SUPPLEMENTARY APPENDIX

The impact of human leukocyte antigen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family

Christina Bade-Döding, ${ }^{1,2 *}$ Alex Theodossis, ${ }^{3 *}$ Stephanie Gras, ${ }^{3}$ Lars Kjer-Nielsen, ${ }^{2}$ Britta Eiz-Vesper, ${ }^{1}$ Axel Seltsam, ${ }^{4}$ Trevor Huyton, ${ }^{1}$ Jamie Rossjohn, ${ }^{3}$ James McCluskey, ${ }^{2 \#}$ and Rainer Blasczyk ${ }^{1{ }^{1 *}}$
*joint first authors; "joint senior authors
${ }^{1}$ Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany; ${ }^{2}$ Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia; ${ }^{3}$ Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia, and ${ }^{4}$ German Red Cross Blood Donor Service NSTOB, Institute Springe, Springe, Germany

Citation: Bade-Döding C, Theodossis A, Gras S, Kjer-Nielsen L, Eiz-Vesper B, Seltsam A, Huyton T, Rossjohn J, McCluskey J, and Blasczyk R. The impact of human leukocyte antigen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family. Haematologica 2011;96(1):110-118. doi:10.3324/haematol.2010.030924

Online Supplementary Table S1. Ligands of the HLA-B*41 variants.

HLA-B*41:01

			e	-						
	1	2	3	4	5	6	7	8	9	
Ligands										
	A	A	L	T	G	R	T	G	P	P
	M	K	L	P	V	P	A	A	A	P
	Y	E	E	G	P	G	K	N	L	P
	K	A	Y	G	D	R	I	E	R	M
	A	E	I	Q	G	V	1	D	A	
	G	G	G	Y	T	I	R	N	v	
	E	K	A	P	A	P	A	P	E	
	K	S	I	P	A	s	F	G	T	
	K	E	1	S	E	N	E	V	v	
	P	H	v	P	P	P	V	P	P	
	K	E	G	K	P	P	I	S	v	
	Q	D	I	A	N	E	D	A	v	
	M	E	K	G	G	N	M	K	E	
	T	E	E	K	F	I	V	K	A	
	H	R	E	V	c	H	P	E	v	
	G	R	P	P	E	M	P	v		

Source

NuC3B mucin
Tuftelin interacting protein 11
Cytochrome C oxidase VIIc
Heat shock protein gp96 precursor
FOS-like antigen 2
Transmembrane-type protein tyrosine phosphatase H
KIAA1168 protein
FLJ00259 protein
dJ756N5.1.1(Continues in Em:AL133324 as dJ1161H23.3)
Sal-1ike 3; C2H2 zinc finger protein SALL3
Unnamed protein product (hum.)
Hypothetical protein XP_209384
Karyopherin α 1; importin α 5; importin- $\alpha-$ S1 SCAP protein
Nucleolar protein GU2; RNA helicase II/Gu β
MLL2 protein

HLA-B*41:02

Peptide position

1	2	3	4	5	6	7	8	9	10	11

Ligands

G	E	K	F	E	D	E	N	F	
1	E	v	D	G	K	Q	V	E	L
A	E	K	L	G	G	5	A	V	I
A	E	E	K	A	A	v	T	S	L
Y	E	E	G	P	G	K	N	L	P
K	E	E	P	P	Q	P	Q	1	
K	E	G	K	P	P	I	S	V	
Q	E	E	H	V	A	V	A	Q	
P	A	V	P	P	P	P	V	P	
\pm	P	H	P	G	P	F	G	S	
G	E	V	D	P	K	V	A	L	
1	E	K	Q	P	P	0	v	L	
K	E	T	E	I	V	Q	L	Q	
A	E	A	1	E	R	M	F	L	
R	E	D	K	K	Q	V	Q	F	
A	E	A	E	R	V	G	L		
K	E	R	S	G	v	S	L		
W	A	L	1	T	L	V	L		
S	E	F	P	I	R	T	L		
E	E	P	F	M	P	E	E		
F	E	K	T	Q	E	E	I		

