Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia

Ryoko Okamoto, ${ }^{1}$ Seishi Ogawa, ${ }^{2}$ Daniel Nowak, ${ }^{1}$ Norihiko Kawamata, ${ }^{1}$ Tadayuki Akagi, ${ }^{1,3}$ Motohiro Kato, ${ }^{2}$ Masashi Sanada, ${ }^{2}$ Tamara Weiss, ${ }^{4}$ Claudia Haferlach, ${ }^{4}$ Martin Dugas, ${ }^{5}$ Christian Ruckert, ${ }^{5}$ Torsten Haferlach, ${ }^{4}$ and H. Phillip Koeffler ${ }^{1,6}$
${ }^{1}$ Division of Hematology and Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA; ${ }^{2}$ Cancer Genomics Project, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; ${ }^{3}$ Department of Stem Cell Biology, Graduate School of Medical Science, Kanazawa University ${ }^{4}$ MLL Munich Leukemia Laboratory, Munich, Germany; ${ }^{5}$ Department of Medical Informatics and Biomathematics, University of Münster, Münster, Germany; ${ }^{6}$ Cancer Science Institute of Singapore, National University of Singapore, Singapore

Citation: Okamoto R, Ogawa S, Nowak D, Kawamata N, Akagi T, Kato M, Sanada M, Weiss T, Haferlach C, Dugas M, Ruckert C, Haferlach T, and Koeffler HP. Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia. Haematologica 2010;95(9):1481-1488. doi:10.3324/haematol.2009.011114

Online Supplementary Data

Design and Methods

Sample information of high-density single nucleotide poly-morphism-array analysis

High quality genomic DNA (gDNA) was isolated from adult ALL cells and subjected to GeneChip Human mapping processing protocols of either XbaI $50 \mathrm{~K}(\mathrm{~N}=34$; B-1, $-2,-6,-10,-11,-12,-13,-16,-17$, $-19,-28,-31,-33,-36,-37,-41,-43,-45,-48,-49,-50,-51,-52,-53,-54$, $-55,-56,-57,-58,-59,-60,-61, \mathrm{~T}-2,-13)$, Hind $50 \mathrm{~K}(\mathrm{~N}=6$; B-3, $-15,-18$, $-22,-29,-44$) or NspI 250 K arrays ($\mathrm{N}=35$; B-4, $-14,-5,-7,-8,-9,-20$, $21,-23,-24,-25,-26,-27,-30,-32,-34,-35,-38,-39,-40,-42,-46,-47$, T-1 ,-3 ,-4 ,-5 ,-6 , $-7,-8,-9,-10,-11,-12,-14)(A f f y m e t r i x, ~ S a n t a ~ C l a r a, ~$ CA, USA) as described previously. ${ }^{1,2}$

Quantitative real-time polymerase chain reaction

Real-time reverse transcriptase polymerase chain reaction (RT-PCR) was performed by using ThermoScript RT-PCR Systems (Invitrogen) according to the manufacturer's protocol. Gene-dosage of target regions in samples at diagnosis and the expression level of FOXO3 in cell line samples were determined by quantitative real-time PCR (iCycler, Bio-Rad, Hercules, CA, USA) using SYBR Green. A region on chromosome 2 p21 was used as a control to determine the relative gene-dosage because it is a region that rarely has copy number changes in malignancy. 3 -actin was used as a control to determine the relative amount. The delta threshold cycle value ($\Delta \mathrm{Ct}$) was calculated from the given Ct value by the formula $\Delta \mathrm{Ct}=$ (Ct sample -Ct control). The fold change was calculated as $2^{-1 \mathrm{ACt}}$. The primers are listed in Online Supplementary Table S15.

Validation of copy-number neutral loss-of-heterozygosity and genomic copy number change

For confirmation of genomic copy number changes, quantitative real-time PCR was performed on the gDNA from the hybridized ALL samples and either DNA from matched normal gDNA from case \# B14 or normal control gDNA. The detection of CNN-LOH was validat-
ed by PCR of genomic DNA and subsequent direct sequencing of SNP in a region of CNN-LOH in an ALL sample versus the corresponding matched normal sample (Online Supplementary Figure S2A-E).

Determination of single nucleotide polymorphism sequences in copy-number neutral loss-of-heterozygosity region

To validate CNN-LOH, two independent SNP sequences (rs10481545 and rs10810528) at chromosome 9p in B-ALL case \#B-14 were determined. The genomic region of each SNP site was amplified by genomic PCR using specific primers, and PCR products were purified and sequenced. The primers are listed in Online Supplementary Table S15.

Methylation analysis of the FOX03 gene

Genomic DNA was isolated and modified by sodium bisulfate using the EZ DNA Methylation Kit (Zymo Research, Orange, CA. USA). The CpG island (-614 to -122) of the FOXO3 gene was amplified from the bisulfate-modified genomic DNA with specific primers which are listed in Online Supplementary Table S15. For the PCR amplification, a total volume of $10 \mu \mathrm{~L}$ was used, containing modified genomic DNA, $0.5 \mu \mathrm{M}$ of each primer, $5.0 \mu \mathrm{~L}$ of FailSafe PCR PreMix E (Epicentre Biotechnologies, Madison, WI) and 1.0 U platinum Taq (Invitrogen). PCR products were subcloned into pCR 2.1 vector (Invitrogen) and sequenced.

Determination of PAX5 fusion sequences

To validate a PAX5 fusion product, primers for PAX5 and ETV6 covering the corresponding break point in B-ALL case \# B-20 were used as previously specified. ${ }^{3}$ The primers are listed in Online Supplementary Table S15. The fused region was amplified by PCR from cDNA, and PCR products were purified and directly sequenced.

Statistical analysis

For specific copy number changes, either Wilcoxon's rank-sum test or the Mann-Whitney U-test was used to assess differences between adult and pediatric ALL subgroups. Differences in the occurrence of
genetic abnormalities between different subgroups of adult and pediatric ALL samples were analyzed using Pearsons's χ^{2} test.

Results

Validation of the single nucleotide polymorphism-array analysis

Typical results of SNP-array analysis are displayed in Online Supplementary Figure S2. Case \#B-14 (B-ALL) had 9p CNN-LOH (9pterminal to 9p13.2, 37.5 Mb) with two homozygously deleted regions, $9 p 23$ (containing the $P T P R D$ gene) and 9p21.3 (containing the CDKN2A and CDKN2B genes) (Online Supplementary Figure S2A); case \#B-26 (B-ALL) had amplification of 2p16.1-p15 (3.5 Mb) containing the REL and BCL11A genes (Online Supplementary Figure SD[i]); and case \#T-7 (T-ALL) had amplification of $19 \mathrm{q} 12-\mathrm{q} 13.2(9.6 \mathrm{Mb})$ containing the AKT2 gene (Online Supplementary Figure S2E[i]).

We validated these SNP-array results using several techniques. To verify 9 p CNN-LOH in case \#B-14, we first determined loss of heterozygosity (LOH) by nucleotide sequencing of two SNP sites (rs10481545 and rs10810528). As shown in Online Supplementary Figure S2B, these two SNP sites showed homozygosity in the sample taken at diagnosis as opposed to heterozygosity of the SNP in the matched gDNA sample obtained at the time of remission, showing that ALL case \#B-14 had LOH in that region. To exclude the possibility of a heterozygous deletion, gene-dosage of the region was measured by quantitative genomic real-time PCR (QG RT-PCR). The level of genedosage of the region in ALL case \#B-14 was comparable to that of the normal matched control sample, indicating that the 9 p region of case \#B-14 represented CNN-LOH with a copy number of $n=2$ throughout (Online Supplementary Figure S2C[i]).

Next, we validated copy number changes. QG RT-PCR revealed that levels of gene-dosage of the PTPRD and the CDKN2A genes were significantly decreased in case \#B-14 compared to in the normal matched control sample (Online Supplementary Figure SC [ii] and [iii], respectively), consistent with the SNP array data (Online Supplementary Figure $S 1 A[i, i i]$. Similar results were obtained using specific primers for CDKN2A and CDKN2B (Online Supplementary Figure S7). Levels of gene-dosage of REL, BCL11A (case \#B-26), and AKT2 (case \#T-7) genes were approximately $5-, 11$-, and 8 -fold higher, respectively, in the ALL samples than in the normal controls (Online Supplementary Figures S2D[ii],(iii] and $1 E[i i i)$ comparable to the SNP array data (Online Supplementary Figures S2D[i] and 2E[i]). Taken together, these results demonstrated that SNP-array analysis accurately reflected the genomic abnormalities.

