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ABSTRACT

Background
Knowledge about the genetic lesions that occur in Burkitt’s lymphoma, besides the pathogno-
monic /G-MYC translocations, is limited.

Design and Methods

Thirty-nine molecularly-defined Burkitt’s lymphomas were analyzed with high-resolution sin-
gle-nucleotide polymorphism chips for genomic imbalances and uniparental disomy.
Imbalances were correlated to expression profiles and selected micro-RNA analysis.
Translocations affecting the MYC locus were studied by fluoresence in situ hybridization.

Results

We detected 528 copy number changes, defining 29 recurrently imbalanced regions. Five hun-
dred and eighteen regions of uniparental disomy were found, but these were rarely recurrent.
Combined imbalance mapping and expression profiling revealed a strong correlation between
copy number and expression. Several recurrent imbalances affected the MYC pathway: the
micro-RNA-supercluster 17-92 was frequently gained and the transcription factor E2F2 was
recurrently deleted. Molecular Burkitt’s lymphoma lacking MYC translocations showed MYC
gains. Amplifications of the polymerase iota gene were associated with increased frequency of
positions scored as aberrant.

Conclusions

The present findings suggest that uniparental disomies do not play a major role in the patho-
genesis of Burkitt’s lymphoma, whereas some genes may contribute to the development of this
lymphoma through gene dosage effects. Amplifications of the polymerase iota gene may be
functionally linked with increased genomic alterations in Burkitt’s lymphoma. The pattern and
rarity of chromosomal changes detectable, even at the high resolution employed here, together
with aberrations of genes regulating MYC activity, support the hypothesis that deregulation of
the MYC pathway is the major force driving the pathogenesis of Burkitt’s lymphoma, but
show that this deregulation is more complex than previously known.
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Introduction

Burkitt’s lymphoma (BL) is an aggressive mature B-cell
lymphoma. Left untreated, it is fatal within months. There
are three subtypes of BL: sporadic BL, mainly found in the
Western world, endemic BL, mostly found in tropical
Africa, and BL associated with immunosuppression.'
About 90% of patients with endemic BL and 30% of those
with sporadic BL are infected by Epstein-Barr virus (EBV),
suggesting a pathogenic role of the virus, although only
few viral genes are expressed in EBV* BL.?

The hallmark genetic lesion of BL is the so-called
“Burkitt translocation” t(8;14)(q24;q32) and its variants
t(8;22) and t(2;8), which juxtapose the MYC oncogene to
one of the three immunoglobulin (/G)-loci.* One of these
Burkitt translocations is present in almost all cases of BL
investigated so far,” but is not specific because it is also
found in other lymphoma types.® IG locus-driven MYC
expression leads to strong proliferation signals, allowing
the cells to grow rapidly.” However, strong expression of
MYC also stimulates apoptotic pathways.” The BL clone
must, therefore, acquire additional lesions to disrupt this
signaling to benefit from the growth-enhancing effects of
MYC. Some of the additional mutations described so far
disrupt the p53-mediated pathway of apoptosis, by target-
ing TP53 itself or components of its signaling cascade,
allowing BL cells to evade external and internal death sig-
nals.” Compared to most other mature B-cell lymphomas,
BL is characterized by the rarity of chromosomal aberra-
tions secondary to the /G-MYC fusion. The most frequent
secondary changes in BL detected by conventional cytoge-
netics are gains in 1q and in chromosomes 7 and 12.°

The current knowledge on secondary chromosomal
changes in BL predominantly relies on analyses performed
by conventional cytogenetics and comparative genomic
hybridization (CGH) to chromosomes or low-resolution
arrays.”® These techniques are not suitable for detecting
chromosomal imbalances at high-resolution and might,
therefore, have failed to detect pathogenically important
changes. Moreover, they are also not suitable for detecting
chromosomal changes not causing structural alterations,
such as uniparental disomies (UPD). UPD were recently
detected in various cancers’ and have been proposed to be
an alternative mechanism to down-regulate tumor sup-
pressor genes by duplication of inactivating mutations or
deletions on one allele."”"" Finally, previous studies have
focused on cases not classified by gene expression. As we
recently showed, a considerable number of mature aggres-
sive B-cell lymphomas would have to be re-classified if
molecular signatures are applied.® We, therefore, per-
formed high-resolution single nucleotide polymorphism
(SNP) chip analysis on 39 sporadic BL cases collected by
the “Molecular Mechanisms of Malignant Lymphomas”
(MMML) consortium and defined as “molecular Burkitt’s
lymphoma (mBL)”.

Design and Methods

Collection and extraction of DNA

Biopsies were diagnosed by experienced pathologists from the
MMML consortium according to WHO criteria.' Five cases of BL
were used as “core” BL in the classification based on gene expres-
sion,’ 29 were in the “atypical” group. A tumor cell content of at
least 70% was an inclusion criterion. Whole tissue DNA of tumor
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sections was extracted with the QiaAmp DNA Blood Kit accord-
ing to the manufacturer’s manual (Qiagen, Hilden, Germany).
Central approval for the MMML network was obtained through
the institutional review board of the University of Gottingen
(D403/05).

Single nucleotide polymorphism chips

All 39 samples were analyzed on 250k Sty GeneChips
(Affymetrix, Santa Clara, CA, USA), and 30 of these with enough
material were additionally hybridized to Nsp-chips for a combined
resolution of approximately 500k SNP. Each 250k GeneChip was
prepared and hybridized according to the Affymetrix manual. The
GeneChips were scanned by a GeneChip scanner 3000 with G7
update (Affymetrix). The sample files were genotyped with the
BRLMM-algorithm (see below). The SNP-chip files have been sub-
mitted to the GEO database under accession number GSE21597.