[^0]
Peptide position

$\begin{array}{llllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
Ligands

```
A E M Y G S V T E H P S P S P L
H E R E P E E I V K M E E
F E K T Q E E L T P E F
F E P L N K P D S T I Q
G E K F E D E N F I IL
F I V N C T V N V Q D
I E V D G K Q V E L
G E E H F K G L V L
E K L F E E K E K P
R E L E E T N O K L
A Y G D R I E R M
K E D D V R Q Y V V
E N D E D R L V L
K E M M A M M L Q K K K I
I N E D R L P H L I
E D E D S L K T T I
E Y I Q K N V O I
D I N O D N L Q L
E K S Q L V R P I
|
E D Y D E R V L P
K
L Q S L T L F L O
E E G P P K E E M T L
E D D G Q P R T I
V E D D R T L Q S L
V E E I S R T Q P I
V E I E E R G V K I
f E D I K K G I L I
L L W S V V T V V S I I F
S E V N P N T R V M
k E E P S N N V K L
E I E S T K G E I
E K N G D V V E L
E V D V E Q H T I
E Y P P I V D D G K I
S R V O D A S K I
E A P V Q E E K L
E N G F L P I H.L
A E P K P K P O L
A E A V M L G Q P
S E G A L A I E V
E Q Q G K G V A L
S A A V G S V V L
T G A S G S F K I
E A P P T N Q A
E D P A G L K V
N S P S G N N I
E G K P T P A L
E A P P G T P P
E V D P K V A L
E I I G V K V I
E V V V K E E G L
G L Q E P V G R
E D G K V V T V
E A S M I S K L
E E G Y G R S L
D S D A T S P R
E N E A E T K L
E D I P V K T L
E D L A R I S L
E G K D L P E H
E E L G H R D V
D K I P P L L L V V
E I N N I I K I
P Q N A D K I K
E E N T G H T F
E E L O M E P V
T V K V K E S F
E V N F T S E L
L L K G H K K L
E
G Y D S I I Y R
```


Source

Heterogeneous nuclear ribonucleoprotein C1/C2
KIAA0820 protein
Apolipoprotein A-II
Ubiquitin-specific protease 15
Peptidylprolyl isomerase A
Unnamed protein product (hum.)
Rho-related GTP-binding protein RhoB (H6)
Bovine albumin
OG-2 homeodomain protein-1ike
CDR2_HUMAN Cerebellar degeneration-related protein 2.
Heat shock protein gp96 precursor
Unnamed protein product (hum.)
Unnamed protein product (hum.)
GRIP coiled-coil protein GCC185 isoform a
Signal transducing adaptor molecule 2 B
DNA topoisomerase II, alpha isozyme
KIAA1901 protein
Cardiac ankyrin repeat protein;
Cyclin B3
Nucleolar protein family A, member 3
Cytochrome P450 4F2
Similar to KIAA1509 protein
Mitochondrial intermediate peptidase
Adenvlate cvelase 6 isoform a
TIA1 cytotoxic granule-associated RNA-binding protein
Like 1 isoform 1
ELAVL4 protein
Tumor necrosis factor receptor superfamily
Septin-2 (Protein NEDD5)
MCM4_HUMAN DNA replication licensing factor MCM4
ALKB_HUMAN alkylated DNA repair protein al kB homolog
Hypothetical protein FLJJ20323
Hypothetical protein KIAA0612
Unnamed protein product (hum.)
Hypothetical protein (hum, herpesvirus 7)
Cyclin B1
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2
Unnamed protein product (hum.)
Jumping translocation breakpoint; PAR protein
Claudin-18A2.1
HS1-binding protein 3, iso. 1
Calcineurin-binding protein calsarcin-2
bA93B14.1.1 solute carrier fam. 21 org. anion transp.
IF4G_HUM, euk. transl. initiation factor 4γ (eIF-4- γ)
Filamin C, gamma (actin-binding protein-280)
Hl histone family, member 5
FLJJ00163 protein
Major capsid protein (hum. herpesvirus 4)
dJ309k20.1.1 (nov. proteln sim. to dysferlin, iso. 1)
IMMT_HUM. mitoch. membr. protein (Mitofilin) (p87/89)
R28379_3
A34653 cell adhesion proteln SQM1
Similar to KIAA0606 protein
Tolloid-1ike 2
AATK protein
JC2186 hippocalcin
Hypothetical protein KIAA0052
Anaphase-promoting complex subunit 5
Axonal transp. synaptic vesicles; kinesin, hc, IA
Glutamyl-prolyl tRNA synthetase; glutamate tRNA lig.
Isoleucyl-tRNA synthetase, cytoplasmic
Unnamed protein product (hum.)
S22765 heterogeneous ribonuclear particle protein U Hypothetical protein FLJ40243
Similar to melanoma chondroitin sulfate proteoglycan
KIAA0853 protein
Muscle-specific serine kinase I
ASC-1 complex subunit P200
Hypothetical protein XP_291339
Probable ribosome biogenesis protein
Targeting protein for Xklp2
Hypothetical protein (hum.)
Dyskerin
HT028