Amplifications and homozygous deletions in adult acute lymphoblastic leukemia samples

As shown in Online Supplementary Figures S2D and 2E, a few samples had chromosomal amplifications (copy number change ≥ 5). As described above, case \#B-26 (B-ALL) had amplification of 2p16.1-p15 (3.5 Mb , containing the REL and BCL11A genes) and \#T-7 (T-ALL) had an amplification of $19 \mathrm{q} 12-\mathrm{q} 13.2$ (9.6 Mb , containing the AKT2 gene). Homozygous deletions of genomic regions of adult ALL are listed in Online Supplementary Table S3. Ten cases (15\%) had homozygous deletion of 9p21.3 including CDKN2A/B. Homozygous deletions at $1 q 23.2-q 23.3,9 p 23,10 p 11.21,10 q 24.1,13 q 14.2,13 q 14.11$ and $18 p 11.21$ were identified as unique alterations, each occurring in only one sample. These deleted regions contain several genes whose loss may contribute to leukemogenesis.

Chromosomal regions of copy-number neutral loss-of-heterozygosity in adult acute lymphoblastic leukemia samples

Unlike karyotypic or comparative genomic hybridization studies, SNP-array analysis can detect CNN-LOH. Disease-related CNN-LOH usually represents chromosomal recombination often involving the telomeres. As shown in Online Supplementary Table S7, whole or partial chromosome CNN-LOH were observed in 17 samples (26%); three of these cases (18%) had 9 p CNN-LOH. Seventeen regions of CNN-LOH were detected, each involving only one sample (Online Supplementary Table S7). Of note, case \#B-26 had three CNN-LOH regions, and case \#T-1 had two CNN-LOH regions.

Discussion

Apart from the analysis of our adult ALL sample set, we also compared the results from this analysis with a previously published data set of 399 pediatric ALL to discover possible differences in the types and frequencies of genomic lesions detected with SNP arrays between these two age groups. Due to the hybridization of the samples to two different types of SNP arrays with different technical specifications, we had to find a smallest common denominator threshold for the lesions detected in order to make the data comparable. Since the median inter-marker distance of interrogated SNP on the smaller 50K arrays is approximately 47 kb and we require at least three consecutive SNP to be involved in a lesion, we set the size threshold of genomic lesions to be 141 kb . This meant that all lesions detected with the 250 K arrays that were smaller than 141 kb were eliminated from all analyses comparing the adult and pediatric data set.

References

1. O'Neil J, Look AT. Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene. 2007;26(47):6838-49.
2. Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, et al. A robust algorithm for copy number detection using highdensity oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 2005;65(14):6071-9.
3. Kawamata N, Ogawa S, Zimmermann M,

Kato M, Sanada M, Hemminki K, et al. Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood. 2008;111(2):776-84.

Online Supplementary Figure S2. Validation of SNP-array results. (A) SNP-array results from chromosome 9 of B-ALL case \#B-14. Red dots are SNP sites as probes and indicate total copy number (CN). The blue line is an average copy number and shows gene dosage. Level 2 indicates normal copy number ($2 N$). Green bars are heterozygous (hetero) SNP calls. Red and green lines show allele-specific copy number (AsCN). If the green line is lower than baseline, the region is deleted; if the red line is higher than baseline, the region is duplicated or amplified. The chromosome has two homozygous deletions (Del) and CNN-LOH which is represented by one allele being deleted and the other allele duplicated. (i) B-ALL case \#B-14; (ii), matched control sample. Del = deletion, CNN-LOH = copy number neutral loss of heterozygosity. (B) Nucleotide sequencing of SNP sites. SNP sequences at rs10481545 (chr9:14,386,583-14,387,083) and rs10810528 (chr9:16,038,594-16,039,094) were determined in the CNN-LOH region of case \#B-14 and the matched normal control sample from the same patient's bone marrow during remission. The matched control sample had a heterozygous SNP (rs10481545; T/C, rs10810528; A/G); while the ALL sample had a homozygous SNP (rs10481545; C/C, rs10810528; G/G). (C) Relative gene-dosage of the deleted and the CNN-LOH regions in the B-ALL case \#B-14. The gene-dosage of deleted (site "a" for PTPRD exon B4 [ii] and "c" for CDKN2A/B [iii]) and CNN-LOH ([i] site "b" for rs10481545) were measured by quantitative genomic real-time PCR. Levels of gene-dosage were determined as a ratio between target gene and the reference genomic DNA, 2p21. The levels of ALL genomic DNA in the deleted regions were lower than levels in normal genomic DNA; whereas in the CNN-LOH region, DNA levels were comparable to those of normal genomic DNA. (D) (i) SNP-array result of chromosome 2 of B-ALL case \#B-26. Relative gene-dosage in the REL (ii) and BCL11A (iii) gene regions was amplified in this case compared to normal DNA. (E) (i) SNP-array result of chromosome 19 of T-ALL case \#T-7. (ii) Relative gene-dosage of the AKT2 gene region which was amplified in this case compared to normal DNA.

Online Supplementary Figure S3. Distribution of abnormalities in adult ALL samples sorted by chromosome. Numbers of abnormalities per sample are displayed by chromosome. The most common abnormalities were found on chromosome 9. Black = B-cell type ALL; gray = T-cell type ALL.

Chr. 6

Online Supplementary Figure S4. Deletions on chromosome $6 q$ in a collection of pediatric ALL samples. The anonymous sample number of pediatric ALL (Ref. 7) is shown on the left. Blue line $=$ average copy number / shows gene dosage; dotted line $=$ the region of chromosome $6 q 15$ and $6 q 21$ which was commonly deleted in adult ALL in Figure 2A.
(i)

Online Supplementary Figure S5. Identification of an unbalanced translocation in adult ALL by SNParray analysis. (A) Adult ALL case \#B-5 had a duplication of a region of the $A B L$ gene and the $B C R$ gene. The karyotype of the case was t(1;10)(p11;q23),t(4;13)(q31;q34),i(8)(q10), $\mathrm{i}(8)(\mathrm{q} 10), \mathrm{t}(9 ; 22)(\mathrm{q} 34 ; q 11)$, $+\operatorname{der}(22) t(9 ; 22)(q 34 ; q 11)$ (Online Supplementary Table S2). (B) (i) Adult ALL case \#B-20 had a duplication of the amino end of the PAX5 gene and the carboxyl end of the ETV6 gene. The karyotype of the case was +8 , $\operatorname{der}(9) r(9) \operatorname{ins}(9 ; 12)$, $\operatorname{der}(12) \mathrm{t}(9 ; 12)(? ; q 15) \quad$ (Online Supplementary Table S2). (ii) The nucleotide sequence shows a fusion of the PAX5 and ETV6 gene in adult ALL case \# B-20. Total CN = total copy number; Hetero SNP call = heterozygous SNP calls; AsCN = allelespecific copy number.

B
(ii)

Online Supplementary Figure S6. Comparison of frequency of CNN-LOH between adult and childhood ALL. The number of CNN-LOH on each chromosome for the adult and childhood ALL samples is expressed as a percent of the entire adult and pediatric ALL population, respectively. The most frequent common CNNLOH was chromosome $9 p$ which includes whole chromosome CNN-LOH, in both pediatric (12\%) and adult (5\%) samples ($P=0.07$). Whole $=$ whole chromosome; $P=$ pediatric ALL samples; A $=$ adult ALL samples.

