell cycle" were retained. Thus, 50 genes (57 probe-sets) were included in the final index. For genes with more than one probe-set per gene, the probe-set with the highest variance within the HM1 cohort was selected. The index was calculated as follows. Given that proliferation-genes determined as stated above are over-expressed by definition, the individual gene expression based-proliferation index for each sample was calculated as the sum of expression values of each of the 50 genes in an individual sample. For genes not expressed as judged by PANP, the expression level of the respective gene was defined as 0.

References

- Wu Z, Irizarry RA, Gentleman RC, Martinez-Murillo F, Spencer F. A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc. 2004;99(468):909-17.
- Kostka D, Spang R. Microarray based diagnosis profits from better documentation of gene expression signatures. PLoS Comput Biol. 2008; 4(2):e22.
- Warren P, Taylor D, Martini PGV, JAckson J, Bienkowska J. PANP - a New Method of Gene Detection on Oligonucleotide Expression Arrays. Bioinformatics and Bioengineering, 2007 BIBE 2007 Proceedings of the 7th IEEE International Conference. 2007;108-15.
- Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Statist Soc B. 1995;57(1):289-300.
- 5. Reme T, Hose D, De VJ, Vassal A, Poulain PO,

Pantesco V, et al. A new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experiments. BMC Bioinformatics. 2008;9:16.

- Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106(1):296-303.
- Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. The molecular classification of multiple myeloma. Blood. 2006;108(6):2020-8.
- Hose D, Řeme T, Meissner T, Moreaux J, Seckinger A, Lewis J, et al. Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood. 2009;113(18):4331-40.
- Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23(26):6333-8.
- 10. Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, et al. A validat-

ed gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6):2276-84.

- Decaux O, Lode L, Magrangeas F, Charbonnel C, Gouraud W, Jezequel P, et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myelome. J Clin Oncol. 2008;26(29):4798-805.
- R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2008.
- Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.

Online Supplementary Figure S1. The plasma cell labeling index (ordinate, PCLI) for the gene expression-based proliferation index (GPI) divided into (A) two groups according to values below or above the median (P=0.003, n=66) and (B) three groups high/median/low (low versus medium P=0.01, low or medium versus high P=n.s. due to low number (n=4) of measurements in the GPI "high" group; n=66).

Online Supplementary Figure S2. Unsupervised hierarchical clustering of myeloma cells. Clustering based on (A) the GPI of Hose et al., (B) the index of Shaughnessy et al., and (C) the index of Bergsagel et al. The data for the HM2 group are shown (see Online Supplementary Design and Methods for details).

G

Online Supplementary Figure S3. Prognostic value of proliferation. Event-free (EFS) and overall survival (OS) for treated patients in the Little Rock-group. (A) GPI^{high} (red) *versus* GPI^{low} (black) delineates significantly different survival. (B) Model comprising GPI^{low} (black), GPI^{medium} (blue) and a high proliferation group (GPI^{high}, red). Prognostic relevance of (C) β-2-microglobulin >3.5 mg/dL, (D) ISSstage, (E) presence of t(4;14), and the high-risk scores of (F) Shaughnessy *et al.* and (G) Decaux *et al.*

Online Supplementary Figure S4. Prognostic value of the GPI from Shaughnessy et al. (GPI-SH) and Bergsagel et al. (GPI-B). (A) Event-free (EFS) and (B) overall survival (OS) for patients treated with highdose chemotherapy and autologous stem cell transplantation within our series (HM) (n=209) and the Little Rock (LR)-group (n=345). GPI above (GPI^{low}, red curve) the median delineate significantly different survival.

A

Online Supplementary Figure S6. Distribution of proliferation within published gene expressionbased classifications of myeloma. Myeloma cell samples are subdivided according to the classification), (B) Bergsagel *et al.* (molecular classification), (B) Bergsagel *et al.* (TC-classification), and (C) Hose *et al.* (EC-classification). The lower red dotted horizontal line depicts the median GPI (below: GPI^{ow}), the upper the GPI^{high}-group. GPI^{median}-group between the two dotted lines. (D) Numbers (n) and percentages (%) of patients with GPI^{high}/median/low in the respective molecular classifications.