K	E	T	E	I	V	Q	L	Q
E	T	V	N	R	I	M	T	L
A	E	A	L	E	R	M	F	L
K	E	I	D	K	N	D	H	1
A	E	K	E	F	N	E	T	M
K	E	K	P	D	I	F	Q	L
E	E	0	0	K	0	Q	L	Q
H	E	Q	E	E	I	F	K	L
E	K	L	E	R	K	E	I	Q
F	E	D	E	E	1	K	R	L
Y	E	E	1	F	V	K	N	M
R	E	E	Y	P	D	R	1	M

HLA-B*41:04

Peptide position

$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
Ligands

A	E	Y	G	R	L	G	L	G	E	G	A	E	E
A	E	N	P	G	K	Y	N	I	L	G	T	N	T
A	E	V	E	G	K	D	L	P	E	H	A	v	L
G	E	Y	1	P	S	K	G	A	G	N	N	v	L
K	E	E	P	P	Q	P	Q	L	A	N	G	A	L
A.	E	Q	A	E	R	Y	D	D	M	A	S	A	M
A	E	A	G	A	G	S	A	T	E	F	Q	F	
M	E	E	D	P	Q	T	S	R	E	1	F	N	
1	E	I	N	P	D	H	P	I	V	E	T	L	
S	E	M	E	v	Q	D	A	E	1	K	A	1	
Y	E	D	F	K	E	E	G	S	E	N	A	V	
D	E	V	G	G	E	A	L	G	R	L	L		
A	E	v	G	D	G	T	T	S	V	T	1		
T	E	I	D	E	K	E	Y	I	S	L			
Y	E	E	N	E	E	F	1	R	T	M			
G	E	K	F	E	D	E	N	F	1	L			
1	E	v	D	P	D	T	K	E	M	L			
K	E	F	D	G	K	S	1	v	S	v			
R	E	E	L	S	N	V	1	A	A	M			
K	E	L	S	E	D	E	1	R	T	L			
H	E	E	A	V	S	V	D	R	V	L			
E	D	A	1	P	P	I	V	L	R	S			
S	I.	I	D	R	S	S	A	P	E	L			
A	E	E	K	A	A	V	T	S	L				
Y	E	D	Y	Y	Y	H	P	P	P				
I	E	v	D	G	K	Q	v	E	L				
A	E	E	L	P	H	I	H	A	F				
A	E	K	v	E	1	A	T	L					
S	E	E	D	F	I	R	S	L					
Y	G	A	E	A	1	E	R	M					
Y	E	E	I	E	V	K	N	M					
V	E	K	I	D	F	D	S	v					
A	E	E	D	F	Y	E	K	L					
T	E	D	I	P	V	K	T	L					
M	L	L	A	F	Y	E	K	I					
F	E	E	I	Y	P	P	E	v					
D	T	E	v	K	T	L	K	L					
R	E	E	P	D	L	V	1	L					
N	E	D	w	E	N	P	Q	L					
A	E	L	1	V	Q	P	E	L					
K	E	L	G	I	T	A	L						
F	E	D	E	s	F	A	v						
G	E	A	L	G	R	L	L						
H	w	P	F	G	A	L	L						
Y	S	D	M	K	R	A	L						
D	M	E	N	E	F	1	L						
I	R	1	L	E	E	A	L						
G	E	I	E	A	1	E	L						
G	E	D	V	v	T	L	L						
F	E	D	E	N	F	I	L						
	E												

Hypothetical protein SP329
Laminin $\beta 1$ related protein
Hemoglobin $\alpha 1$ globin chain
Hypothetical protein ELJ32343
Jumonji domain containing 2
SACS_HUMAN sacsin
Hypothetical protein LOC139135
Similar to tousled-1ike kinase 2
Protein kinase C $\boldsymbol{\beta}$ (5 ' partial) splice form 1 Osteoblast specific factor 2 (fasciclin I-like)
Tissue factor pathway inhibitor
Unnamed protein product (hum.)