Online Supplementary Figure S7 Summary of abnormalities on chromosome 9 in adult ALL. Thirty-four cases of 75 adult ALL showed abnormalities on chromosome 9. Orange, B-cell type ALL; light green, T-cell type ALL; white, null-ALL, (cases \#B-60, -61). Copy number of the CDKN2A/B region is presented below the sample number. Gray = normal copy number; red $=$ duplication; blue $=$ het erozygous deletion; dark blue = homozygous deletion; pink = CNNLOH; p = short arm; q = long arm; $\mathrm{CN}=$ copy number; $0=0 \mathrm{~N}$ (homozygous deletion); $1=1 \mathrm{~N}$ (heterozygous deletion); $2=2 \mathrm{~N}$ (normal); $3 / 4=3$ or 4 N (duplication); CNN-LOH = copy number neutral loss of heterozygosity. The dotted line indicates the region containing focal CDKN2A/B deletions. The order of groups is arranged based on status of CDKN2A/B deletions

A

B
(i)

Online Supplementary Figure S8 Validation of SNP-array results using specific primers for CDKN2A and B. (A) SNP-array results from chromosome 9 of ALL cases \#B-13, -14, -21 and -52. The balck arrow shows the status of copy number of the CDKN2A/B region; Case \#B-13, -14, -21 showed homozygous deletions, case \#B-52 showed a normal copy number of two in this region. (B) Relative gene-dosages of CDKN2A/B regions in ALL case \#B-13, -14, -21 and 52. The gene-dosage of the deleted region (CDKN2A exon 1 beta [i] and CDKN2B exon 2 [ii]) were measured by quantitative genomic real-time PCR. Levels of gene-dosage were determined as a ratio between target gene and a reference region of genomic DNA on chromosome 2p21 known to exhibit a copy number state of $\mathrm{N}=2$

Online Supplementary Table S1. Clinical features of the 75 adult ALL cases and the 399 pediatric ALL cases.

		Adult			Pediatric	
	Cases	N.	$\%$	N.	$\%$	
Sex	Male	45	60	230	57	
	Female	30	40	169	43	
	B-cell	58	77	339	85	
	T-cell	14	19	49	12	
	Null or mix	3	4	0	0	
	Unknown	0	0	11	3	
	Below 100×109/L	41	55	362	91	
	Over 100×109/L	10	13	37	9	
	Unknown	23	31	0	0	
	Yes	14	19	6	2	
	No	59	79	379	95	
	Unknown	2	3	14	3	
MLL/AF4						
	Yes	4	5	0	0	
	No	61	92	0	0	
	Unknown	10	15	399	100	

The information for the 399 pediatric samples are from Kawamata et al. ${ }^{3}$
Age of patients at diagnosis: 19-86 years; WBC indicates white blood cell count ($\times 10^{9} / \mathrm{L}$) in peripheral blood at diagnosis; BCR-ABL and MLL-AF4 fusions were examined by karyotyping, RT-PCR and/or FISH analysis.

Online Supplementary Table S2. Karyotype of adult ALL samples.

Case \#	Karyotype	Ethnic group	Abnormalit ies in SNP-array
B-1	46,XY,t(9;22)(q34;q11) [18], 46,XY [2]	A	+
B-2	-	A	+
B-3	46,XY,t(9;22)(q34;q11) [2], 46,XY [18]	A	-
B-4	45,XX,-7,t(9;22)(q34;q11) [17], 46, XX [3]	C	+
B-5	$\begin{aligned} & 48, \mathrm{XX}, \mathrm{t}(1 ; 10)(\mathrm{p} 11 ; q 23), \mathrm{t}(4 ; 13)(\mathrm{q} 31 ; \mathrm{q} 34), \mathrm{i}(8)(\mathrm{q} 10),+\mathrm{i}(8)(\mathrm{q} 10 \\ &), \mathrm{t}(9 ; 22)(\mathrm{q} 34 ; \mathrm{q} 11),+\operatorname{der}(22) \mathrm{t}(9 ; 22)(\mathrm{q} 34 ; \mathrm{q} 11)[11], 46, \mathrm{XX}[8] \end{aligned}$	C	+
B-6	45,XX, del(3)(p11),-7,t(9;22)(q34;q11) [17], 46, XX [17]	A	+
B-7	```46,XX,der(6)t(6;9)(q25;p13),der(9)t(6;9)(q25;p13)t(9;22)(q 34;q11),der(22)t(9;22)(q34;q11) [13], 47,XX,der(6)t(6;9)(q25;p13),der(9)t(6;9)(q25;p13)t(9;22)(q 34;q11),der(22)t(9;22)(q34;q11),+der(22)t(9;22)(q34;q11) [2]```	C	+
B-8	46, XY, t(9;22)(q34;q11) [9], 46, XY [6]	C	+
B-9	$\begin{aligned} & 46, X X, \operatorname{der}(9 ; 12)(q 10 ; q 10) t(9 ; 22)(q 34 ; q 11), \operatorname{der}(22) t(9 ; 22)(q \\ & 34 ; q 11)[2], 46, X X[22] \end{aligned}$	C	+
B-10	46, XY	A	+
B-11	```46,XX,i(8)(q10),\operatorname{der(9)t(8;9)(q11;p22)t(9;22)(q34;q11),i(17)} (q10),der(22)t(9;22) [3], 46,XX,t(3;11)(p25;q13),i(8)(q10),der(9)t(8;9)(q11;p22)t(9;2 2)(q34;q11),i(17)(q10),der(22)t(9;22) (cell:7)[1], 46,XX-8,der(9)t(8;9)(q11;p22)t(9;22)(q34;q11),+der(9)t(8;9)t(9;22),i(17)(q10),der(22)t(9;22) (cell:5) [3], 46,XX [13]```	A	+
B-12	46XY [20]	A	+
B-13	46,XY [19], 47,XY,+mar [1]	A	+
B-14	45,X,-Y,t(2;14;8)(p11;q32;q11) [9], 46,XY [12]	C	+
B-15	-	A	+
B-16	45,XY,9p-,q+,-11,14p+,22q+[8],46XY [2]	A	+
B-17	```46,XX,add(4)(q31),add(6)(q15),del(6)(q11),dic(9;22)(p22;p 11),add(16)(p13),-17,+2mar,inc [1], 46,XX,add(4)(q31),add(6)(q15),del(6)(q11),dic(9;22)(p22;p 11),add(16)(p13)[1], 46XY[18]```	A	+
B-18	46,XY,i(9)(q10) [5], 46XY[11]	A	+

B-19	46, XX [5]	A	+
B-20	47,XY, +8, der(9)r(9)ins(9;12), $\operatorname{der}(12) t(9 ; 12)(? ; q 15)$ [10]	C	+
B-21	46,XY,t(4;11)(q21;q23) [19], 46,XY [1]	C	+
B-22	46,XX,t(4;11)(q21;q23) [2],	A	+
	46, XX, $\mathrm{t}(4 ; 11)(\mathrm{q} 21 ; \mathrm{q} 23), \mathrm{add}(7)(\mathrm{p} 22)$ [1], 45, XX,-15 [1]		
B-23	46,XX,t(4;11)(q21;q23) [17], 46,XX [3]	C	+
B-24	46, XX, t (4;11)(q21;q23) [9], 46, XX [3]	C	-
B-25	48,XY,+5,+10,t(11;14)(24;q32) [5], 46,XY [18]	C	+
B-26	46,XX [10]	C	+
B-27	46,XY [17]	C	+
B-28	46, XX	A	+
B-29	$\mathrm{t}(4 ; 18)(\mathrm{q} 32 ; \mathrm{q} 21)[9], 46, \mathrm{XY}[11]$	A	+
B-30	46, XX [20]	C	+
B-31	46,XY [20]	A	+
B-32	46,Y,t(X;16)(q25;p13) [5], 46,XY [13]	C	+
B-33	46,XY	A	+
B-34	45, X,-Y [30]	C	+
B-35	48,XY,+X,+14 [4], 46, XY [3]	C	+
B-36	46,XY	A	+
B-37	-	A	+
B-38	46,XY [18]	C	+
B-39	46,XY [22]	C	+
B-40	46,XY [20]	C	+
B-41	46, XX	A	+
B-42	-	A	+
B-43	-	A	+
B-44	46, XX , der(6)t(1;6)(q21;q21), add(9)(q22) [4], 46XX[7]	A	+
B-45	-	A	+
B-46	46,XX [20]	C	+
B-47	46,XY [20]	C	+
B-48	46, XX	A	+
B-49	46,XX	A	+
B-50	46,XY	A	-
B-51	46,XY [20]	A	-
B-52	46,XY [20/20]	A	+
B-53	46,XX [19/20]	A	-