Online Supplementary Figure S7. Documentation by value. Event-free (EFS) and overall survival (OS) for patients treated with high-dose chemotherapy and autologous stem cell transplantation within the Little Rock group (n=345). Model comprising GPI^{iow} (black), GPI^{medum} (blue) and GPI^{bief} (red) with cut-offs derived from the HM2-group after applying the documentation by value strategy (docval-package) on the Little Rock *cel-files.

Online Supplementary Table S1. Clinical data for the non-selected, previously untreated patients presenting at the university hospitals of Heidelberg and Montpellier undergoing high-dose chemotherapy with 2x100 mg/m² melphalan and autologous stem cell transplantation. Age, serum β 2-microglobulin, and plasma cell infiltration in the Heidelberg/Montpellier-group 1 (HM1), -2 (HM2) and the Little Rock (LR) group.

Characteristic	HM1 n=48	HM2 n=161	LR n=345
Age	58,5 [37-72]	57 [27-73]	57 [25-77]
Monoclonal protein			
IgG	25	97	193
IgA	11	36	93
Bence Jones	10	25	47
Asecretory	2	2	6
IgD	0	1	3
NA	0	0	3
Myeloma in Durie and Salmon stage		100000	
	4	16	NA
II.	5	27	NA
III	39	118	NA
Myeloma in ISS stage			
	15	80	189
11	26	50	86
III	7	28	70
NA	0	3	0
Serum β2-microglobulin	3.55 [1.3-11.9]	3.0 [1.3-53.6]	2.9 [1.0-38.7]
Plasma cells in bone marrow	45 [5-100]	38 [1-100]	42 [4-98]

Median value and range are given. NA, not available; ISS, International Staging System. Induction treatment: VAD (vincristine, adriamycin, dexamethasone; n=139); TAD (thalidomide, adriamycin, dexamethasone; n=34); PAD (bortezomib, adriamycin, dexamethasone; n=26); other (e.g. bortezomib/dexamethasone; n=10).

Online Supplementary Table S2. Overview of the populations, subpopulations and samples used.

Analysis				Details			n
		HM-group	HM1	U133A+B			65
	MMC		HM2	0133 Plus 2.0			233
							230
		LR-group		U133 Plus 2.0			345
					MBC		7
					PPC		7
			HM1	U133A+B	BMPC		7
GEP					HMCI		20
	67				TINCL		48
	other	HM-group					
	populations	•			MBC		6
					PPC		5
			HM2	11133 Plus 2.0	BMPC		7
			111112	010011032.0	MGUS		16
					HMCL		32
							66
			HM1				/5/
	ммс	HM-group	HM2				161
Survival (HDT)		LR-group					345
							554
PCLI	ммс	HM-group	HM2				66
					HM1	HM2	
				t(4;14)	65	175	240
				t(11;14)	65	177	242
				t(14;16)	1	68	69
				11q13	56	177	233
				1q21	53	170	223
				17013	58	176	234
				11023	64	178	245
iFISH		HM-group		9034	44	114	158
	ммс			15a22	46	118	164
				19q13	46	139	185
				4p16	12	140	152
				8p21	50	130	180
				14q32	22	170	192
				22q11	45	89	134
				1021			244
		LR-group		any			344

GEP, gene-expression profiling; MMC, multiple myeloma cells; HM-group, Heidelberg/Montpellier-group; LR-group, Little Rock group; MBC, memory B cells; PPC, polyclonal plasmablastic cells; BMPC, bone marrow plasma cells; MGUS, monoclonal gammopathy of unknown significance; HMCL, human myeloma cell line; HDT, high-dose chemotherapy, PCLI, plasma cell labeling index; iFISH, interphase fluorescence in situ hybridization. Online Supplementary Table S3. Association of chromosomal aberrations and proliferation. Only aberrations significantly associated with the gene expression-based proliferation index in more than one cohort are further considered in the text.