Source

Unnamed protein product (hum.)
Regulator of chromosome condensation
Heterogenous nuclear ribonucleoprotein
Heterogeneous ribonuclear particle protein U Unnamed protein product (hum.)
Protein C20orf24
14-3-3 protein eta (Protein AS1)
40 S ribosomal protein S 10
Unnamed protein product (hum.)
Heat shock protein HSP 90- $\boldsymbol{\beta}$ (HSP 90) Proliferation-associated protein 2G4 Putative GTP-binding protein PTD004 Hemoglobin beta subunit
T-complex protein 1
Proteasome activator complex subunit 3
UPF0315 protein AD-001
Peptidyl-prolyl cis-trans isomerase A
40 S ribosomal protein $\$ 17$
Heat shock protein HSP 90- β
60 ribosomal protein L36
52 kD repressor of protein kinase inhibitor
S-methyl-5-thioadenosine phosphorylase
Serine/threonine protein kinase 19
Cytoplasmic linker protein 2
caspr5 protein isoform 1
Heterogeneous nuclear ribonucleoprotein R
Rho-related GTP-binding protein RhoB (H6) BolA-1ike protein 2
Proteasome subunit α type 4
FYVE finger-contain. phosphoinositide kinase
Hemoglobin a subunit
Tissue factor pathway inhib. (TFPI)
Eukaryotic transl. initiation factor 3 subunit 12
DNA replication licensing factor MCM7
Isoleucyl-tRNA synthetase, cytoplasmic
Fucose-1-phosphate guanylyltransferase
Cyclin-A2
Zinc finger protein HRX (ALL-1)
Menin
G2/mitotic-specific cyclin-B2
Desmoplakin
40 S ribosomal protein 514
Peptidyl-prolyl cis-trans isomerase G
Hemoglobin beta subunit
Somatostatin receptor type 1 (SS1R)
Splicing factor, arginine/serine-rich 6
Zinc finger protein 198
DNA-dependent protein kinase catalytic subunit
Heterogeneous nuclear ribonucleoprotein A/B
Hexokinase-2
Peptidyl-prolyl cis-trans isomerase A
Septin-2 (protein NEDD5)

Peptide position

$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$

Ligands

P	E	P	L	P	S	W	V	A	R	L	D	1
F	G	S	G	A	G	A	s	c	V	N	L	1
V	E	Y	R	G	Q	A	Q	A	1	E	E	L
1	E	I	N	P	D	H	P	I	V	E	T	L
Y	E	P	N	M	S	V	G	F	T	A	v	
A	E	V	K	K	P	G	A	S	M	K	v	
A	E	V	K	R	P	G	E	S	1	R	1	
1	S	L	S	S	P	0	V	P	G	S	P	
N	G	D	v	G	A	V	S	E	P	P		
V	c	G	K	P	F	H	S	1	S	P		
A	E	V	T	v	S	A	S	G	1	1		
D	E	A	T	1	R	A	I	I	A	v		
K	E	1	E	4	M	p	E	K	G	L		
Y	S	S	T	W	S	G	G	Y	G	L		
1	L	P	G	G	G	L	L	P	T	P		
S	E	E	A	R	K	1	M	\checkmark	R	L		
A	E	P	L	E	I	I	L	H	L	P		
A	E	A	F	E	A	I	P	R	A	1		
S	E	M	E	V	Q	D	A	E	L			
D	N	V	P	M	F	I	S	2	N			
K	E	S	c	E	S	1	S	C	L			
Q	E	D	A	E	M	D	A	E	L			
V	E	G	G	A	Q	\checkmark	Q	Q	v			
V	K	S	G	N	P	1	Q	P				
A	E	N	P	D	I	F	A	v				
P	V	P	A	W	A	R	A	L				
S	P	S	G	w	S	N	V	E				
S	T	c	G	S	H	F	M	L				
1.	V	A	L	S	Y	S	S	P				
F	E	D	E	1.	H	P	D	1				
H	A	G	L	D	A	F	1	v				
1	E	k	S	1.	8	K	S	L				
N	V	v	D	S	S	0	K	P				
R	E	G	E	D	K	E	L					
L	K	K	C	c	K	I	L					
L	E	E	G	K	G	G	P					
H	L	S	V	S	T	P	v					
T	E	E	A	K	R	Q	P					
T	S	E	R	1.	A	1	I					
L	E	M	M	1	K	E	L					
γ	V	A	S	v	L	G	L					