B-54		A	+
	Op+,-22,+mar [17/20], 46XY[3/20]		
B-55	46, XY, del(9)(p21)	A	+
B-56	$\begin{aligned} & 47, \mathrm{XX}, \operatorname{der}(9) \operatorname{del}(9)(\mathrm{p} 22) \mathrm{t}(9 ; 22)(\mathrm{q} 34 ; \mathrm{q} 11), \operatorname{der}(22) \mathrm{t}(9 ; 22),+\mathrm{d} \\ & \operatorname{er}(22) \mathrm{t}(9 ; 22)(\operatorname{cell}: 3) \\ & {[7 / 20], 46, \mathrm{XX}, \operatorname{der}(9) \operatorname{del}(9)(\mathrm{p} 22) \mathrm{t}(9 ; 22)(\mathrm{q} 34 ; q 11), \operatorname{der}(22) \mathrm{t}(9 ; 2} \\ & 2) \quad[3 / 20] \quad, 46, \text { idem,-5 [1/20], } 47, \text { idem,t(1;2)(p36;p21)} \\ & {[1 / 20], 47, \text { idem,t(4;7)(q35;q11),t(8;14)(q24;q22)}} \\ & {[1 / 20], 47, \text { idem,add(10)(q22),add(14)(q22) }} \\ & {[1 / 20], 46, \mathrm{XX} \quad[6 / 20]} \end{aligned}$	A	+
B-57	46,XY [10/10]	A	-
B-58	46,XX,t(9;22)(q34;q11)[3/6]	A	$+$
B-59 (Null-1)	46,XX	A	+
B-60 (Null-2)	ND	A	+
B-61(mix)	47, XY, 4p+, t(9; 22)(q34; q11), +21p+	A	+
T-1	46,XY, $\operatorname{der}(18) t(17 ; 18)(q 11 ; p 11)$ [9], 46,XY [6]	C	+
T-2	-	A	+
T-3	46,XY [6]	C	+
T-4	$\begin{aligned} & 46, X Y, \operatorname{del}(6)(q 15), t(7 ; 10)(q 34 ; q 24), \operatorname{del}(9)(p 21)[5], 46, X Y \\ & {[20]} \end{aligned}$	C	+
T-5	47,XY, del(9)(p21p22),+del(17)(p11) [12], 46, XY [6]	C	+
T-6	46,XY,t(3;20),t(6;8), del(14)(q?22) [3], 46,XY [1]	C	+
T-7	$\begin{aligned} & 45, \mathrm{XY},-4, \operatorname{del}(5)(q 13 q 33), \operatorname{der}(5) t(4 ; 5)(q 11 ; p 13), \operatorname{der}(6) t(6 ; 10 \\ &)(q 15 ; p 13), \operatorname{der}(10) t(6 ; 10)(q ? ; p 13), \operatorname{der}(10) t(10 ; 11)(p 13 ; q 14) \\ & , \operatorname{der}(11) t(6 ; 11)(q ? ; q 14), \operatorname{der}(16) t(10 ; 16)(? ; p 13), \operatorname{der}(17) t(9 ; 1 \\ & 7)(? ; p 11), \operatorname{dup}(19)[7], 46, X Y[14] \end{aligned}$	C	+
T-8	48,XX,+13,+13 [12], 46,XX [8]	C	+
T-9	```46,XY,t(2;3)(p12;p25),del(13)(q14q21),inv(14)(p11q31),t(1 4;22)(q31;q11) [7]```	C	+
T-10	46,XY [25]	C	+
T-11	46,XX [6]	C	+
T-12	46,XX [4]	C	+
T-13	46,XY	A	+
T-14	46, XY [25]	C	+

Karyotype of 75 adult ALL samples are listed. Note, N.A., karyotype is not available; A, Asian (Japanese); C, Caucasian (German); +, abnormalities detected; -, abnormalities not
detected.

Online Supplementary Table S3. Chromosomal regions with homozygous deletions in adult ALL samples.

Case \#	Chromosome	Physical localization		Size (Mb)	Gene(s) in the region	9p CNN-LOH
		Proximal	Distal			
B-9	9	20,675,097	22,203,270	1.53	CDKN2, CDKN2B	-
B-13	1	157,283,331	157,465,549	0.18	SLAMF6, CD84, SLAMF1, CD48	+
	9	21,362,123	22,185,820	0.82	CDKN2A, CDKN2B	
B-14	9	9,821,068	9,979,624	0.16	PTPRD	+
	9	21,161,267	22,203,270	1.04	CDKN2A, CDKN2B	
B-15	9	20,801,421	24,224,540	3.42	CDKN2A, CDKN2B	-
B-16	9	21,971,583	22,731,961	0.76	CDKN2A, CDKN2B	-
B-17	9	21,362,123	22,448,191	1.09	CDKN2A, CDKN2B	-
B-21	9	21,775,261	22,043,895	0.27	CDKN2A, CDKN2B	+
B-54	9	21362123	24709895	3.35	CDKN2A, CDKN2B	-
B-25	10	36,742,576	36,963,391	0.22	no gene	-
B-35	10	98,441,682	98,547,438	0.11	PIK3AP1	-
	13	43,750,858	43,903,713	0.15	C13orf21	
T-3	9	21,859,079	21,978,896	0.12	CDKN2A, CDKN2B	-
	9	24,504,390	24,505,111	0.001	no gene	
T-4	9	21,854,535	22,021,005	0.17	CDKN2A, CDKN2B	-
	18	12,769,947	12,853,142	0.08	PTPN2	
T-5	9	21,854,535	21,995,330	0.14	CDKN2A, CDKN2B	-
T-6	13	47,708,790	47,783,811	0.08	ITM2B, RB1	-

Homozygous deleted regions in adult ALL samples are displayed. Of note, eight B-ALL and three T-ALL samples had homozygous deletions of the CDKN2A and CDKN2B genes.
Three of 11 samples (27%) with homozygous deletions of the CDKN2A and CDKN2B genes had 9p CNN-LOH.

Online Supplementary Table S4. Chromosomal regions with heterozygous deletions in adult ALL samples.

$\begin{gathered} \text { Case } \\ \# \end{gathered}$	Chromosome	Physical localization		Size (kb)
		Proximal	Distal	
B-1	2	207,815,051	207,835,859	20.808
B-1	8	60,241,236	60,586,442	345.206
B-1	20	10,375,960	10,399,891	23.931
B-2	8	60,212,394	60,315,650	103.256
B-4	6	135,416,061	135,491,008	74.947
B-4	7	141,322	158,605,053	158463.731
B-4	13	63,132,563	63,271,229	138.666
B-5	7	49,921,199	50,228,460	307.261
B-5	8	180,568	36,086,137	35905.569
B-5	9	28,696,215	29,173,429	477.214
B-5	9	129,725,026	130,700,428	975.402
B-5	13	107,712,675	108,056,227	343.552
B-5	15	23,588,168	23,614,127	25.959
B-5	19	51,484,755	53,451,790	1967.035
B-5	21	34,213,413	34,481,781	268.368
B-5	22	21,043,189	21,860,252	817.063
B-5	22	21,888,534	22,566,087	677.553
B-6	3	135,814	89,708,135	89572.321
B-6	7	11,143,952	54,332,606	43188.654
B-6	7	54,869,406	62,940,814	8071.408
B-6	7	66,800,898	88,353,793	21552.895
B-6	7	89,094,056	152,213,592	63119.536
B-6	19	51,886,094	63,437,743	11551.649
B-7	3	170,773,726	170,848,641	74.915
B-7	9	124,615,546	130,577,960	5962.414
B-7	13	47,895,694	48,070,777	175.083
B-7	22	21,970,272	23,470,307	1500.035
B-8	1	71,863,321	72,199,546	336.225
B-8	1	91,883,441	91,958,069	74.628
B-8	1	195,646,518	195,769,906	123.388
B-8	1	229,202,044	229,387,526	185.482