Genotyping and copy number analysis

The BRLMM algorithm" was applied with default parameters
(score threshold=0.5, prior size=10000 and DM threshold=0.17) to
genotype mBL and 63 non-mBL tumor samples (unpublished data)
using 39 Hapmap samples provided by Affymetrix
(http://wowsw.affymetrix.com/support/technical/sample_data/500k_data.a
ffx) as a reference. The reference set was complemented by 20 lab-
oratory-specific reference samples (11 female, 9 male) for the Sty
array and 10 (6 female, 4 male) for the Nsp array. We supplement-
ed the Hapmap samples with laboratory-specific samples because
the Copy Number Analyzer for GeneChips (CNAG) software
selects the reference samples that minimize the signal variance, so
that a larger collection of references results in a lower "noise", and
the laboratory-specific references should better eliminate a labora-
tory-specific signature. Median call rates of the mBL tumor sam-
ples were 96.23% and 98.96% for Sty- and Nsp-arrays, respective-
ly (range, 90.44-98.63% and 90.26-99.65%).

Copy number analysis was performed using the CNAG pro-
gram v2.0,” employing the same reference samples as for geno-
typing. CNAG was configured to select an optimal gender-specific
reference set individually for each array." This resulted in selection
of 97.6% of the laboratory-specific references for Sty-arrays and
81.6% for Nsp-arrays. The lower proportion for Nsp possibly
reflects the lower number of references for the Nsp-samples, giv-
ing the software less variance in references to choose from. For
samples with Sty and Nsp arrays available, data from both chips
were combined. Segmentation of raw copy number data was per-
formed using the hidden Markov model (HMM) approach provid-
ed by CNAG.

HMM parameters were adjusted individually for each array to
adapt the segmentation to differences in hybridization quality and
tumor cell content of the analyzed samples. Starting with default
parameters, the mean levels of HMM states were adjusted to opti-
mize the segmentation results, i.e. to avoid missing clearly aber-
rant regions, as well as to prevent frequent successive alternation
between neighboring HMM states.

With regard to outliers and technical artifacts, HMM segments
were considered as copy number aberration only if they consisted
of at least five consecutive imbalanced SNP. A preliminary analysis
with a more stringent limit of ten consecutive SNP resulted in the
identification of the same 33 recurrent regions, and only in small
shifts in the borders of six of these regions (see Genomic
Identification of Significant Targets in Cancer [GISTIC] analysis),
due to exclusion of one imbalanced case for each of these six
regions. This shows the robustness of the approach. High level
amplifications were defined as aberrations with an HMM copy
number of at least five, homozygous deletions as aberrations with
a copy number of zero.
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For the chromosome X in males (except for pseudo-autosomal
region 1), interpretation of log: ratios had to be adjusted with
respect to the gender-specific (single copy) reference. Therefore,
segments with an estimated HMM copy number of one to three
copies were assumed to be normal (copy number n=1). Segments
with an estimated copy number of at least four were selected as
copy number gains and segments with an estimated copy number
of zero as losses.

Loss of heterozygosity and uniparental disomy analysis

An HMM-based method" implemented in the dChip pro-
gram'>'® (Build date: Apr 11, 2007) was used to infer regions with
loss of heterozygosity (LOH). The “HMM considering haplotype”
(LD-HMM)"* method was selected for the LOH calculations to
account for linkage disequilibrium-induced SNP dependencies.
The LOH call threshold was set at 0.99, applying an empirical hap-
lotype correction.”* Thus, putative LOH regions were excluded if
there was 95% concordance of the homozygous genotypes of the
candidate LOH region with respective regions of more than 5% of
the reference samples. For samples for which both Sty and Nsp
arrays were available, the combined Sty/Nsp set of 39 Affymetrix
Hapmap samples was used as the normal reference set. The com-
plete set of Sty reference arrays was selected as the reference for
tumor samples without Nsp array data.

LOH regions were called UPD if no copy number aberrations
were present in the region. In LOH regions partially affected by
copy number aberrations, subregions without copy number aber-
rations were classified as UPD if they comprised 50 or more neigh-
boring SNP.

Test for recurrence using Genomic Identification
of Significant Targets in Cancer

For each imbalance detected by CNAG, the mean log: ratio
was determined. For gains and losses, the segment level was set
to 0.1 and -0.1 if the mean log: ratio was less than 0.1 or greater
than -0.1, respectively. The segment level of balanced regions was
set to 0. Using these segment values we selected recurrent gains
and losses using GISTIC with standard parameters and thresh-
olds.” Regions with known copy number polymorphisms were
filtered by GISTIC using the Database of Genomic Variants
(Version: June 2008)." Each recurrent aberration identified by GIS-
TIC was represented by a region with the highest G-score (peak
region) and a robustified wide peak region."” If the majority of the
markers showed a concordant copy number status for the peak or
the wide peak region, the respective region in each of the affected
cases was classified as present.

Correlation of copy number and gene expression

We compared the mRNA expression level of genes within a
recurrent region detected by GISTIC between cases with aberrant
and balanced genomic status using Student’s t-test, employing
Hg17 (NCBI Build 35) for annotation, considering only regions
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with more than two contributing samples. Gene expression pro-
files of BL have been published.? Due to the small sample size we
combined gains and high level amplifications. Adjustment for mul-
tiple testing within each recurrent region was performed with the
step-down minP method implemented in the R-package multtest'’
using a family wise error rate of 5%.”