Source

Leucine-rich repeats, immunoglobulin-like domains 3 Neuroligin 2
Cytoplasmic linker 2
Heat shock protein HSP 90-ß (HSP 90)
TatD DNase domain containing deoxyribonuclease 2
Immunoglobulin heavy chain variable region
IgE heavy chain
KIAA1076 protein
Unnamed protein product [Homo sapiens]
zine finger protein 136
SQEE253
Unnamed protein product (hum.)
ccctc-binding factor-like protein
Immunoglobulin alpha heavy chain variable region SFRSII protein
Neuroblastoma-amplified protein
NHP2 non-histone chromosome protein 2-1ike 1
CCT8 protein
Proliferation-associated protein 2G4
Similar to cadherin-related tumor suppressor precursor MYST histone acetyltransferase
KIAA1120 protein
Adaptor-related protein complex 2, $\alpha 2$ subunit variant
Chromosome 10 open reading frame 18
REC 11
Cholinergic receptor, α polypeptide 10
Glycerol 3-phosphate permease
Olfactory receptor, family 56 , subfamily A, member 3
Nucleoporin 133 kDa
Peptidylprolyl isomerase-like 1
HSPC320
Putative glycine-N-acyltransferase
ALL-1 protein
Titin isoform novex-3
Plasma membrane $\mathrm{Ca}(2+)$-ATPase isoform 2
Neuronal pentraxin 1
KIAA0929 protein
Similar to extensin-like protein
Nitrilase family, member 2
SnoN2
RAN-binding protein 2-11ke 1 isoform 2

HLA-B*41:06

Peptide position

$\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

Ligands

K	E	K	E	T	P	T	P	G	E	D	1	Q
A	E	v	w	s	T	T	D	A	V	T	Q	v
1	K	L.	Y	K	K	K	T	G	K	D	v	
D	K	L	L	V	N	Q	T	E	L	F	V	
L	E	G	R	T	H	T	I	S	L	P		
P	E	P	V	I	1	V	A	c	V	P		
A	E	M	I	E	K	Y	F	V	S	P		
A	E	R	V	G	A	G	A	P	V			
c	E	S	C	V	D	L	1	F	v			
G	A	N	A	L	L	F	V	G	v			
1	S	1	L	L	F	S	A	P				
R	E	R	R	D	N	Y	V	P				
v	E	T	T	F	S	T	E	P				
G	E	P	R	F	1	T	v					
A	E	T	S	A	E	R	v					
Y	E	T	D	V	F	V	v					
1	E	A	L	1	E	R	v					
K	1	K	M	K	S	P	P					
A	E	G	F	L	F	V	v					
N	E	P	K	E	L	D	G					
Q	G	P	Y	G	M	D	v					
H	E	V	L	M	L	L	P					

Source

Hypothetical protein
Similar to GRIK2 protein
Glucose-regulated protein
Von Hippel-Lindau tumor suppressor-like
KIAA0564 protein isoform a
Phosphodiesterase H1
KIAA1356 protein
H2A histone family, member J isoform 2
Cyclin Gl interacting protein
Adenylate cyclase type I
Galanin receptor-like protein
Ribosomal Protein S17
Chondroitin sulfate proteoglycan 2
MHC class I antigen
Protocadherin 10 isoform 1 precursor
GTF2I repeat domain containing 2
KIAA0546 protein
NADH dehydrogenase subunit 5
ARNTL2 protein
Cadherin-7 precursor
Immunoglobulin heavy chain
Unnamed protein product (human)

Online Supplementary Table S2. List of promiscuous peptides.

Peptide position									
1	2	3	4	5	6	7	8	9	1011
K	E	G	K	P	P	I	S	v	
G	E	V	D	P	K	v	A	L	
T	E	D	I	P	V	K	T	L	
Y	E	E	I	F	V	K	N	M	
A	E	A	L	E	R	M	F	L	
Y	E	E	G	P	G	K	N	L	P
K	A	Y	G	D	R	I	E	R	M
I	E	V	D	G	K	Q	V	E	L
A	E	E	K	A	A	V	T	S	L
G	E	K	F	E	D	E	N	F	I 1

Source
Unnamed protein (human)
Cell adhesion protein SQMI
Isoleucyl-tRNA synthetic, cytoplasmic
Tissue factor pathway inhibitor
Alpha globin
Cytochrome C oxidase VIIc
Heat shock protein gp96 precursor
Rho-related GTP-binding protein RhoB
caspr5 protein isoform 1
Peptidylprolyl cis-trans isomerase

Anchors for the corresponding $\mathrm{B}^{*} 41$ subtypes are printed in bold and auxiliary anchors are underlined.