B-8	2	$159,898,170$	$159,960,416$	62.246
B-8	3	$113,538,401$	$113,673,530$	135.129
B-8	4	$109,414,395$	$109,797,599$	383.204
B-8	6	$28,358,892$	$28,424,457$	65.565
B-8	7	$50,012,062$	$50,101,537$	89.475
B-8	7	$50,198,172$	$50,228,460$	30.288
B-8	9	$21,899,000$	$21,995,330$	96.330
B-8	9	$37,045,109$	$37,106,493$	61.384
B-8	10	$7,355,095$	$7,452,885$	97.790
B-8	13	$47,895,694$	$48,072,129$	176.435
B-8	15	$23,604,165$	$23,625,311$	21.146
B-8	19	$16,931,679$	$17,043,939$	112.260
B-9	1	$77,465,104$	$77,487,725$	22.621
B-9	2	$168,001,355$	$168,005,991$	4.636
B-9	4	$99,864,266$	$99,930,528$	66.262
B-9	4	$182,659,373$	$182,659,523$	0.150
B-9	5	$88,161,609$	$89,251,989$	1090.380
B-9	5	$124,159,516$	$124,597,462$	437.946
B-9	6	$26,220,872$	$26,335,083$	114.211
B-9	8	$60,184,925$	$60,404,370$	219.445
B-9	8	$71,360,722$	$71,468,721$	107.999
B-9	9	30,910	$20,668,602$	20637.692
B-9	9	$22,231,296$	$38,737,064$	16505.768
B-9	9	$77,634,986$	$77,869,156$	234.170
B-9	9	$118,898,901$	$118,984,706$	85.805
B-9	12	50,446	$36,215,633$	36165.187
B-9	12	$45,782,194$	$46,844,331$	1062.137
B-9	13	$79,815,528$	$80,256,687$	441.159
B-9	19	$19,716,893$	$21,547,316$	1830.423
B-10	1	$222,694,353$	$244,505,070$	21810.717
B-10	2	$207,864,043$	$208,124,438$	260.395
B-10	6	$112,276,043$	$155,347,544$	43071.501
B-10	9	239,391	$42,930,351$	42690.960
B-10	13	$47,908,486$	$78,819,049$	30910.563
B-10	17	$68,436,446$	$68,676,913$	240.467
B-11	1	$227,843,862$	$227,850,515$	6.653

B-11	3	60,073,349	60,604,879	531.530
B-11	8	104,014,618	104,922,843	908.225
B-11	9	239,391	38,705,865	38466.474
B-11	11	61,241,557	65,214,745	3973.188
B-11	17	451,209	18,772,157	18320.948
B-12	8	180,568	5,568,296	5387.728
B-12	9	239,391	11,611,204	11371.813
B-12	9	11,980,405	22,923,651	10943.246
B-13	7	108,057,359	158,554,645	50497.286
B-14	1	102,370,195	102,561,809	191.614
B-14	2	224,000,431	224,177,568	177.137
B-14	5	103,733,405	103,785,495	52.090
B-15	9	305,185	20,801,210	20496.025
B-15	9	24,245,420	130,083,358	105837.938
B-15	20	33,372,659	62,376,958	29004.299
B-16	2	8,564,879	8,765,284	200.405
B-16	3	46,977,895	47,303,748	325.853
B-16	3	60,073,349	60,099,620	26.271
B-16	3	113,538,483	113,659,820	121.337
B-16	7	37,719,741	38,028,579	308.838
B-16	9	239,391	21,948,524	21709.133
B-16	9	22,785,727	36,988,416	14202.689
B-16	11	55,248,049	134,082,843	78834.794
B-16*	12	90,671,883	91,035,857*	363.974
B-16	13	106,138,282	106,515,980	377.698
B-16	19	14,603,924	14,801,001	197.077
B-17	6	108,940,080	109,998,869	1058.789
B-17	9	20,115,458	21,204,877	1089.419
B-17	9	22,448,980	24,209,684	1760.704
B-17	9	32,872,662	33,916,496	1043.834
B-17	12	7,272,323	10,756,021	3483.698
B-17	12	11,674,778	12,214,885	540.107
B-17	12	47,543,869	49,380,405	1836.536
B-17	16	3,165,870	4,858,366	1692.496
B-17	17	24,399,965	27,138,320	2738.355
B-18	3	14,547,600	14,547,647	0.047

B-18	9	305,185	42,602,035	42296.850
B-19	4	115,764,934	116,947,077	1182.143
B-19	7	1,307,029	61,522,282	60215.253
B-19	9	21,362,123	27,316,904	5954.781
B-19	11	118,899,695	122,795,061	3895.366
B-19	14	62,410,549	62,863,736	453.187
B-19	18	51,803,567	52,002,040	198.473
B-20	9	30,910	36,989,024	36958.114
B-20	9	38,429,042	38,761,831	332.789
B-20	9	84,969,107	87,137,689	2168.582
B-20	9	116,272,876	119,488,620	3215.744
B-20	12	50,446	11,862,890	11812.444
B-20	12	12,321,303	17,155,604	4834.301
B-20	12	18,108,642	19,428,275	1319.633
B-20	12	19,865,082	23,348,440	3483.358
B-20	12	26,187,859	27,252,626	1064.767
B-20	12	27,938,350	29,096,612	1158.262
B-20	12	32,577,224	33,886,076	1308.852
B-20	12	62,102,441	62,226,007	123.566
B-20	12	74,157,020	74,211,419	54.399
B-20	12	82,027,233	82,091,386	64.153
B-20	12	84,519,381	84,615,646	96.265
B-20	12	87,184,335	89,769,388	2585.053
B-20	12	101,809,017	102,037,277	228.260
B-20	12	128,001,947	128,169,376	167.429
B-21	7	141,322	57,730,637	57589.315
B-21	7	61,547,528	158,605,053	97057.525
B-21	9	22,044,356	22,841,021	796.665
B-21	9	106,062,097	106,175,966	113.869
B-21	10	67,747,770	67,755,493	7.723
B-21	10	67,776,810	67,777,502	0.692
B-21	11	99,017,466	99,017,836	0.370
B-22	7	250,149	57,423,201	57173.052
B-23	6	92,286,311	92,398,633	112.322
B-25	1	66,512,785	66,541,283	28.498
B-25	1	72,724,625	72,782,125	57.500

B-25	1	$155,416,772$	$155,713,348$	296.576
B-25	2	$136,726,957$	$136,864,961$	138.004
B-25	2	$242,636,531$	$242,712,341$	75.810
B-25	3	$11,524,596$	$11,681,197$	156.601
B-25	3	$60,041,884$	$60,393,761$	351.877
B-25	3	$66,566,151$	$66,616,274$	50.123
B-25	4	$86,859,192$	$86,879,164$	19.972
B-25	5	$142,616,649$	$142,708,224$	91.575
B-25	5	$150,137,617$	$150,297,043$	159.426
B-25	5	$157,485,991$	$158,451,346$	965.355
B-25	6	$156,698,540$	$156,967,182$	268.642
B-25	7	$47,324,508$	$47,445,704$	121.196
B-25	7	$49,987,339$	$50,101,537$	114.198
B-25	7	$50,198,172$	$50,228,460$	30.288
B-25	9	$36,905,243$	$37,265,174$	359.931
B-25	11	$2,992,900$	$3,024,682$	31.782
B-25	11	$33,138,854$	$33,332,671$	193.817
B-25	11	$36,582,372$	$36,595,940$	13.568
B-25*	12	$90,784,636$	$91,053,257^{*}$	268.621
B-25	12	$107,444,583$	$110,980,362$	3535.779
B-25	13	$43,727,300$	$43,903,713$	176.413
B-25	13	$66,711,848$	$66,896,963$	185.115
B-25	14	$64,612,382$	$64,632,059$	19.677
B-25	18	$51,409,607$	$51,895,543$	485.936
B-25	19	$19,716,893$	$19,831,113$	114.220
B-26	6	$20,236,536$	$21,015,860$	779.324
B-26	6	$84,007,856$	$94,822,978$	10815.122
B-26	6	$102,071,607$	$120,194,720$	18123.113
B-26	6	$120,260,146$	$120,714,956$	454.810
B-26	6	$120,846,098$	$125,616,395$	4770.297
B-26	6	$127,030,775$	$145,513,203$	18482.428
B-26	6	$152,485,274$	$157,222,155$	4736.881
B-26	13	$57,945,845$	$58,080,227$	134.382
B-26	15	$18,427,103$	$100,192,115$	81765.012
B-26	17	18,901	$18,857,962$	18839.061
B-26	18	$59,157,272$	$76,115,554$	16958.282

