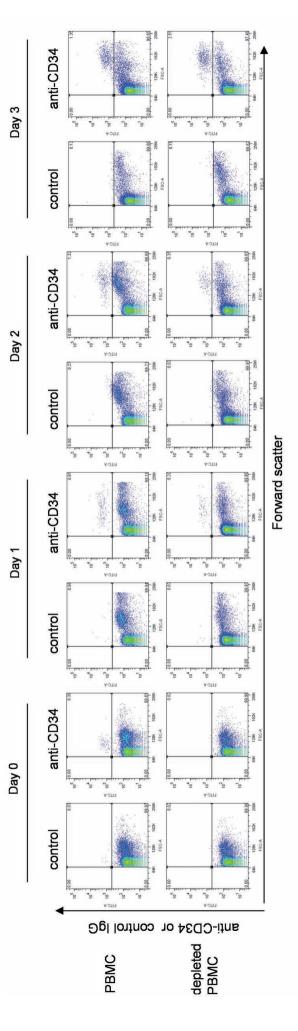
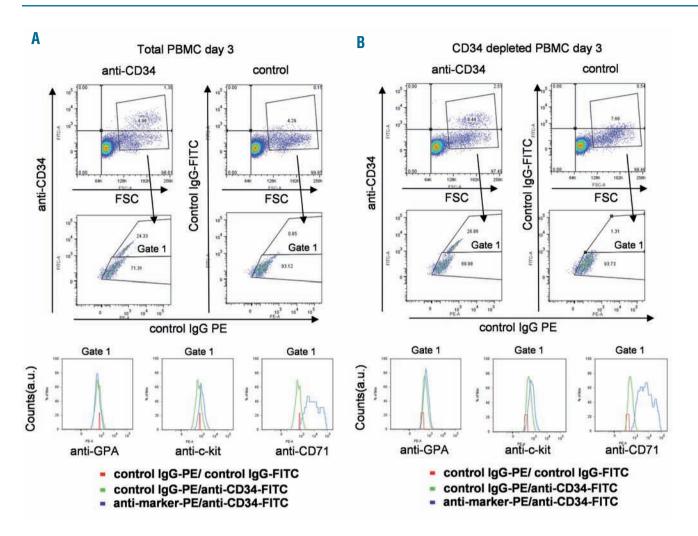
The majority of the *in vitro* erythroid expansion potential resides in CD34⁻ cells, outweighing the contribution of CD34⁺ cells and significantly increasing the erythroblast yield from peripheral blood samples

Emile van den Akker,^{1,2} Timothy J. Satchwell,¹ Stephanie Pellegrin,^{1,2} Geoff Daniels,² and Ashley M. Toye¹

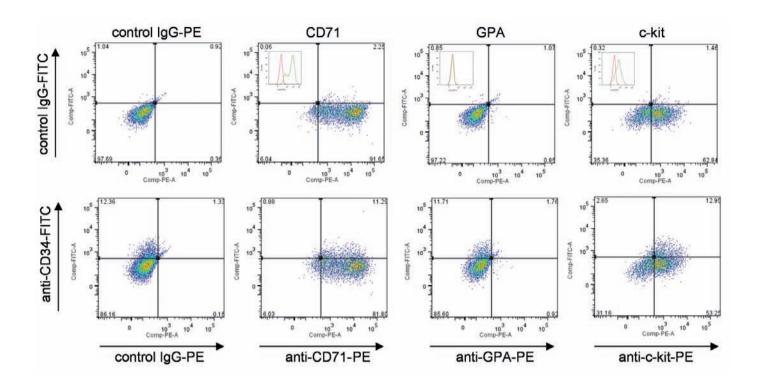

¹School of Biochemistry, Medical Science Building, University Walk, Bristol, UK, and ²Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, UK

Citation: van den Akker E, Satchwell TJ, Pellegrin S, Daniels G, and Toye AM. The majority of the in vitro erythroid expansion potential resides in CD34⁻ cells, outweighing the contribution of CD34⁺ cells and significantly increasing the erythroblast yield from peripheral blood samples. Haematologica 2010;95(9): 1594-1598. doi:10.3324/haematol.2009.019828

Online Supplementary Table S1. Erythroid colony formation capacity during the first four days of *in vitro* culture. Erythroid colony formation at day 0, 2 and 4 of *in vitro* expansion. 0.5 million total PBMC or PBMC depleted for CD34⁺ cells were plated into semi-solid methylcellulose medium at isolation from peripheral blood (day 0) or after two and four days of *in vitro* culture, as described in *Design and Methods*. To allow the specific outgrowth of erythroid colonies, the methylcellulose media (Stem Cell Technologies) was supplemented with SCF (100ng/mL), Epo (2U/mL) and IL-3 (ng/mL). Colony forming units (CFUs) of erythroid nature were counted after 14 days and are presented as an average. The number of independent experiments are indicated (SD= standard deviation between experiments).


	Total PBMCs		CD34- PBMCs	
Days of <i>in vitr</i> o culture	Erythroid CFU's	SD/N exp	Erythroid CFU's	SD/N exp
0	91	15 N=4	4	4 n=4
2	229	9 N=4	131	NA n=2
4	2039	263 N=4	613	NA n=2

Input = 0.5x10⁶ cells/experiment



Online Supplementary Figure S2. CD34⁺ cells at day 3 of expansion are c-kit⁺/CD71⁺/GPA. CD34⁺ cells at day 3 of expansion are c-kit⁺/CD71⁺/GPA. PBMC depleted for CD34⁺ cells (lower panels) or not (upper panels) were expanded as indicated in *Design and Methods*. The dot plots delineate the specific population used in the histograms below namely the CD34⁺ (FITC⁺) population with medium to high forward scatter (the low forward scatter population are lymphocytes). The histograms show the expression of GPA (BRIC256-PE), c-kit (CD117-PE) and CD71 (CD71-PE) within the CD34⁺/FSC_{med/high} population at day 3 in total PBMC (A) and CD34 depleted PBMC (B). Note that in both (A) and (B), the CD34⁺/FSC_{high} population is c-kit⁺/CD71⁺ but GPA negative and thus are termed as common megakaryocytic/erythroid progenitors as the earlier common lymphoid progenitor is CD71 low to negative but CD34⁺/c-kit⁺/GPA. The figures here are representative of four independent experiments.

Online Supplementary Figure S3. Cells after the second Percoll on day 5 are c-kit⁺/CD71⁺/GPA/CD34⁻ and thus identified as early erythroid progenitors. Cells after the second Percoll on day 5 are c-kit⁺/CD71⁺/GPA/CD34⁻ and thus identified as erythroid progenitors. The transition of the common megakaryocyte/erythroid progenitor to the erythroid progenitor is accompanied with the loss of CD34 and a further increase in CD71 and c-kit expression. The dot plots show control-FITC (upper panel) and anti-CD34-FITC (lower panel) staining against PE-positiveness (the specific antibodies conjugated to PE staining are indicated below the dot plot). The insets in the dot plots in the upper panel show the respective PE-histograms of the dot plots in order to compare with the histograms at day 3 in Online Supplementary Figure S2. Note the increase in CD71 and c-kit expression compared to day 3 and the absence of GPA. Furthermore, a low expression of CD34 remains on approximately 13% of the cells. Combined, the data show that 87% of the cells are CD34/GPA/c-kit⁺/CD71^{high}. The figures are representative of three independent experiments.