		HM2	LR
	t(4;14)	0.2	-
latt to a star a fear a	t(11;14)	0.7	
IgH-translocations	t(14;16)	0.1	-
	any (IgH-split)	0.6	
	score	0.06	
	9q34	0.03	
hyperdiploidy	15q22	0.04	-
	19q13	0.04	-
	11q23	0.003	-
	1q21 (all)	<0.001	0.001
	1q21 (without subclones)	<0.001	0.001
progresssion associated	17p13 (all)	0.8	-
chromosomal aberration	17p13 (without subclones)	0.6	-
	13q14 (all)	0.01	
	13q14 (without subclones)	<0.001	· ·
	4p16	0.7	-
	6q21	0.7	-
other numerical aberrrations	8p21	0.8	
	14q32	0.7	
	22q11	0.6	-
subclones	presence vs. absence	0.2	-
conventional cytogenetics	any abnormality	10 - 0	<0.001

HM: Heidelberg/Montpellier group; LR: Little Rock group; score, copy number score according to Wuilleme et al., (see Design and Methods section for details).

	EFS									
	10	нм			LR					
		months [95%CI]	HR [95%CI]	P-value	months [95%CI]	HR [95%CI]	P-value			
GPI	median cut	24.6 [18.6;28.6] vs. 40.6 [31.2;54.6]	1.8 [1.2;2.7]	0.002	45.2 [36.6;54.1] vs. 68.6 [48.9;76.2]	1.5 [1.1:2.0]	0.007			
	high vs. median vs. low	12.7 [6.1;26.3] vs. 26.2 [19.7;31.9] vs. 40.6 [31.2;54.6]	. ee	0.002	16.8 [7.9;47.5] vs. 50.1 [39;62.8] vs. 68.6 [48.9;76.2]	*	<0.001			
	median vs. low		1.7 [1.1;2.6]	0.01		1.3 [1.0;1.8]	0.06			
	high vs. median		1.7 [0.9;3.3]	0.1		2.0 [1.3;3.5]	0.004			
ISS	III vs. II vs. I	18.6 [6.1;43.6] vs. 26.4 [17;35.3] vs. 37.7 [28.6;49.1]	1.3 [0.9;2.1] 2.1 [1.2;3.6]	0.02	32.6 [20.7;41.2] vs. 45.7 [34.8;64.9] vs. 70.7 [56.7;Inf]	1.6 [1.1:2.3] 2.5 [1.7:3.5]	<0.001			
B2M35		24 [15.8;27.5] vs. 35.3 [27.1;46.9]	1.5 [1.0;2.3]	0.04	39.8 [32.4;47.5] vs. 70.7 [56.7;Inf]	2.1 [1.6;2.8]	<0.001			
t(4;14)	•	15.8 [7.8:24.0] vs. 33.1 [25.5:43.7]	2.9 [1.8;4.8]	<0.001	24.3 [19.0;39.9] vs. 62.6 [52.5;72.9]	2.4 [1.7;3.5]	<0.001			
17p13	6	22.7 [11.6;43.7] vs. 26.4 [24;35.4]	1.2 [0.5;1.3]	0.4	14. I	4	344 S			
Shaug	hnessy-HR	20.1 [12.7;27.1] vs. 35.4 [26.4;43.6]	1.9 [1.2;3.0]	0.009	20.8 [16.8;33.5] vs. 62.8 [53;72.8]	2.6 [1.9;3.6]	<0.001			
Decaux-HR		17.6 [6.1;26.3] vs. 33.1 [26.4;41]	2.4 [1.4;4.2]	0.001	28.4 [20.1;41.3] vs. 64.9 [53.5;72.9]	2.2 [1.6;3.0]	<0.001			