Presenting allele

$\begin{array}{llllll}41: 01 & 41: 02 & 41: 03 & 41: 04 & 41: 05 & 41: 06\end{array}$

$+\quad+\quad$ - \quad -
$-\quad+\quad+\quad-\quad-$
$-\quad+\quad+\quad-\quad$
$-\quad+\quad+\quad-\quad$

- $+\quad+\quad-\quad$ -
$+\quad+$
$+\quad-\quad+\quad-\quad-\quad-$
$-\quad+\quad+\quad+\quad-\quad-$
$-\quad+\quad-\quad+\quad-\quad-$
- +

Online Supplementary Table S3. Differentially selected peptides by B*41 subtypes.

Peptide	Source	Length	Presenting allele					
			41:01	41:02	41:03	41:04	41:05	41:06
A E A ERMEL	Alpha globin (AA 25-34)	9-mer	-	+	$+$	-	-	-
Y Y A EALERM	Alpha globin (AA 24-32)	9-mer	-	-	-	+	-	-
$\begin{array}{r} G E K E D E N F I L \\ E E D E N E I L \end{array}$	Peptidylprolyl cis-trans isomerase (AA 79-89)	11-mer	-	+	+	+	-	-
	Peptidylprolyl cis-trans isomerase (AA 82-89)	8 -mer	-	-	-	+	-	-
SEMEVQ D A E L K A LSEMEVQ DAEL	Proliferation-assoc. protein 2G4 (AA 345-357)	13-mer	-	-	-	+	-	-
	Proliferation-assoc. protein 2G4 (AA 345-354)	$10-\mathrm{mer}$	-	-	-	-	+	-
$\begin{aligned} & \text { AEVEGK } V \text { E L P E H A V L } \\ & \text { VE G K D L P E H } \end{aligned}$	H. ribonuclear particle protein (AA 602-615)	$14 \text {-mer }$	-	-	-	+	-	-
	H. ribonuclear particle protein (AA 604-612)	9-mer	-	-	+	-	-	-
$\begin{array}{rlllllll} V & E & E & E & R & G V K & L \\ & I & E & E & R & G & V & K \end{array}$	Septin-2 (AA 86-95)	10-mer	-	-	+	-	-	-
	Septin-2 (AA 88-95)	8 -mer	-	-	-	+	-	-
$\begin{array}{lllllllll} K & E & E & P & P & Q & P & Q & L \\ K & N & N & E & A & L & P & Q & Q \end{array}$	Protein C20orf24 (AA 7-20)	14-mer	-	-	-	+	-	-
	Protein C20orf24 (AA 7-15)	9 -mer	-	+	-	-	-	-
FEKTQEELTPFE	Apolipoprotein A-II	12-mer	-	-	+	-	-	-
FEKTQEEL	Apolipoprotein A-II	8 -mer	-	+	-	-	-	-
$\begin{array}{r} \text { DEVGGEALGRLL } \\ \text { GEALGRLL } \end{array}$	Hemoglobin β subunit (AA 21-32)	12-mer	-	-	-	$+$	-	-
	Hemoglobin β subunit (AA25-32)	8-mer	-	-	-	$+$	-	-

Anchors for the corresponding $\mathrm{B}^{*} 41$ subtypes are printed in bold and auxiliary anchors are underlined.

Online Supplementary Table S4. Peptide contacts in the B*41:03/16-mer and B*41:04/11-mer structures.