RNA extraction, reverse transcription and real-time
polymerase chain reaction quantification of micro-RNA

RNA extraction, reverse transcription and real-time polymerase
chain reaction (PCR) quantification were performed as described
previously.” Briefly, the RecoverAll kit (Ambion, Austin, Texas,
USA) was used for RNA-extraction from four 20 pm sections of
formalin-fixed, paraffin-embedded tissues. The TagMan® univer-
sal PCR master mix, No AmpErase® UNG-kit and the TagMan®
microRNA (miRNA) reverse transcription kit from Applied
Biosystems (Foster City, California, USA) were used for cDNA
synthesis and quantitative PCR. The reactions were performed in
a 384-well format for 377 different miRNA (U6 in quadruplicate
and miR16 in quintuplicate). The profiles were measured on the
LightCycler® 480 instrument (Roche, Basel, Switzerland). To nor-
malize the obtained raw CT values, we shifted the values of each
sample such that the means of the probes of U6 and miR-16 were
constant across all samples. That constant was chosen to be the
mean of the means of U6 and miR-16.

Results

We generated 250k Sty SNP chips from 39 mature,
aggressive B-cell lymphomas that had an mBL index =0.95
according to gene expression. For 30 of the tumors addi-
tional 250k Nsp chips were generated for a combined
interrogation of 500k SNE, employing a resolution not pre-
viously attained for BL. Thirty-five of 38 evaluated tumors
had an IG-MYC translocation detectable by fluorescence
in situ hybridization (FISH).*” Histological diagnoses by
experienced pathologists did not always agree with the
gene expression signature of mBL, with the series encom-
passing 27 BL, 6 centroblastic diffuse large B-cell lym-
phomas (DLBCL), one follicular lymphoma grade 3b, and
5 unclassifiable lymphomas. Twenty-four patients were
16 years or younger at the time of diagnosis.

As signals from single SNP probes are rather noisy, we
only considered aberrations detected by at least five con-
secutive SNP for copy number analysis, resulting in a
median detection window size of 33.8 kb and 16.6 kb for
250k and 500k arrays, respectively. Overall, the analysis
detected 484 gains, 388 losses and 518 UPD before filter-
ing for known copy number variations, combining the
datasets from both arrays. Filtering left 308 gains and 220
losses that had less than 50% marker overlap with anno-

Table 1. Overview of the aberrations found in 39 cases of BL, after filtering for copy number polymorphisms.

9 BL (Sty chips, 250k) 30 BL (Sty+Nsp chips, 500k) All 39 BL
Mean Median Total Mean Median Median size (bp)
Copy number changes 93 10.3 6 435 14.5 8.5 523,233
- Gains 63 7 3 245 8.2 4 362,547
- Losses 30 3.3 3 190 6.3 25 1041,924
Uniparental disomies 58 6.4 4 460 15.3 14.5 770,662

A region was defined as aberrant if the HMM assigned a concordant copy number other than two to at least five consecutive SNPFiltering for copy number polymorphisms was
done using the Database of Genomic Variants (Version: June 2008).” As no corresponding germline DNA was available, UPD were detected by a statistical approach. The smallest

detected aberration was a gain of 886 bases.
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tated copy number polymorphisms (Table 1, Figure 1). Of
these, 32 were high level amplifications and 6 were
homozygous deletions (Online Supplementary Tables S1 and
S2). Concerning the size of the copy number changes, the
smallest aberrant region was 886 bases long and the medi-
an size was 522,475 bases (Table 1). The fraction of SNP
detected in the normal copy number state of two was cal-
culated to be more than 99% for 15 of the 39 tumors, and
more than 95% for an additional 14 samples.

After filtering, data processing and testing for recurrent
events, we detected 13 gains and 16 losses passing the sig-
nificance threshold given by GISTIC (Tables 2 and 3;
Ounline Supplementary Figure S1; complete annotation of
genes in Online Supplementary Tables S3 and S4). It was not
possible to calculate recurrence for UPD, as the tumors
had too few overlapping UPD to reach a meaningful
threshold. Regions with at least a few overlapping broad
UPD encompass major parts of both arms of chromo-
somes 1 and 17, and the chromosomal arms 6p and 13q
(Figure 1). The highest recurrence in gains (peak limit
region aberrant in =7 cases) was detected for 1¢25.1,
1q31.3, 3q27.2, 6q15, 11q24.3, and 13q31.3 (Table 2). The
most frequent regions for losses of genetic material (peak
limit region aberrant in =6 cases) were 3q13.13, 17p13.1,
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19q13.42 and Xp22.33 (Table 3). A recent conventional
CGH study which also employed a molecular definition
of BL,% also described gains on 1q, 8q24-ter and 13q31-q32,
and a recurrent loss on 17p (Tables 2 and 3).

Some regions contained genes with already known rel-
evance for BL or cancer in general. For example, the gains
at 3q27.3 (7 cases) always involved BCL6. Although a
deregulation by translocation for this oncogene was
described for large B-cell lymphomas,” none of the affect-
ed BL samples showed a translocation detectable by FISH.?
Increased expression of BCLé was seen in affected cases
(Figure 2B). Thus, BCL6 might be up-regulated solely by
genomic gains in BL. Deleted regions involving or near
previously known tumor suppressors were 9p21.3 (in only
2 cases) and 17p13.1, as these regions harbor CDKN2B
and TP53, respectively, two well described tumor suppres-
sor genes in BL.*** While the recurrent loss on 9p21.3 nar-
rowed exactly down to the CDKN2B gene, the target in
the region 17p13.1 is unclear: four cases had lost one copy
of the entire arm of chromosome 17, thereby deleting a
copy of TP53. We also detected a partial UPD overlapping
with the entire chromosomal region in three further cases.
However, three additional cases had smaller heterozygous
deletions, approximately 2 Mb away from the TP53 gene,

Figure 1. Proportion of gains,
losses and UPD along chro-
mosomes. y-axis: proportion
of cases with the respective
aberration, to the left copy
number, to the right partial
UPD; green: gains; red: loss-
es; blue: UPD; dotted vertical
lines depict centromeres.
SNP that mapped to regions
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Table 2. Recurrent gains in 39 BL as defined by GISTIC.

excluded (see Design and
Methods section).