				0	S			
		нм			LB			
		% survival at 60 months [95%CI]	HR [95%CI]	P-value	% survival at 60 months [95%CI]	HR [95%CI]	P-value	
GPI	median cut	56.7 [39.7;70.6] vs. 75.6 [62.1;84.9]	1.8 [1.0;3.4]	0.05	57 [48;65] vs. 72 [63.4;79]	1.7 [1.1;2.5]	0.003	
	high vs. median vs. low	39.4 [10.9;67.6] vs. 60.7 [41.4;75.3] vs. 75.4 [61.9;84.7]	20	0.002	35.7 [18.1;54.6] vs. 61.4 [51.4;69.9] vs. 72 [63.4;79]	(**)	<0.001	
	median vs. low	75	1.5 [0.8;2.8]	0.3	272	1.5 [1.0;2.2]	0.06	
	high vs. median		3.3 [1.3;8.0]	0.006	27.5	2.8 [1.6;4.8]	<0.001	
ISS	III vs. II vs. I	43.2 [17.4;66.7] vs. 67.4 [52.9;78.2] vs. 75.9 [57.3;87.6]	2.3 [1.1;4.9] 4.3 [1.9;10.0]	0.002	45.8 [31.6;58.8] vs. 59.8 [47.1;70.3] vs. 73.8 [65.7;80.3]	1.6 [1.0;2.6] 2.6 [1.6;4.0]	<0.001	
B2M35	54F	55.5 [39.8;68.6] vs. 76.5 [62.3;85.9]	3.0]1.6;5.7]	<0.001	52.2 [42.1;61.3] vs. 73.2 [65.5;79.4]	2.0 [1.4;2.9]	<0.001	
t(4;14)		51.6 [30.9;68.8] vs. 69.5 [57.2;79]	2.9 [1.5;5.6]	<0.001	43.3 [30.6;61.7] vs. 68.3 [62.3;74.8]	2.2 [1.4;3.4]	<0.001	
17p13		63.5 [49.7;74.5] vs. 64.3 [42.3;79.8]	1.5 [0.3;1.3]	0.3	148.) 1	144.5		
Shaugi	nnessy-HR	n.a. [n.a.] vs. 71.7 [60.8;80.0]	2.5 [1.2;4.9]	0.008	36.4 [23.6;49.3] vs. 71.4 [64.6;77.1]	3.5 [2.4;5.2]	<0.001	
Decau	-HR	n.a. [n.a.] vs. 69.5 [58.8;77.9]	2.5 [1.1;5.6]	0.03	47.2 [34.7;58.8] vs. 70.4 [63.4;76.3]	2.3 [1.6;3.3]	<0.001	

B

		E	FS	OS.			EFS		0	s
		HM P-value	LR P-value	HM P-value	LR P-value		HM P-value	LR P-value	HM P-value	LR P-value
GPI	cont.	<0.001	<0.001	<0.001	<0.001		-		-	+
BSM	cont.	<0.001	<0.001	<0.001	<0.001	1	-	(ee)	-	
GPI + B2M	GPI cont.	<0.001	<0.001	<0.001	<0.001	GPI high/low	0.004	50.0	0.2	0.007
	B2M cont.	0.09	<0.001	0.04	<0.001	B2M 3.5	0.1	<0.001	0.001	<0.001
	model (logrank)	<0.001	<0.001	<0.001	<0.001	model (logrank)	0.002	<0.001	<0.001	<0.001
GPI + ISS	GPI cont.	<0.001	<0.001	0.004	<0.001	GPI high/low	0.004	0.02	0.1	0.009
	ISS	0.06	<0.001	0.04	<0.001	ISS	0.02	<0.001	0.001	<0.001
	model (logrank)	<0.001	<0.001	<0.001	<0.001	model (lugrank)	<0.001	<0.001	<0.001	<0.001
GPI + I(4:14) *	GPI cont.	<0.001	<0.001	<0.001	<0.001	GPI high/low	0.03	0.004	0.08	0.002
	1(4:14)	0.003	<0.001	0.004	<0.001	t(4:14)	<0.001	<0.001	0.001	<0.001
	model (logrank)	<0.001	<0.001	<0.001	<0.001	model (logrank)	<0.001	<0.001	0.001	<0.001
GPI + 17p13	GPI cont.	<0.001	-	<0.001	-	GPI high/low	0.04	-	0.2	-
	delt7p	0.5	175	0.4		del17p	0.5		0.3	
	model (logrank)	<0.001	-	<0.001	***	model (lograrik)	0.08	-	02	34
GPI + Avet-Loiseau-HR	GPI cont.	<0.001	- 44	0.004	11	GPI high/low	0.01	(#)	02	- <u>14</u>
	Avet-Loiseau-HR	1	1	0.6	-	Avet-Loiseau-HR	0.005	2	0.2	-
	model (logrank)	<0.001		<0.001		model (logrank)	<0.001	:+)	0.1	-
GP1 + B2M + 1(4:14) *	GPI cont.	<0.001	<0.001	<0.001	<0.001		-	(ee)	-	-
	B2M cont.	0.005	<0.001	<0.001	<0.001		1943	141	-	14
	1(4:14)	0.003	<0.001	0.003	×0.001		-	9	- A.	
	model (logrank)	<0.001	<0.001	<0.001	<0.001		-		-	
GPI + Shaughnessy-HR	GPI cont.	<0.001	0.04	0.003	0.09	GPI high/low	0.01	0.1	0.2	0.2
	Shaughnessy-HR	0.7	<0.001	0.3	<0.001	Shaughnessy-HR	0.05	<0.001	0.03	<0.001
	model (logrank)	<0.001	<0.001	<0.001	-0.001	model (logrank)	0.001	<0.001	0.01	<0.001
GPI + Decaux-HR	GPI cont.	0.001	0.01	<0.001	0.004	GPI high/low	0.02	0.09	0.2	0.05
	Decaux-HR	0.5	<0.001	0.8	0.009	Decaux-HR	0.02	<0.001	0.2	<0.001
	model (logrank)	<0.001	<0.001	<0.001	<0.001	model (logrank)	<0.001	<0.001	0.04	<0.001
GPI + B2M + I(4;14) * + Shaughnessy-HR	GPI cont.	<0.001	0.02	0.007	0.1			-	-	
	B2M cont.	0.005	<0.001	<0.001	<0.001			(++)	-	
	1(4:14)	0.07	<0.001	0.008	0.04		-	-	-	
	Shaughnessy-HR	- 3	0.05	0.9	0.001		141	141	141	14
	model (logrank)	<0.001	<0.001	<0.001	<0.001			-		-
GPI + B2M + t(4;14) * + Decaux-HR	GPI cont.	0.001	0.008	<0.001	0.003		1.51		-	-
	B2M cont.	0.005	<0.001	<0.001	<0.001		-	++ :	-	
	1(4:14)	0.003	<0.001	0.002	<0.001		-	-	- G. (4
	Decaux-HR	1	0.1	0.3	0.4		-	-	-	-
	An and a second second	-	0.004	376	1 (1) ·		-Tail.		11-2	