B-27	12	$11,703,867$	$11,806,014$	102.147
B-28	3	$113,613,279$	$113,659,820$	46.541
B-28	4	$15,668,755$	$15,669,100$	0.345
B-28	4	$109,373,737$	$109,423,970$	50.233
B-28	17	451,209	$19,615,696$	19164.487
B-28	20	$10,375,960$	$10,399,891$	23.931
B-29	2	$24,312,037$	$24,796,536$	484.499
B-29	3	$165,852,108$	$165,861,395$	9.287
B-29	4	$62,026,967$	$62,629,702$	602.735
B-29	8	$114,148,247$	$114,629,553$	481.306
B-29	10	284,953	$135,211,857$	134926.904
B-29	11	$38,307,265$	$38,912,117$	604.852
B-29	12	$98,097,757$	$132,294,671$	34196.914
B-29	13	$18,425,192$	$70,742,696$	52317.504
B-29	17	450,509	$20,683,212$	20232.703
B-29	19	$6,189,414$	$24,194,887$	18005.473
B-30	3	$60,064,354$	$60,976,902$	912.548
B-30	3	$113,525,909$	$113,595,833$	69.924
B-30	3	$113,646,191$	$113,673,070$	26.879
B-30	9	$29,307,860$	$29,638,921$	331.061
B-30	9	$37,131,508$	$37,382,087$	250.579
B-30	11	$57,758,417$	$57,813,314$	54.897
B-30	13	$47,895,694$	$48,063,054$	167.360
B-31	4	$70,511,010$	$191,091,333$	120580.323
B-31	9	$70,403,235$	$73,112,263$	2709.028
B-31	9	$97,459,759$	$98,425,723$	965.964
B-31	17	451,209	$18,772,157$	18320.948
B-32	3	$69,584,543$	$69,654,266$	69.723
B-32	5	$158,386,361$	$158,451,346$	64.985
B-32	9	$24,504,390$	$24,505,111$	0.721
B-32	11	$76,733,974$	$76,871,480$	137.506
B-33	1	$72,525,150$	$72,769,476$	244.326
B-33*	12	$90,972,766$	$91,035,857$	63.091
B-33	15	$55,118,321$	$55,253,067$	134.746
B-34	18	$67,590,053$	$67,592,593$	2.540
B-35	1	$59,083,267$	$59,184,074$	100.807

B-35	3	$113,528,954$	$113,673,530$	144.576
B-35	10	$97,458,579$	$98,407,920$	949.341
B-35	10	$98,609,853$	$99,302,528$	692.675
B-35	11	$36,582,372$	$36,595,940$	13.568
B-35*	12	$90,784,636$	$91,053,257^{*}$	268.621
B-35	13	$19,257,699$	$19,307,931$	50.232
B-35	13	$43,727,300$	$43,742,835$	15.535
B-35	13	$68,428,545$	$114,092,980$	45664.435
B-35	14	$19,336,854$	$19,502,884$	166.030
B-35	14	$105,716,891$	$106,176,088$	459.197
B-36	6	$161,781,319$	$162,010,871$	229.552
B-38*	12	$90,784,636$	$91,053,257^{*}$	268.621
B-38	15	$91,947,628$	$91,959,244$	11.616
B-39	14	$86,533,539$	$86,656,689$	123.150
B-40	5	$113,355,383$	$113,360,599$	5.216
B-40	8	$15,995,420$	$16,065,839$	70.419
B-41	4	$26,115,291$	$26,115,900$	0.609
B-41	5	$128,593,792$	$129,475,223$	881.431
B-41	5	$150,312,614$	$150,568,806$	256.192
B-41	7	$125,812,696$	$125,813,467$	0.771
B-41	14	$70,728,006$	$70,845,546$	117.540
B-42	1	$2,221,742$	$7,114,855$	4893.113
B-42	2	$38,684,566$	$46,583,071$	7898.505
B-42	2	$128,290,273$	$129,170,097$	879.824
B-42	6	$86,489,649$	$90,950,621$	4460.972
B-43	3	$82,032,992$	$85,222,091$	3189.099
B-43	6	$67,405,141$	$67,646,218$	241.077
B-43	13	$101,333,357$	$101,333,631$	0.274
B-44	6	$93,065,830$	$170,822,590$	77756.760
B-44	9	$69,575,157$	$71,306,413$	1731.256
B-44	9	$93,306,655$	$103,683,632$	10376.977
B-45	8	$116,079,356$	$117,997,280$	1917.924
B-45	18	$59,627,434$	$59,742,040$	114.606
B-46	16	$3,934,697$	$4,300,315$	365.618
B-47	18	$1,725,368$	$1,815,170$	89.802
B-48	14	$55,687,409$	$55,893,871$	206.462

B-49	19	$51,019,549$	$51,019,773$	0.224
B-52	14	$50,126,350$	$51,949,076$	1822.726
B-52	18	$36,326,162$	$36,588,882$	262.720
B-54	1	$45,027,620$	$142,417,280$	97389.660
B-54	3	135,814	$90,045,737$	89909.923
B-54	4	$55,808,411$	$67,039,329$	11230.918
B-54	4	$70,675,661$	$73,779,321$	3103.660
B-54	4	$75,936,632$	$191,091,333$	115154.701
B-54	5	$141,856,833$	$157,661,635$	15804.802
B-54	6	$54,077,891$	$64,444,019$	10366.128
B-54	6	$82,794,175$	$108,657,232$	25863.057
B-54	6	$111,387,447$	$124,382,232$	12994.785
B-54	6	$138,044,330$	$170,770,193$	32725.863
B-54	7	$33,766,223$	$43,472,173$	9705.950
B-54	7	$47,225,158$	$54,491,738$	7266.580
B-54	9	$7,184,521$	$21,204,877$	14020.356
B-54	9	$24,710,232$	$138,166,210$	113455.978
B-54	10	259,695	$2,255,199$	1995.504
B-54	11	$98,207,847$	$102,241,629$	4033.782
B-54	11	$105,450,587$	$115,354,106$	9903.519
B-54	13	$18,042,610$	$114,051,465$	96008.855
B-54	17	451,209	$6,915,690$	6464.481
B-54	17	$11,063,899$	$16,776,778$	5712.879
B-54	17	$31,462,117$	$31,503,652$	41.535
B-56	9	$21,133,020$	$42,930,351$	21797.331
B-56	9	$130,736,916$	$138,166,210$	7429.294
B-56	20	$10,375,960$	$10,407,613$	31.653
B-58	7	$49,598,672$	$50,089,428$	490.756
B-58	9	$19,520,883$	$19,933,585$	412.702
B-58	9	$21,133,020$	$22,685,667$	1552.647
B-58*	12	$90,662,387$	$91,035,857 *$	373.470
B-58	15	$55,118,321$	$55,191,405$	73.084
B-59	13	$106,870,516$	$106,883,619$	13.103
B-60	1	$190,962,106$	$191,660,170$	698.064
B-60	2	$88,274,497$	$88,993,415$	718.918
B-60	4	$133,300,542$	$133,513,765$	213.223