Cytoband g-value* Wide peak? Peak limit? N. N. Selected
wide peak  peak limit genes®

1g25.1 6.38E-06 chr1:166 155 454-171 863 618 chr1:171 851 737-171 863 618 10 10 FASLG

1g31.3 7.93E-06 chr1:195 253 751-195 672 280 chr1:195 369 624-195 638 957 12 13 PTPRC

39273 0.058 chr3:188 956 472-189 175 357 chr3:189 056 204-189 167 011 6 7 BCL6

6q15 0.095 chr6:91 249 512-91 370 379 chr6:91 269 731-91 295 723 6 7 MAP3K7

Tp12.2 0.12 chr7:49 995 112-50 127 527 chr7:49 995 112-50 127 527 6 6 IKZF1

Tq34 0.11 chr7:141 162 879-142 244 396 chr7:141 162 879-142 244 396 6 6

8q24.13 0.16 chr8:121 784 261-129 821 355 chr8:126 106 216-126 249 512 4 5 myc

119233 0.11 chr11:115 828 212-118 580 638 chr11:117 008 605-118 321 365 3 3

119243 0.012 chr11:127 825 348-127 931 093 chr11:127 825 348-127 919 072 9 9 ETSI

12q15 0.0051 chr12:61 724 591-82 263 925 chr12:67 278 531-68 393 145 3 4

12q24.33 0.19 chr12:128 465 362-132 449 811 chr12:131 860 026-132 008 369 2 3

13¢31.3 1.16E-05 chr13:90 362 259-90 843 579 chr13:90 766 137-90 811 413 7 7 hsa-mir-17-92

18q21.2 7.75E-05 chr18:49 301 605-55 260 237 chr18:49 999 396-53 164 071 2 3 POLI

'significance as reported by GISTIC; *for the meaning of different regions see the Design and Methods section; *for a complete list of all annotated genes see Online

Supplementary Table S3.
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each including STXS, USP43 and WDR16 as the only
annotated genes. In our gene expression data, only STXS
is represented on the chip and is significantly down-regu-
lated in cases with deletion (Figure 2A). Deletions involv-
ing 13q14.3 and/or 13q34 were recently observed by FISH
in over 40% of childhood BL.” We, however, detected a
recurrent loss centered at 13g32 only in 3/39 (7.7 %) cases.

Concerning MYC, we detected a recurrent gain in five
cases at 8g24.13, the location of this gene. Notably, the
expression of MYC is not significantly different between
cases with the respective gain and cases with an /G-MYC
translocation, which is known to cause strong MYC over-
expression (Figure 2A). It is interesting that three out of 39
BL cases had no detectable MYC translocation in FISH,**
although this does not exclude cryptic insertions of MYC
into an /G locus or vice versa. Nevertheless, they were
scored as mBL by gene expression.” Two of these are
among the cases with MYC gain.

The gain in 1g31.3, found in 13 cases, contained the
gene PTPRC, a regulator of B-cell receptor and cytokine
signaling,” and two annotated miRNA genes (hsa-mir-
181b-1 and -2183). The high recurrence of this gain hints at
its importance for the tumor. Because the gene expression
data showed no significant up-regulation of PTPRC in
affected cases, and the gains often involved not the com-
plete coding sequence of this gene (data not shown), the
miRNA genes are strong target candidates.

The region gained on 13g31.3 in seven BL harbored the
miRNA-17-92 supercluster. Only one of these cases
showed a high level amplification at this location. For
some of the BL analyzed (but not for the single case show-
ing the amplification), miRNA expression profiles for their
mature forms were recorded. The miRNA contained in
the supercluster were consistently expressed at higher lev-
els in cases with the respective gain (Online Supplementary
Table S5), though this failed to be statistically significant
after correcting for multiple testing. Three cases harbored

Table 3. Recurrent losses in 39 cases of BL as defined by GISTIC.
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losses at 1p36.12 (and 4 further cases had large UPD
involving the same region) which contained the gene
E2F2, a transcription factor that binds to the promoter of
the miRNA-17-92 cluster.

Three BL showed a high level amplification of 18¢21.2.
Remarkably, these three are first, third and seventh in a
ranked list of all 39 BL ordered according to the proportion
of aberrant SNP (Figure 3). The gene expression data for
this region (Online Supplementary Figure S2) show that the
POLI gene was significantly up-regulated, as were three
other genes with unclear relevance.

Using expression data available for all BL,® we compared
the expression of genes in a recurrent region in cases with
an aberration detected by SNP-chip to cases without the
respective aberration, to pinpoint gene dosage effects of
possible oncogenes or tumor suppressors, if present. Some
exemplary regions are shown in Figure 2. We detected a
clear concordant effect of copy number on expression
strength: a gain led preferentially to a stronger expression
of a large fraction of gained genes, with 12 of 108 probe-
sets even reaching statistical significance after correction
for multiple testing (and not a single significantly down-
regulated gene). Likewise, the majority of genes in a het-
erozygously lost region displayed reduced expression (52
of 258 probe-sets significant after correction, 2 inversely
correlated). A statistically significant positive correlation
was, therefore, detected in 17.5% of all probe-sets in aber-
rant regions.