Peptide residue	\|HIA-B*41:03/AEMYMSVIEHPSPSPL		HIA-B* 41:04/HEEAVSVDRVL		
	Interaction type	Contact ${ }^{\text {a }}$,	Peptide residue	Interaction	Contact
Ala	VDW ${ }^{\text {c }}$	Y7, R62, E63, Y159, W167, Y171	His,	VDW	M5, Y7, E63 Y159, W167, Y171
Ala ${ }^{\mathrm{N}, 0}$	$\mathrm{HB}^{\text {d }}$		His ${ }^{\text {N,O}}$	HB	
			Hisis ${ }^{\text {N }} 1$	HB	$E 2^{\circ}$
Glu2	VDW	Y7, H9, T24, K45, R62, E63, I66, S67, Y99, Y159	Glu	VDW	Y7, H9, T24, K45, E63, I66, S67, Y99, Y159
$\mathrm{Clu}^{\mathrm{N}, 0}$	HB		Gluz ${ }^{\mathrm{N}, 0}$	HB	
Glue ${ }^{0} \mathrm{l}^{0} 1, \mathrm{c}_{4}^{2}$	$\mathrm{HB}, \mathrm{SB}^{\text {e }}$		$\mathrm{Clu}_{2} \mathrm{O}_{\mathrm{E}, \mathrm{c}_{\mathrm{c}} 2}$	$\mathrm{HB}, \mathrm{SB}^{\text {e }}$	
	Wm'		$\mathrm{Clu}_{2} \mathrm{O}_{\mathrm{e},}, \mathrm{O}_{\mathrm{e}} 2$	Wm	
Met ${ }_{3}$	VDW	I66, R97, Y99, Q155, D156, Y159	Glus	VDW	I66, Y99, Q155, D156, Y159, V5
Met ${ }^{\text {N, }}$,	HB, Wm		Clus ${ }^{\mathrm{v}, 0}$	HB, Wm	
Met ${ }^{\text {s\% }}$	HB, Wm	R97 ${ }^{\text {N/ }{ }^{2}}$, D156 ${ }^{\text {osi }}$	Glus ${ }^{\text {Ot, Oe2 }}$	HB, SB, Wm	D156 ${ }^{00_{s} 1}, R g^{v_{n}, N_{n} \nu_{1}{ }^{2}}$
Tyr ${ }_{\text {a }}$	VDW	R62			
			Vals	VDW	N70 ${ }^{\mathrm{V}^{2} 2}, E 3, R 9$
			Val5 ${ }^{\mathrm{N}, 0}$	Wm	I 66°, $\mathrm{N} 70^{\text {or }}$ 1
			Ser ${ }_{6}$	VDW	D8,R9
			Seror ${ }^{0}$	HB	$R_{s}{ }^{N}$
			Ser ${ }^{\text {ory }}$	HB, Wm	D80 ${ }^{\circ 8}$
			Val7	VDW	T73, E76, R9, V10
			Val7 ${ }^{0}$	HB	$V_{10}{ }^{N}$
Proi3	VDW	T73, P15	Asps	VDW	A150, S6, V10
			Asp ${ }_{8}^{\text {or }} 1.100^{2}$	HB	
Ser ${ }_{4}$	VDW	W147, V152	Arg9	VDW	W147, V152, Q155, V5, S6, V7
Seri4 ${ }^{\text {a }}$	Wm	Y116 ${ }^{\text {n }}$	$\mathrm{Arg}^{\mathrm{N}, 0}$	HB, Wm	Y116 ${ }^{\circ 0}$, S 0
			$\operatorname{Arg}^{\left(V_{1}, N_{n}{ }^{2}\right.}$	HB, SB, Wm	
Prols	VDW	T73, E76, S77, W147, P13	Valı0	VDW	T73, E76, S77, N80, W147, V7, D8
Prols ${ }^{\circ}$	HB	W147 ${ }^{\mathrm{N} \mathrm{e}^{1}}$	Valio ${ }^{\text {N,0 }}$	HB	W147 ${ }^{\mathrm{Ne}}, 177^{0}$
Leul6	VDW	S77, N80 Y84, L95, Y116, Y123, T143, K146, W147	Leun	VDW	S77, N80, L81, Y84, L95, Y116, Y123, T143, W147
Leuns ${ }^{\text {n, }, 0,0 x T}$	HB, SB		Leun ${ }^{\mathrm{N}, 0,0 \mathrm{oxt}}$	HB, SB	

${ }^{a}$ Atomic contacts determined using the CCP4i implementation of CONTACT ${ }^{1,2}$ and a cutoff of $4 \AA$. ${ }^{.}$Selected contacts between peptide residues are marked in italics. ${ }^{c}$ VDW - Van der Waals' interactions, defined as non-hydrogen bond contact distances of $4 \AA$ or less. ${ }^{4} H B$ - Hydrogen bond interactions, defined as contact distances of $3.5 \AA$ or less, between suitable atoms at appropriate angles, ${ }^{3}$ as determined in Coot. ${ }^{\text {e }} S B$ - Ionic interactions, defined as contact distances of $4.0 \AA$ or less between suitable residue atoms. 'Wm - Water mediated hydrogen bond (see " d ").

Online Supplementary Table S5. Theoretically calculated ionization states for selected titratable groups in the B*41:03 and B*41:04 structures.