B-60	5	142,962,374	143,278,239	315.865
B-60	9	8,117,420	8,179,112	61.692
B-60	9	21,948,524	21,971,583	23.059
B-60	9	36,927,603	36,988,416	60.813
B-60	12	67,491,554	67,695,739	204.185
B-60*	12	90,972,766	91,035,857*	63.091
B-61	8	124,781,880	125,014,361	232.481
B-61	9	11,980,405	12,140,471	160.066
B-61	10	8,313,669	9,370,093	1056.424
B-61	13	43,583,946	43,743,243	159.297
B-61	17	64,445,396	64,624,957	179.561
T-1	1	102,370,195	102,561,809	191.614
T-1	18	210,071	1,055,350	845.279
T-2	13	49,630,676	50,272,626	641.950
T-2	17	26,677,010	28,109,086	1432.076
T-3	3	85,603,747	85,659,887	56.140
T-3	4	161,925,165	163,109,094	1183.929
T-3	5	53,208,596	72,217,160	19008.564
T-3	5	165,703,458	165,711,472	8.014
T-3	8	111,886,767	112,158,168	271.401
T-3	8	112,409,593	112,491,933	82.340
T-3	9	3,177,859	21,854,552	18676.693
T-3	9	21,988,733	24,467,128	2478.395
T-3	9	24,518,103	37,947,229	13429.126
T-3	10	22,723,357	22,941,760	218.403
T-3	13	88,805,179	89,315,863	510.684
T-3	16	45,065,445	88,690,776	43625.331
T-4	6	87,408,292	113,933,187	26524.895
T-4	9	20,687,467	21,836,327	1148.860
T-4	9	22,043,687	24,332,423	2288.736
T-5	2	129,220,262	144,446,011	15225.749
T-5	2	145,361,978	146,121,302	759.324
T-5	9	19,566,362	21,836,327	2269.965
T-5	9	22,013,795	22,571,260	557.465
T-5	17	18,901	21,491,135	21472.234
T-5	18	513,832	804,730	290.898

T-6	1	26,936,965	27,319,391	382.426
T-6	2	180,729,136	182,606,925	1877.789
T-6	3	35,670,516	36,676,438	1005.922
T-6	3	142,912,781	143,336,624	423.843
T-6	3	192,529,472	193,865,691	1336.219
T-6	5	6,326,004	6,692,763	366.759
T-6	5	160,951,790	161,332,954	381.164
T-6	9	21,438,448	21,504,364	65.916
T-6	12	11,739,760	11,904,839	165.079
T-6	12	121,412,843	121,587,474	174.631
T-6	13	39,516,616	47,686,991	8170.375
T-6	13	47,809,265	51,499,724	3690.459
T-6	14	60,848,668	90,748,299	29899.631
T-6	20	34,934,264	36,233,880	1299.616
T-6	20	48,737,169	49,760,837	1023.668
T-7	5	49,596,616	120,374,182	70777.566
T-7	5	120,619,324	180,629,495	60010.171
T-7	6	71,989,993	72,962,342	972.349
T-7	11	83,266,085	83,271,705	5.620
T-7	11	87,787,086	87,791,549	4.463
T-7	16	31,010	3,500,902	3469.892
T-7	16	56,137,979	59,246,299	3108.320
T-7	17	7,797,163	8,039,908	242.745
T-7	18	72,436,933	76,115,554	3678.621
T-7	19	45,625,821	48,954,385	3328.564
T-8	13	49,039,346	51,891,413	2852.067
T-8	16	66,144,782	66,901,470	756.688
T-9	18	7,730,473	7,750,682	20.209
T-10	1	212,248,859	212,250,274	1.415
T-10	13	86,998,038	87,040,058	42.020
T-14	3	1,795,234	1,957,593	162.359

*: Next SNP is located on chr.12, 91,067,704 in B-16, -33, -58, -60.
**: Next SNP is located on chr.12, 91,067,786 in B-25, -35, -38.
Samples with either * or ** have a breakpoint including the BTG1 gene, which is located on chr12:91,061,034-91,063,751, between the distal SNP position of the deletion and the next SNP position.

Online Supplementary Table S5. Chromosomal regions with duplications in adult ALL samples.

		Physical localization		
Case \#	Chromosome	Proximal	Distal	Size (Mb)
B-2	22	$17,376,298$	$21,479,136$	4.103
B-4	11	$37,686,392$	$37,842,579$	0.156
B-5	8	$39,579,937$	$146,263,538$	106.684
B-5	9	$130,737,915$	$138,303,776$	7.566
B-5	22	$21,043,189$	$21,860,252$	0.817
B-7	4	$79,105,930$	$79,347,118$	0.241
B-9	11	$73,090,662$	$73,289,168$	0.199
B-10	1	$145,940,029$	$222,350,209$	76.410
B-10	6	$155,411,268$	$159,732,853$	4.322
B-10	6	$166,350,307$	$168,114,434$	1.764
B-10	6	$170,538,106$	$170,538,754$	0.001
B-10	17	$35,542,587$	$59,512,051$	23.969
B-11	8	$104,954,123$	$143,902,698$	38.949
B-11	17	$19,211,040$	$78,181,864$	58.971
B-12	5	260,504	$8,439,088$	8.179
B-12	8	$72,632,955$	$143,902,698$	71.270
B-13	1	$142,930,664$	$156,376,000$	13.445
B-13	1	$159,817,168$	$207,743,233$	47.926
B-13	2	$6,197,627$	$66,870,455$	60.673
B-13	4	$70,949,406$	$90,168,373$	19.219
B-13	12	$39,535,217$	$67,695,739$	28.161
B-13	14	$70,281,911$	$106,312,036$	36.030
B-15	1	$142,397,633$	$244,850,724$	102.453
B-15	13	$27,870,164$	$27,871,703$	0.002
B-15	13	$97,290,935$	$97,536,766$	0.246
B-15	22	$15,271,316$	$24,267,224$	8.996
B-18	9	$68,229,855$	$137,012,035$	68.782
B-19	7	$61,873,591$	$158,554,645$	96.681
B-19	22	$15,263,131$	$48,983,486$	33.720
B-20	8	180,568	$146,263,538$	146.083
B-20	9	$37,003,845$	$38,398,920$	1.395

B-20	9	$42,937,560$	$73,633,747$	30.696
B-20	9	$73,897,065$	$75,672,529$	1.775
B-20	9	$80,967,779$	$81,360,161$	0.392
B-20	9	$99,536,920$	$102,358,221$	2.821
B-20	12	$11,892,519$	$12,239,176$	0.347
B-20	12	$17,166,271$	$18,046,715$	0.880
B-20	12	$19,489,402$	$19,835,818$	0.346
B-20	12	$23,376,393$	$26,158,915$	2.783
B-20	12	$27,282,464$	$27,934,654$	0.652
B-20	12	$29,101,388$	$29,639,626$	0.538
B-20	12	$30,453,672$	$30,472,248$	0.019
B-20	12	$30,836,646$	$32,565,912$	1.729
B-20	12	$33,914,038$	$36,144,018$	2.230
B-20	12	$36,963,675$	$37,424,739$	0.461
B-20	12	$39,609,747$	$39,866,444$	0.257
B-20	12	$40,102,269$	$43,107,259$	3.005
B-20	12	$64,620,042$	$71,645,433$	7.025
B-20	12	$74,219,915$	$76,934,523$	2.715
B-20	12	$78,280,312$	$79,003,423$	0.723
B-20	12	$89,898,474$	$90,011,617$	0.113
B-20	12	$102,125,488$	$104,828,077$	2.703
B-20	12	$104,856,274$	$104,888,198$	0.032
B-20	12	$105,027,304$	$125,446,051$	20.419
B-20	12	$125,532,812$	$125,755,075$	0.222
B-20	12	$126,920,657$	$127,172,564$	0.252
B-22	7	$61,534,066$	$158,624,663$	97.091
B-23	1	$38,748,243$	$38,804,841$	0.057
B-23	3	$1,829,320$	$1,900,851$	0.072
B-25	4	$152,075,949$	$152,427,171$	0.351
B-25	5	81,949	$141,535,648$	141.454
B-25	5	$142,784,880$	$150,135,905$	7.351
B-25	5	$150,331,183$	$157,460,757$	7.130
B-25	5	$158,476,547$	$180,629,495$	22.153
B-25	10	148,946	$36,714,060$	36.565
B-25	10	$36,974,657$	$135,311,386$	98.337
	3	$189,039,683$	$189,208,815$	0.169
B				