Discussion

Cytogenetic and low-resolution CGH studies previously
performed on BL revealed few consistent genomic imbal-
ances.”” A caveat regarding these studies was the defini-
tion of BL on non-molecular grounds. These earlier studies
probably included unrecognized molecular DLBCL in their

oband  ¢-value' Wide peak’ Peak limit* N. N. Selected
wide peak peak limit genes®

1p36.12 0.014 chr1:23,457,835-23,714,048 chr1:23,535,005-23,673,234 2 3 E2F2
3pld.2 0.15 chr3:60,396,160-60,637,030 chr3:60,452,472-60,580,245 3 3 FHIT
3q13.13 0.085 chr3:110,456,383-110,657,226 chr3:110,482,177-110,611,242 6 6 DPPA4, DPPA2
4p15.32 0.15 chr4:17,969,802-29,966,659 chr4:17,991,350-18 456,461 3 4
6q14.3 0.094 chr6:76,830,186-107,898,353 chr6:78,151,877-96,248,104 4 4
7q11.22 0.15 chr7:66,573,850-67,281,794 chr7:66,810,706-67,240,659 5 5
10p11.21 0.22 chr10:36,983,732-37,133,784 ¢hr10:37,007,511-37,106,346 3 3
11q24.3 0.085 chr11:122,263,650-134,452,384 chr11:126,328,752-132,876,984 4 5
13¢33.2 0.20 chr13:96,008,275-114,142,980 chr13:96,913,194-112,193,013 3 3
17p13.1 0.014 chr17:9,125,548-9,654,733 chr17:9,125,548-9,598,824 7 7 STX8, TP53
18p11.23 0.094 chr18:7,079,886-7,359,571 chr18:7,125,227-7,359,571 5 5
18q22.3 0.15 chr18:55,355,976-76,117,153 chr18:55,355,976-76,117,153 3 3
19q13.42 0.085 chr19:58,746,599-59,029,391 ¢hr19:58,758,793-58,990,786 6 6
20q13.2 0.094 chr20:49,856,082-50,168,587 ¢hr20:49,958,057-50,144,808 5 5
Xp22.33 0.0042 chrX:1-1,499,465 chrX:1-1,499,465 8 8
Xpl1.3 0.085 chrX:1-154,824,264 chrX:46,975,370-47,150,005 3 3

'significance as reported by GISTIC; *for the meaning of different regions, see the Design and Methods section; *for a complete list of all annotated genes, see Online

Supplementary Table S4.
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on histological diagnosis.” In our approach using molecu- £

larly-defined BL, we detected several of the aberrations € 5 H !
that this paper found in only one to three histological BL. ) ‘n‘n‘n‘ﬂ‘ﬂlﬂ‘ﬂ‘n‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘”IH‘H‘”‘H‘HIH‘H‘ IR

In most case we were able (due to the larger number of

samples and the higher resolution) to set narrower limits 1357 9 11131517 1921 23 2527 29 31 33 35 37 39
to these regions and confirm them as recurrent events in Index position
primary tumors.
o : fa 822
Concerning our published CGH analysis,*” at a resolu- Figure 3. Correlation of the recurrent gain at chrd8 involving POLI

tion of 3000 probes of a subset of cases also analyzed here,  and the proportion of aberrant SNP. In a list ordered according to the

we note a good concordance between the two methods. proportion of aberrant SNP detected (y-axis), the three cases with an
A d. the SNP Ivsis d d Itiple additi 1 amplification involving POLI rank first, third and seventh (columns
s expecteq, the analysis detected multiple additiona marked in black; P=0.0035 in a Mann-Whitney U test).
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Figure 2. Gene dosage effects for genes in recurrently imbalanced regions. Green: reduced expression; red: stronger expression. The differ-
ence in expression between aberrant and non-aberrant cases is displayed on a log-scale. For all regions analyzed except 7934, a clear gene
dosage effect is visible. Gene names marked in red indicate significant differences in expression after correcting for multiple testing. (A)
whole recurrently aberrant regions depicted; (B) single genes of interest out of a larger region.
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olution constraints, but the raw signal values for the CGH
clones gave the correct tendency for each aberration
detected with SNP chips (unpublished data). Regarding high
level amplifications and homozygous losses before filter-
ing for copy number polymorphisms, 22 concordant
regions were identified with both platforms. Importantly,
however, 35 additional imbalances were only seen with
the SNP-chips as the respective regions were not covered
on the CGH-array, and in ten further instances of imbal-
ances detected by SNP-chip analysis, CGH signals classi-
fied the regions as balanced.

Regarding the extent of genomic lesions in BL as com-
pared to in other aggressive lymphomas, e.g. DLBCL, a
direct comparison is currently not possible due to lack of
data  from identical high-resolution platforms.
Nevertheless, an array CGH study with 3000 BAC clones
detected a median of 8.5 copy number changes for
DLBCL,? while, with our higher resolutions, the median
copy number changes we found in BL was 6.0 with the
250k array and 8.5 with the 500k array (Table 1). Recent
publications on comparable high-resolution SNP-chip
approaches to mostly solid tumors reported more copy
number changes per case (e.g. a median of 12 losses and
12 gains; although it should be considered that a change of
>0.1 copies was already considered aberrant in one of
these studies).”®” We, therefore, confirm that BL has a rel-
atively stable genome.

An important advantage of the SNP chip method com-
pared to CGH is the former’s ability to detect UPD, with
the caveat that the exact detection of these disomies was
hampered in this study as no normal tissue DNA was
available for germline comparison. Nevertheless, using a
statistical approach, robust pinpointing of larger stretches
of LOH is possible. In several tumors, UPD are an addi-
tional way to inactivate tumor suppressor genes,”'’ beside
deletions and/or mutations. Thus, the integration of losses
and UPD may allow better detection of new candidate
tumor suppressors. Instead, we show that in BL there is
little congruency between UPD and regions recurrently
lost and no strong accumulation of UPD in specific regions
(Figure 1), suggesting that UPD do not play a major role in
BL. Nevertheless, the few UPD detected here may still be
of functional relevance in the affected cases, as exempli-
fied for TP53, for which cases with UPD were found
besides cases with deletions.