Protein Model	Predicted Residue $\mathrm{pK}^{1 / 2} 2^{2}$						
	His9 (6.6)	$\begin{aligned} & \text { Arg97 } \\ & \text { (12.0) } \end{aligned}$	$\begin{gathered} \text { Asp114 } \\ (4.0) \end{gathered}$	$\begin{gathered} \text { Asp156 } \\ \text { (4.0) } \end{gathered}$	$\begin{gathered} p G \mid u 2 \\ (4.4) \end{gathered}$	pClu3 (4.4)	$\begin{aligned} & \text { pArs99 } \\ & (12.0) \end{aligned}$
B*41:03	1.8	21.0	-	1.2	-	-	-
B* $41: 03 / 16 \mathrm{mer}^{\text {b }}$	4.1	26.3d	-	0.82	$-10.2^{\text {d }}$	-	-
B*41:03 R97S ${ }^{\text {c }}$	5.2	-	-	2.3	-	-	-
B*41:04	6.4	-	2.6	7.2	-	-	-
B*41:04/11mer	9.1	-	3.9	11.5	-9.5	5.2	27.9
B*41:04/11 mer p R9A ${ }^{\text {c }}$	11.1	-	4.1	15.9	-8.3	8.1	-

A

B

Online Supplementary Figure S2. Polymorphism alters the size and charge of the antigenbinding cleft in $B \star 41: 03$ and $B * 41: 04$ Surface representation of (A) the $B * 41: 03 / 16 \mathrm{mer}$ and (B) the $B * 41: 04 / 11$ mer structures, showing the antigen-binding cleft from above with peptide and solvent atoms removed. In each case the $\pm 6 \mathrm{kT} / \mathrm{e}$ electrostatic potential from the solvent accessible surface of the MHC has been rendered on the molecular surface. The N - and C-terminal ends of the cleft are marked by Arg_{62} and Lys ${ }_{146}$, respectively, while the D pocket aligns with GIn155. The polymorphism at positions 97 and 114 gives rise to an anti-gen-binding cleft in $B * 41: 04$ that is $140 \AA^{3}$ larger and more electronegative than $B * 41: 03$ in the region of pocket D . The molecular volume of each antigen-binding cleft (corresponding to the Connolly surface) was calculated using the CASTp server and a $1.4 \AA$ probe radius. ${ }^{5}$ Electrostatics calculations were carried out using only the heavy chain and $\beta-2-$ microglobulin coordinates of each structure. Briefly coordinate preparation (placing and optimizastion of hydrogen atoms assuming standard protonation at pH 7.0 , followed by assignment of atomic charge and radii parameters using the PARSE forcefield) was carried out using the PDB2PQR server (v1.5;). ${ }^{6}$ Electrostatic calculations were subsequently carried out using the APBS plugin in PyMOL (v1.1.0 ${ }^{7}$ and v1.2.x, ${ }^{8}$ respectively) with a 0.15 M concentration for the +1 and -1 ion species.

References

1. Bailey S. The CCP4 suite: programs for protein crystallography. Acta Cryst. 1994;50(Pt 5):7603.
2. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydro-gen-bonded and geometrical features. Biopolymers. 1983;22(12):2577-637.
3. Baker EN, Hubbard RE. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97-179.
4. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 2005;33(Web Server issue):W368-71.
5. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 2006;34 (Web Server issue):W116-8.
6. Dolinsky TJ, Nielsen JE, McCammon JA, Baker

NA. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004;32(Web Server issue):W665-7.
7. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA. 2001;98(18):10037-41.
8. DeLano WL. The PyMOL Molecular Graphics System, (http://www.pymol.org). 2002 [cited; Available from: http://www.pymol.org

[^0]: Source
 Peptidylprolyl isomerase A
 Rho-related GTP-binding protein RhoB (H6)
 Hypothetical protein FLJJ0774
 caspr5 protein isoform 1
 Cytochrome C oxidase VIIC
 Protein C20orf24
 Unnamed protein product (hum.)
 plectin 1
 Kh type splicing regulatory protein; KSRP
 Wiskott-Aldrich syndrome gene-like protein
 A34653 cell adhesion protein SQM1
 Transgelin: SM22- α
 Hypothetical protein SP329
 Hemoglobin $\alpha 1$ globin chain
 DNA polymerase subunit B
 Unnamed protein product [Homo sapiens]
 ARP1 actin-related protein 1 homolog A
 Mitochondrial DNA polymerase gamma
 THAP domain containing 6
 Transcription elongation factor A
 Apolipoprotein A-II