Online Supplementary Table S4. Prognostic factors tested (A) as single variables and (B) within different Cox-proportional hazard regression models and log-rank test. Explorative P values are shown. Significant values are depicted in red. EFS, event-free survival; OS, overall survival; HM, Heidelberg/ Montpellier group; LR, Little Rock group; CI, confidence interval; GPI, gene expression-based proliferation index; ISS, International Staging System; HR, high-risk score; logrank(model) P value (log-rank test) for the respective model including the factors detailed above in each row; n.a. not available. B2M and GPI are tested as continuous variables in the left two columns, all other variables including the HR-scores as dior tri-chotomized variables.

HS	4	Li Li	1	-	-		
Correlation	P-value	Correlation	P-value	Probeset ID	Symbol	Chromosome	No.
0.95	0	0.85	0	204033_at	TRIP13	5p15.33	3
0.95	0	0.78	0	204092 s at	STK6	20013.2-013.3	12
0.94	0	0.86	0	225834 at	MGC 57827	1021	10
0.04		0.00		210010	ACOM	1921	
0.91	0	0.00	0	518810"2"8t	ASPM	1031	9
0.91	0	0.89	0	206364_at	KIF14	1pter-q31.3	43
0.84	0	0.83	0	226935_at	C6orf173	6q22	30
0.84	0	0.73	0	205235_s_at	MPHOSPH1	10q23.31	51
0.82	0	0.73	0	204023 at	RFC4	3027	16
0.91		0.72	0	201907 s at	CVEID	1021.2	17
0.01		0.72	0	201007_5_01	CROTO	TQL I.L	
0.81	0	0.75	0	224200_s_at	RAD18	3p25-p24	39
0.78	0	0.48	0	201231_s_at	ENO1	1p36.3-p36.2	28
0.77	0	0.72	0	203432_at	TMPO	12q22	45
0.72	0	0.43	0	201614 s at	RUVBL1	3021	33
0.71	0	0.39	0	220789 s at	TRRGA	7014-013	24
0.00		0.00		010500 -1	Later a	ipit pic	1
0.69	U	0.09	0	212533_at	WEE1	11015.3-015.1	47
0.68	0	0.58	0	201947_s_at	CCT2	12q15	10
0.67	0	0.53	O	216194_s_at	CKAP1	19q13.11-q13.12	18
0.67	0	0.48	0	221970_s_at	DKFZP588L0724	17g24.2	46
0.66	0	0.61	0	1555864 s at	PDHA1	Xp22 2-p22 1	2
0.66	0	0.05	0.263	204015 at	14057	30213	7
0.00		0.00	0.200	204010_01	EMROE .	oper o	
0.00	0	0.57	0	208117_s_at	FLJ12525	xq12-q13	14
0.66	0	0.39	0	200634_at	PFN1	17p13.3	21
0.66	0	0.3	0	213310_at	EIF2C2	8q24	26
0.65	0	0.57	0	225082 at	CPSF3	2p25.1	35
0.64	0	0.33	0	222417 s at	SNX5	20011	40
0.00		0.40	0	202246	FADOR	0-01.12	
0.02	0	0.42	U	202345_8_81	PADPO	6421.13	
0.62	0	0.52	0	218947_s_at	PAPD1	10p11.23	25
0.62	0	0.52	0	200750_s_at	RAN	12q24.3	42