Regarding the differential gene expression analysis, we
detected a clear gene dosage effect for the recurrently
aberrant regions (Figure 2). The only exception to this is
the recurrent gain at 7q34, which includes nine genes, but
not a single one with a strong dosage effect. This under-
lines that the gain and loss of genetic material can be a
potent mechanism to deregulate certain genes in BL, in
line with the results of a recent study comparing array-
CGH data with gene expression levels.®

Four cases that had a large deletion on chromosome 17
retained only a single copy of TP53, encoding the p53
tumor suppressor. These four cases showed lower TP53
gene expression compared with the 35 unaffected cases
(Figure 2B). Notably, three further cases showed UPD
encompassing 7P53, suggesting that these events may also
have pathogenic relevance. Indeed, two of two cases with
deletion and two of two cases with UPD that were
sequenced had inactivating TP53 mutations (data not
shown). The exact target of smaller deletions on chromo-
some 17 in three additional cases was more ambiguous:
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the deletion was approximately 2 Mb away from TP53
and included three annotated genes (STXS, USP43 and
WDR16) that were heterozygously lost in each affected
case. However, as none of these genes shows differential
expression between B-cell subsets (data not shown) and
there were no previous reports about their functional
involvement in cancer, the relevance of these deletions is
unclear.

A significantly up-regulated gene in the amplified region
18q21.2, POLI, codes for DNA polymerase iota which
plays a role as an error-prone polymerase in somatic
hypermutation® and some forms of DNA-damage
response.”’ We speculate that over-expression of POLI
shifted the balance of DNA repair to more error-prone
repairs, which would explain the high percentage of aber-
rant SNP detected in these cases (Figure 3). The expression
of POLI was also positively correlated with an increased
percentage of aberrant SNP in our set of tumors
(Spearman’s correlation=0.3; P=0.06). In breast cancer
cells, a higher amount of POLI leads to a higher mutation
burden,” suggesting a similar role in BL. A recent study in
mice actually implicated POLI as a new oncogene in a col-
orectal cancer model.”

We found that the M YC gene was not only targeted by
translocation events, but additionally by gains of genetic
material in five of the 39 BL. The gene expression was not
different in mBL with the gain, but this is explainable by
the fact that, to become a mBL, the up-regulation of MYC
is obligatory.® Indeed, we identified three mBL that had no
detectable MYC translocation by FISH (* and data not
shown), but two of these showed a low-level gain includ-
ing MYC. These cases were nevertheless classified as
mBL.* The most frequent deregulation of MYC is, there-
fore, by translocation to another enhancer (such as /G-
MYC), but we suppose that the gain of genomic material
is an additional mechanism by which the expression of
this important driver gene can be increased. The three BL
with a gain in addition to the translocation probably rep-
resent unbalanced translocation events. For the remaining
single case without translocation and without gain, the
mechanism of deregulation is unknown. TP53 deletions,
which may hamper the pro-apoptotic activity of MYC,
were not specifically associated with BL harboring MYC
gains.

Regarding MYC deregulation, gain of the miRNA-17-92
supercluster in seven cases is of note, because it is directly
transactivated by MYC.* This cluster has been shown to
be frequently over-expressed in several types of solid
tumors® and also B-cell malignancies,” in which it is also
often amplified.” Over-expression of this cluster in mouse
lymphocytes reduces apoptosis and accelerates lym-
phoma development,* defining it as an oncogene.”** In
addition, it was recently shown that these miRNA act syn-
ergistically with MYC in the development of aggressive
cancer.” They provide the tumor with a means to counter-
act activation-induced apoptosis caused by the high MYC
expression in BL, by reducing the expression of tumor sup-
pressor genes, for example TGFBR2,*® BIM and PTEN.***

The miRNA-17-92 supercluster is controlled by an
autoregulatory loop with E2F-family proteins.” In our
series, three cases had heterozygous deletion of the E2F2
gene on 1p36.12, which directly binds the promoter of the
supercluster and increases its expression. The three cases
with E2F2 deletion had lower mRNA levels of the gene
than the other cases, although the difference did not reach
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statistical significance (data not shown). The deletion of a
positive regulator of the miRNA cluster at first seems coun-
terintuitive, as other cases in our series had specifically
amplified miRNA polycistron, hence over-expression of
these miRNA seems to be advantageous for the clone.
Besides regulating the miRNA cluster 17-92, E2F2 thus pre-
sumably has other effects on the tumor which promoted
the deletion. It was indeed shown that E2F2 functions as a
tumor suppressor in B cells of mice over-expressing MYC.*
The mice with heterozygous E2F2 deletions show strong
haploinsufficiency, resulting in accelerated development of
MYC-driven B-cell lymphomas, suggesting that also in
human BL, the heterozygous losses could have a strong
effect on the tumor clone. We thus propose that the het-
erozygous deletion of E2F2 would indeed tend to decrease
the expression of the miRNA-17-92 supercluster, but this
potential down-regulation is overcompensated in BL by the
high amount of MYC, a direct transactivator of this super-
cluster. In this way, the tumor can benefit from the remain-
ing effects of reduced E2F2 discussed above. In our dataset,

gain of the miRNA-cluster 17-92 and deletion of E2F2 were
mutually exclusive, hinting at the possibility that either
event is sufficient to deregulate the feedback loop.

