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Allogeneic hematopoietic stem cell transplantation
(HSCT) was first observed to correct the tha-
lassemias and hemoglobinopathies over three

decades ago.1,2 Since then, over 3000 transplants for these
disorders have been performed worldwide, and allogene-
ic HSCT currently remains the only proven curative ther-
apy for these highly morbid and life-limiting diseases. In
these settings, engraftment of donor-derived cells follow-
ing HSCT serves to replace dysfunctional cells of the red
cell lineage. For over a decade, it has been recognized that
a subset of patients transplanted for these disorders
intriguingly demonstrate stable and durable co-existence
of nucleated donor cells with host cells and that this
chimeric state is associated with transfusion-indepen-
dence and the lack of continued clinical manifestations of
their disease.3,4 Now, in a study presented in this issue of
the journal, Andreani et al.5 definitively demonstrate that
patients with long-lasting stable mixed hematopoietic
chimerism (3 with thalassemia and 1 with sickle cell dis-
ease), including mixed chimerism of marrow erythroid
progenitors, expressed a 2- to 5-fold enrichment of donor-
derived mature erythrocytes in the peripheral blood. 
It is important to put this study in the context of previ-

ous work. Data from the current study along with those
of previous studies3,6 are indeed similar. In the bone mar-
row, the percentage of donor myeloid cells correlates
with that of erythroid cells, consistent with the current
understanding of myelo- and erythropoiesis deriving
from common myelo-erythroid progenitors.7

Furthermore, in the peripheral blood the percentage of
donor leukocytes is similar to that in the marrow; howev-
er, the percentage of donor red cells is much higher
(Figure 1). This enrichment in donor peripheral red cells
has also been observed in children with sickle cell disease
after myeloablative transplants.4 The observation of full

replacement by donor-derived mature red blood cells
occurring within these mixed chimeras provides an
understanding of the dramatic functional improvements
observed in these patients following allogeneic HSCT. 
These observations support the long-held notion that

erythroid precursors in the thalassemias and hemoglo-
binopathies are at a competitive disadvantage for gener-
ating mature red blood cells capable of exiting the mar-
row. The current data from Andreani et al.5 are highly
convincing as they were derived from patients exhibiting
long-term (>3 years) stable chimerism who did not
require red blood cell transfusions. The effects measured

Figure 1. Comparison of marrow and peripheral blood donor
chimerism.  Results of two prior studies3, 18 along with those of the
study by Andreani et al.5 are summarized here. There were 16 sam-
ples of marrow myeloid cells, 13 of marrow erythroid cells, 31 of
peripheral blood leukocytes, and 4 of peripheral blood red cells. The
error bars refer to standard errors of the mean.
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are, therefore, highly unlikely to have been confounded
by factors related to the transplant regimen. While
Armistead et al.8 utilized erythroid-lineage specific molec-
ular markers to quantify donor versus recipient red blood
cell transcripts in patients undergoing reduced-intensity
and myeloablative HSCT regimens for thalassemia,
Andreani et al.5 adopted a more direct approach. As illus-
trated in Figure 2, they directly measured the donor con-
tribution to red blood cell progenitors (BFU-E) by DNA
(short tandem repeat) analyses and to mature erythro-
cytes by fluorocytometry to detect donor-specific red
blood cell antigen expression. Their conclusions are well-
supported by the literature, as ineffective erythropoiesis
in the thalassemias and hemoglobinopathies has been
described in both murine models9 and patients.10,11

Apoptosis is an important mechanism by which ineffec-
tive erythroblasts are cleared within the intramedullary
space in both diseases, but particularly in thalassemia.12,13

In sickle cell disease, expression of sickle hemoglobin in
as early as basophilic normoblasts appears to lead to
mechanical defects that in turn increase the cells’ suscep-
tibility to clearance and loss.11,14-16 While the precise mech-
anisms by which these two disorders generate ineffective
erythropoiesis differ, they share the common feature that
ineffective erythropoiesis becomes apparent as cellular
hemoglobin concentrations rise in the erythrocyte-com-
mitted precursors.
Accumulating evidence suggests that this mixed

hematopoietic chimerism can be stable. One next logical
question is: what is the lowest percentage of donor leuko-
cytes that would provide nearly all donor red cells in the
peripheral blood? As shown by the study by Andreani et
al. (patient 41)5 and earlier reports,4,10 this percentage
could be as low as 10 or 20%. This level is corroborated
by the results of one patient in the gene therapy trial for
thalassemia who received autologous hematopoietic
stem cells genetically modified to express a modified β-
globin and, at 1 year after therapy, became transfusion

independent. By 2 years after therapy, the genetically
modified cells accounted for 11% of peripheral blood
leukocytes (18% granulocyte-monocytes), 11% of mar-
row erythroid colonies and 13% of marrow myeloid
colonies.17

Collectively, these observations support mixed
hematopoietic chimerism as a rational goal in non-malig-
nant disorders. Another important question remains:
what is necessary to attain this stable state of mixed
hematopoietic chimerism? Furthermore, are T, B, or other
lymphocyte subsets responsible for allowing this persist-
ent and stable mixed chimerism? Lisini et al.18 performed
a preliminary analysis in 13 patients within the first year
after transplant, finding that the average percentage of
donor cells was 75% (range, 30-90%) for leukocytes; 52%
(range, 10-80%) for CD4 cells, 44% (range, 10-80%) for
CD8 cells and 90% (range, 60-95%) for CD19 cells. In
their patients, there was high number of B cells, with gen-
erally 10-20% fewer donor T cells. However, Andreani et
al.6 found the opposite in their past series of six patients,
with the percentage of donor CD19 cells being lower.
The relatively small number of patients in both studies
and the varying donor T- and B-cell contributions pre-
clude any firm conclusions, and the mechanism of induc-
tion of stable mixed chimerism may not be related to cell
number or percentage, but rather to cell type. Andreani et
al.3,6 also previously showed that, in their cohort of
patients, the risk of graft loss was highest when the per-
centage of donor leukocytes was less than 75% in the first
2 months. However, this risk decreased dramatically
when mixed hematopoietic chimerism persisted beyond
1 year. Others have identified heavy transfusion burden
with inconsistent iron chelation and red cell alloimmu-
nization as additional risk factors. It would be useful to
determined whether there are other early (<3 months
post-transplant) or late (>3 months) markers that could
prospectively predict the risk of graft loss. The results
published by Andreani et al. add significantly to our cur-
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Figure 2. Erythroid maturation
and methods to detect donor
cells.  Depending on the stage of
erythroid differentiation and
development, there are specific
methods to assay the donor con-
tribution.



rent understanding of mixed hematopoietic chimerism in
non-malignant disorders and provide the basis for several
fertile areas of research. Furthermore, such clinical obser-
vations will be important in the design of future trans-
plantation regimens for these devastating disorders.
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