0.61	0	0.24	0	210334_x_at	BIRC5	17q25	15
0.6	0	0.35	D	58696 at	EXOSC4	8o24 3	31
0.60		2.44		211575 4 14	SICIDAI	21022.3	
0.09		0.44		2110/0_5_81	accisiti	21922.5	
0.59	0	0.49	0	210460_s_at	PSMD4	1q21.2	41
0.58	0	0.3	0	213535_s_at	UBE21	16p13.3	11
0.56	0	0,49	0	224523_s_at	MGC4308	3q12.1	27
0.55	0	0.32	0	213607 x at	FLJ13052	1p36.33-p36.21	13
0.54	0	0.47	0	1565051 a at	OPN3	1043	8
0.54		0.47	0	1000001_s_at	UPNS	1045	0
0.53	0	0.25	0	200966_x_at	ALDOA	16q22-q24	34
0.53	0	0.44	0	201091_s_at	CBX3	7p15.2	44
0.51	0	0.48	0	208931_s_at	ILF3	19p13.2	22
0.5	0	0.48	0	1555274_a_at	SELI	2p24.1	5
0.5	0	0.35	0	200916 at	TAGLN2	1021-025	32
0.5	0	0.35	0	242488 at	NA	1043	36
0.5		0.00		242400_01	195	ideo.	50
0.36	0	0.14	0.01	200638_s_at	YWHAZ	8023,1	50
0.35	0	0.08	0.12	213194_at	ROBO1	3p12	48
0.32	0	0.36	ø	243011_at	MGC15606	3q12.3	37
0.25	0	0.01	0.827	200850_s_at	AHCYL1	1p13.2	57
0.24	0	0.23	0	201105 at	LGALS1	22013.1	38
0.22	0	0.18	0.003	222052	DVE7-7700176	10+13 13	20
0.23	0	0.10	0.003	200932_X_BI	007201/901/9	19413.12	20
0.22	0	0.37	0	206332_s_at	19116	1q22	23
0.17	0.003	0.12	0.028	217901_at	DSG2	18q12.1	29
0.05	0.375	-0.09	0.079	230192_at	RFP2	13q14	66
0.05	0.427	-0.14	0.01	212435_at	TRIM33	1p13.1	70
0.04	0.454	0.1	0.068	227278 at	NA	1013	53
0.04	0.000		0.000	1667070		6421.01	
-0.03	0.662	-0.03	0.568	1557277_a_at	NA	6021.31	61
-0.07	0.215	-0.06	0.305	226954_at	UBE2R2	9p13.2	64
-0.08	0.158	0.17	0.002	206513_at	AIM2	1q22	4
-0.09	0.112	-0.08	0.142	218924_s_at	CTBS	1p22	63
-0.1	0.095	-0.11	0.035	201921 at	GNG10	9031.3	52
-0.1	0.087	0.05	0.315	48106 -	EL 120480	12013 11	67
	0.007	0.05	0.315	40100_41	PLU20400	izero i	07
-0.11	0.063	-0.11	0.044	1554736_at	PARGI	1p22_1	62
-0.18	0.002	-0.14	0.012	237964_at	NA	11q13.1	68
-0.19	0.001	-0.1	0.074	202838_at	FUCA1	1p34	65
-0.22	0	-0.14	0.01	244686 at	TCOF1	5q32-q33.1	49
.0.22	0	-0.37	0	222495 at	AD-020	1013.3	60
0.00		0.07	0.000	2027617	NO-OLO	00-11.01	
-0.26	0	-0.07	0.228	22/547_at	NA	20011.21	55
-0.27	0	-0.14	0.012	202729_s_at	LTBP1	2p22-p21	69
-0.31	0	-0.05	0.379	209740_s_at	PNPLA4	Xp22.3	54
-0.32	D	-0.18	0.001	209717_at	EV15	1022	59
0.47	0	.02	0	213628 at	MCLC	1013.3	58
0.07		0.00		2005500_01	10000	10-07.1	
-0.63	0	-0.28	0	225582_80	KIAA1/54	10025.1	56