In summary, we refined the make-up of known genetic
events in BL with high resolution, and found many new
recurrent aberrations, whose functional significance is
mostly unclear so far. Some of these newly identified
lesions affect the MYC pathway, suggesting that this path-
way is deregulated in a more complex fashion than previ-
ously thought.

Authorship and Disclosures

The information provided by the authors about contributions
from persons listed as authors and in acknowledgments is avail-
able with the full text of this paper at www.haematologica.org.

Financial and other disclosures provided by the authors using the
ICMJE (www.icmje.org) Uniform Format for Disclosure of
Competing Interests are also available at www.haematologica.org.

2009;15(3):120-8.

testing, R package version 1.12.0,

10. Nielaender I, Martin-Subero JI, Wagner F http://CRAN.R-project.org/package=
References Martinez-Climent JA, Siebert R. Partial uni- multtest; 2006.
parental disomy: a recurrent genetic mech- ~ 20. Kreuz M, Rosolowski M, Berger H,
. Swerdlow SH. WHO Classification of anism alternative to chromosomal deletion Schwaenen C, Wessendorf S, Loeffler M, et
Tumours of Haematopoietic and Lymphoid in malignant lymphoma. Leukemia. al. Development and implementation of an
Tissues (4th ed). Lyon: International 2006;20(5):904-5. analysis tool for array-based comparative
Agency for Research on Cancer; 2008. 11. Vater I, Wagner F, Kreuz M, Berger H, genomic hybridization. Methods Inf Med.
. Hecht JL, Aster JC. Molecular biology of Martin-Subero JI, Pott C, et al. GeneChip 2007;46(5):608-13.
Burkitt's lymphoma. ] Clin Oncol. analyses point to novel pathogenetic mech- ~ 21. Roehle A, Hoefig KP, Repsilber D, Thorns
2000;18(21):3707-21. anisms in mantle cell lymphoma. Br | C, Ziepert M, Wesche KO, et al. MicroRNA
. Boerma EG, Siebert R, Kluin PM, Baudis M. Haematol. 2009;144(3):317-31. signatures characterize diffuse large B-cell
Translocations involving 8¢24 in Burkitt ~ 12. Affymetrix. BRLMM: an improved geno- lymphomas and follicular lymphomas. Br |
lymphoma and other malignant lym- type calling method for the genechip Haematol. 2008;142(5):732-44.
phomas: a historical review of cytogenetics human mapping 500k array set. 22. Klapper W, Szczepanowski M, Burkhardt
in the light of todays knowledge. Affymetrix, Inc White Paper; 2006. B, Berger H, Rosolowski M, Bentink S, et al.
Leukemia. 2009;23(2):225-34. 13. Nannya Y, Sanada M, Nakazaki K, Hosoya Molecular profiling of pediatric mature B-
. Barth TE Muller S, Pawlita M, Siebert R, N, Wang L, Hangaishi A, et al. A robust cell lymphoma treated in population-based
Rother JU, Mechtersheimer G, et al. algorithm for copy number detection using prospective clinical trials. Blood. 2008;112
Homogeneous immunophenotype and high-density  oligonucleotide  single (4):1374-81.
paucity of secondary genomic aberrations nucleotide polymorphism genotyping  23. Sanchez-Beato M, Sanchez-Aguilera A,
are distinctive features of endemic but not arrays. Cancer Res. 2005;65(14):6071-9. Piris MA. Cell cycle deregulation in B-cell
of sporadic Burkitt's lymphoma and diffuse ~ 14. Beroukhim R, Lin M, Park Y, Hao K, Zhao lymphomas. Blood. 2003;101(4):1220-35.
large B-cell lymphoma with MYC X, Garraway LA, et al. Inferring loss-of-  24. Gaidano G, Ballerini P, Gong JZ, Inghirami
rearrangement. ] Pathol. 2004;203(4):940-5. heterozygosity from unpaired tumors G, Neri A, Newcomb EW, et al. p53 muta-
. Garcia JL, Hernandez JM, Gutierrez NC, using high-density oligonucleotide SNP tions in human lymphoid malignancies:
Flores T, Gonzalez D, Calasanz MJ, et al. arrays. PLoS Comput Biol. 2006;2(5):e41. association with Burkitt lymphoma and
Abnormalities on 1q and 7q are associated ~ 15. Lin M, Wei L], Sellers WR, Lieberfarb M, chronic lymphocytic leukemia. Proc Natl
with poor outcome in sporadic Burkitt's Wong WH, Li C. dChipSNP: significance Acad Sci USA. 1991;88(12):5413-7.
lymphoma. A cytogenetic and comparative curve and clustering of SNP-array-based  25. Klangby U, Okan I, Magnusson KP,
genomic hybridization study. Leukemia. loss-of-heterozygosity data. Wendland M, Lind P, Wiman KG.
2003;17(10):2016-24. Bioinformatics. 2004;20(8):1233-40. p16/INK4a and p15/INK4b gene methyla-
. Salaverria I, Zettl A, Bea S, Hartmann EM,  16. Zhao X, Li C, Paez JG, Chin K, Janne PA, tion and absence of p16/INK4a mRNA and
Dave SS, Wright GW, et al. Chromosomal Chen TH, et al. An integrated view of copy protein expression in Burkitt's lymphoma.
alterations detected by comparative genom- number and allelic alterations in the cancer Blood. 1998;91(5):1680-7.
ic hybridization in subgroups of gene genome using single nucleotide polymor-  26. Nelson M, Perkins SL, Dave BJ, Coccia PF,
expression-defined Burkitt's lymphoma. phism arrays. Cancer Res. 2004;64(9):3060- Bridge JA, Lyden ER, et al. An increased fre-
Haematologica. 2008;93(9):1327-34. 71. quency of 13q deletions detected by fluo-
. Toujani S, Dessen P, Ithzar N, Danglot G, 17 Beroukhim R, Getz G, Nghiemphu L, rescence in situ hybridization and its
Richon C, Vassetzky Y, et al. High resolu- Barretina ], Hsueh T, Linhart D, et al. impact on survival in children and adoles-
tion genome-wide analysis of chromoso- Assessing the significance of chromosomal cents with Burkitt lymphoma: results from
mal alterations in Burkitt's lymphoma. aberrations in cancer: methodology and the Children's Oncology Group study
PLoS One. 2009;4(9):e7089. application to glioma. Proc Natl Acad Sci CCG-5961. Br ] Haematol. 2010;148(4):
. Hummel M, Bentink S, Berger H, Klapper USA. 2007;104(50):20007-12. 600-10.
W, Wessendorf S, Barth T, et al. A biologic ~ 18. lafrate AJ, Feuk L, Rivera MN, Listewnik  27. Hermiston ML, Zikherman ], Zhu JW.
definition of Burkitt's lymphoma from ML, Donahoe PK, Qi Y, et al. Detection of CD45, CD148, and Lyp/Pep: critical phos-
transcriptional and genomic profiling. N large-scale variation in the human genome. phatases regulating Src family kinase sig-
Engl ] Med. 2006;354(23):2419-30. Nat Genet. 2004;36(9):949-51. naling networks in immune cells. Immunol
. Tuna M, Knuutila S, Mills GB. Uniparental ~ 19. Pollard KS, Ge Y, Dudoit S. Multtest: Rev. 2009;228(1):288-311.
disomy in cancer. Trends Mol Med. Resampling-based multiple hypothesis ~ 28. Beroukhim R, Mermel CH, Porter D, Wei

G, Raychaudhuri S, Donovan J, et al. The

haematologica | 2010; 95(12)




Genomic aberrations in Burkitt’s lymphoma -

29.

30.
31.

32.

haematologica | 2010; 95(12) -

landscape of somatic copy-number alter-
ation across human cancers. Nature.
2010;463(7283):899-905.

Leary RJ, Lin JC, Cummins J, Boca S, Wood
LD, Parsons DW, et al. Integrated analysis
of homozygous deletions, focal amplifica-
tions, and sequence alterations in breast
and colorectal cancers. Proc Natl Acad Sci
USA. 2008;105(42):16224-9.

Faili A, Aoufouchi S, Flatter E, Gueranger
Q, Reynaud CA, Weill JC. Induction of
somatic hypermutation in immunoglobulin
genes is dependent on DNA polymerase
iota. Nature. 2002;419(6910):944-7.

Petta TB, Nakajima S, Zlatanou A, Despras
E, Couve-Privat S, Ishchenko A, et al.
Human DNA polymerase iota protects cells
against oxidative stress. EMBO ]. 2008;27
(21):2883-95.

Yang J, Chen Z, Liu Y, Hickey R], Malkas
LH. Altered DNA polymerase iota expres-
sion in breast cancer cells leads to a reduc-
tion in DNA replication fidelity and a high-
er rate of mutagenesis. Cancer Res.
2004;64(16):5597-607 .

33.

34.

35.

36.

37.

Starr TK, Allaei R, Silverstein KA, Staggs
RA, Sarver AL, Bergemann TL, et al. A
transposon-based genetic screen in mice
identifies genes altered in colorectal cancer.
Science. 2009;323(5922):1747-50.
O'Donnell KA, Wentzel EA, Zeller KI,
Dang CV, Mendell JT. c-Myc-regulated
microRNAs modulate E2F1 expression.
Nature. 2005;435(7043):839-43.

Volinia S, Calin GA, Liu CG, Ambs S,
Cimmino A, Petrocca E et al. A microRNA
expression signature of human solid
tumors defines cancer gene targets. Proc
Natl Acad Sci USA. 2006;103(7):2257-61.
Tagawa H, Karube K, Tsuzuki S, Ohshima
K, Seto M. Synergistic action of the
microRNA-17 polycistron and Myc in
aggressive cancer development. Cancer Sci.
2007;98(9):1482-90.

Ota A, Tagawa H, Karnan S, Tsuzuki S,
Karpas A, Kira S, et al. Identification and
characterization of a novel gene, C130rf25,
as a target for 13q31-g32 amplification in
malignant lymphoma. Cancer Res. 2004;64
(9):3087-95.

38.

39.

40.

41.

42.

Xiao C, Srinivasan L, Calado DP, Patterson
HC, Zhang B, Wang ], et al
Lymphoproliferative disease and autoim-
munity in mice with increased miR-17-92
expression in lymphocytes. Nat Immunol.
2008;9(4):405-14.

He L, Thomson JM, Hemann MT,
Hernando-Monge E, Mu D, Goodson S, et
al. A microRNA polycistron as a potential
human oncogene. Nature. 2005;435(7043):
828-33.

Mu P, Han YC, Betel D, Yao E, Squatrito M,
Ogrodowski P, et al. Genetic dissection of
the miR-17~92 cluster of microRNAs in
Myc-induced B-cell lymphomas. Genes
Dev. 2009;23(24):2806-11.

Sylvestre Y, De Guire V, Querido E,
Mukhopadhyay UK, Bourdeau V, Major E et
al. An E2F/miR-20a autoregulatory feedback
loop. ] Biol Chem. 2007;282(4):2135-43.
Rempel RE, Mori S, Gasparetto M, Glozak
MA, Andrechek ER; Adler SB, et al. A role
for E2F activities in determining the fate of
Myc-induced lymphomagenesis. PLoS
Genet. 2009;5(9):e1000640.