Online Supplementary Table S5. Association of high-risk scores and proliferation. (A) UAMS high-risk score (Shaughnessy-HR), (B) IFM high-risk score (Decaux-HR). GPI, geneexpression based proliferation index HM, Heidelberg/Montpellier group; LR, Little Rock group. Pearson's correlation coefficients are given. *P* values below 0.0001 are reported as 0.

_	
_	
_	

HN	Λ	LF	2)			
Correlation	P-value	Correlation	P-value	Probeset ID	Symbol	Chromosome	No.
0.81	0	0.86	0	200783_s_at	STMN1	1	4
0.72	0	0.2	0	228737_at	TOX2	20	15
0.69	0	0.37	0	202486_at	AFG3L2	18	8
0.52	0	0.34	0	202470_s_at	CPSF6	12	2
0.51	0	0.22	0	212098_at	NA	NA	9
0.49	0	0.32	0	202951_at	STK38	6	3
0.44	0	0.39	0	208644_at	PARP1	1	1
0.43	0	0.31	0	231736_x_at	MGST1	12	6
0.32	0	0.44	0	217752_s_at	CNDP2	18	7
0.24	0	0.13	0.015	204072_s_at	FRY	13	14
0.21	0	0.22	0	228677_s_at	RASAL3	19	11
-0.16	0.005	-0.08	0.116	200779_at	ATF4	22	12
-0.31	0	0.02	0.78	203657_s_at	CTSF	11	13
-0.38	0	-0.13	0.012	209683_at	FAM49A	2	10
-0.48	0	-0.23	0	201425_at	ALDH2	12	5

A

	GPI	GEP-SH	GEP-B
Genes	50 Genes (see Figure 2)	TOP2A, BIRC5, CCNB2, NEK2, ANAPC7, STK6, BUB1, CDC2, C10orf3, ASPM, CDCA1	TYMS, TK1, CCNB1, MKI67, KIAA101, KIAA0186, CKS1B, TOP2A, UBE2C, ZWINT, TRIP13, KIF11
Gene Selection	Based on genes over- expressed in proliferating malignant (HMCL) as well as non-malignant cells (PPC) compared to non-proliferating, non- malignant cells (BMPC, MBC), carrying the GO- Term "cell proliferation" or "cell cycle".	"Genes associated with proliferation".	"Genes associated with proliferation".
Model	Sum of expression values of each of the 50 genes. For genes not expressed as judged by PANP, the expression level of the respective gene is defined 0.	Normalized value of 11 genes associated with proliferation scaled to the maximum value among plasma cell samples, myeloma samples and cell lines.	Median value of 12 genes associated with proliferation, scaled to the maximum value among all samples.
Published Validation	Correlation with plasma- cell labeling index.	None.	Correlation with plasma- cell labeling index.

Online Supplementary Table S6. Overview of the different gene expression-based proliferation indices used. GPI, gene expression-based proliferation index; GEP-SH gene expression-based proliferation index from Shaughnessy's group; GEP-B gene expression-based proliferation index from Bergsagel *et al.*; HMCL, human myeloma cell line; PPC, polyclonal plasmablastic cells; BMPC, normal bone marrow plasma cells; MBC, memory B cells.