B-26	5	$27,340,648$	$27,575,247$	0.235
B-26	6	119,769	$20,217,821$	20.098
B-26	6	$21,026,230$	$32,320,242$	11.294
B-26	6	$32,321,030$	$33,459,229$	1.138
B-26	6	$33,473,618$	$84,005,449$	50.532
B-26	6	$94,823,810$	$102,023,284$	7.199
B-26	6	$120,213,981$	$120,227,364$	0.013
B-26	6	$120,736,258$	$120,836,788$	0.101
B-26	6	$125,630,589$	$126,918,273$	1.288
B-26	6	$145,522,349$	$152,476,914$	6.955
B-26	6	$157,235,840$	$170,792,391$	13.557
B-26	9	$29,389,206$	$30,261,809$	0.873
B-26	11	201,447	$58,173,418$	57.972
B-26	11	$101,832,951$	$102,080,964$	0.248
B-26	12	50,446	$132,387,995$	132.338
B-26	16	$10,771,851$	$10,920,235$	0.148
B-26	17	$19,109,505$	$78,599,918$	59.490
B-26	18	$3,585,765$	$3,646,607$	0.061
B-26	18	$5,981,270$	$8,406,950$	2.426
B-26	18	$8,954,794$	$12,918,541$	3.964
B-26	18	$17,794,465$	$18,308,835$	0.514
B-26	18	$25,199,079$	$31,326,956$	6.128
B-26	18	$36,454,751$	$37,405,315$	0.951
B-26	18	$40,768,446$	$41,912,886$	1.144
B-26	18	$44,764,374$	$45,785,476$	1.021
B-26	18	$48,460,051$	$51,959,733$	3.500
B-26	18	$56,255,932$	$59,129,566$	2.874
B-26	20	17,408	$12,242,875$	12.225
B-28	21	$36,119,347$	$46,924,583$	10.805
B-29	8	$114,860,437$	$146,052,174$	31.192
B-29	12	$39,022,206$	$39,111,754$	0.090
B-30	1	$143,879,621$	$245,326,460$	101.447
B-31	5	260,504	$81,651,106$	81.391
B-31	5	$81,653,831$	$91,374,861$	9.721
B-31	6	150,610	$170,770,193$	170.620
B-31	8	$90,610,612$	$143,902,698$	53.292

B-31	10	259,695	$135,228,726$	134.969
B-31	17	$19,211,040$	$78,181,864$	58.971
B-31	18	149,885	$75,946,870$	75.797
B-31	21	$10,039,984$	$46,924,583$	36.885
B-31	23	$1,911,310$	$57,324,660$	55.413
B-32	21	$23,126,095$	$23,223,686$	0.098
B-32	21	$23,634,269$	$46,894,358$	23.260
B-32	23	159,978	$31,916,674$	31.757
B-33	23	$1,911,310$	$32,980,939$	31.070
B-35	5	$110,419,790$	$180,629,495$	70.210
B-35	14	$19,526,274$	$22,029,666$	2.503
B-35	14	$22,069,902$	$105,685,710$	83.616
B-36	14	$19,285,288$	$106,312,036$	87.027
B-36	21	$10,039,984$	$46,924,583$	36.885
B-37	21	$10,039,984$	$46,924,583$	36.885
B-40	7	$73,559,909$	$158,605,053$	85.045
B-43	2	$34,148,652$	$34,386,124$	0.237
B-44	1	$143,140,453$	$244,850,724$	101.710
B-47	1	$185,649,343$	$185,758,880$	0.110
B-47	3	$35,796,249$	$35,916,128$	0.120
B-54	2	$43,841,634$	$43,842,267$	0.001
B-54	6	150,610	$47,433,570$	47.283
B-54	10	$2,283,989$	$22,566,131$	20.282
B-54	12	$108,913,407$	$123,828,884$	14.915
B-54	16	$77,648,829$	$77,649,348$	0.001
B-55	8	$73,906,603$	$73,910,715$	0.004
B-55	9	$20,638,805$	$39,005,654$	18.367
B-61	1	$142,694,585$	$245,120,412$	102.426
B-61	5	260,504	$180,003,855$	179.743
B-61	6	$28,574,967$	$170,770,193$	142.195
B-61	7	$1,307,029$	$158,554,645$	157.248
B-61	9	$130,736,916$	$138,166,210$	7.429
B-61	13	$18,042,610$	$43,561,145$	25.519
B-61	13	$44,117,895$	$114,051,465$	69.934
B-61	14	$19,285,288$	$106,312,036$	87.027
B-61	17	451,209	$64,346,267$	63.895

B-61	17	$64,644,947$	$78,181,864$	13.537
B-61	19	341,341	$63,437,743$	63.096
B-61	21	$10,039,984$	$46,924,583$	36.885
B-61	22	$15,263,131$	$48,983,486$	33.720
T-1	17	$27,888,812$	$31,460,104$	3.571
T-1	17	$31,923,810$	$78,599,918$	46.676
T-2	13	$18,042,610$	$49,543,165$	31.501
T-2	13	$50,441,141$	$114,051,465$	63.610
T-3	8	$112,530,420$	$146,263,538$	33.733
T-3	12	$7,850,883$	$8,008,336$	0.157
T-3	13	$54,865,809$	$55,464,860$	0.599
T-3	13	$55,583,840$	$55,721,381$	0.138
T-3	19	$2,784,431$	$2,797,782$	0.013
T-4	8	$43,232,092$	$43,820,269$	0.588
T-5	14	$93,493,789$	$106,356,482$	12.863
T-5	17	$21,641,572$	$78,599,918$	56.958
T-6	1	$74,356,475$	$75,831,618$	1.475
T-6	4	$166,154,498$	$167,771,280$	1.617
T-7	5	$26,358,425$	$46,419,092$	20.061
T-7	19	$32,651,846$	$33,928,074$	1.276
T-7	19	$33,934,258$	$35,965,262$	2.031
T-8	3	$11,820,285$	$12,019,704$	0.199
T-8	13	$17,960,319$	$49,033,464$	31.073
T-8	13	$52,051,564$	$114,092,980$	62.041
T-10	20	$12,572,679$	$12,582,137$	0.009
T-10	20	$12,757,182$	$12,837,747$	0.081
T-11	21	$31,008,125$	$31,141,251$	0.133
T-12	19	$20,643,736$	$20,777,265$	0.134
T-13	5	$128,026,678$	$128,529,519$	0.503
T-13	7	$69,410,843$	$69,754,537$	0.344

Online Supplementary Table S6. Chromosomal regions of amplifications in adult ALL samples.

Case \#	Location	Physical localization		Size (Mb)	Gene(s) in the region
	Proximal	Distal			
B-26	2	$59,727,570$	$63,267,171$	3.5	>10 genes including BCL11A, REL T-7
	19	$35,986,840$	$45,571,967$	9.6	>10 genes including AKT2

Amplified genomic regions (≥ 5 copies) in adult ALL samples are displayed.

Online Supplementary Table S7. Chromosomal regions of copy-number neutral loss of heterozygosity in adult ALL samples.

$\begin{gathered} \text { Case } \\ \# \end{gathered}$	Chr.	Physical localization		$\begin{aligned} & \text { Size } \\ & \text { (Mb) } \end{aligned}$	\# of SNP s	Gene(s) in the region
		Proximal	Distal			
B-1	16	205,160	9,346,193	9.141	140	>10 genes including TSC2, CREBBP and USP7
B-2	9	97,152,922	138,166,210	41.013	679	>10 genes including PTCH1, XPA, NR4A3, ALDOB, TAL2, KLF4, TXN, LPAR1, TNFSF15, TNC, DAB2IP, HSPA5, SET, PPP2R4, PRRX2, FNBP1, ABL1, NUP214, TSC1 and NOTCH1
B-13	9	239,391	21,204,877	20.965	758	>10 genes including JAK2, RLN2, KDM4C, PTPRD, PSIP1, SH3GL2 and MLLT3
B-13	9	22,404,640	38,111,300	15.707	468	>10 genes including TEK, TOPORS, BAG1, FANCG, PAX5 and SHB
B-14	9	30,910	37,488,334	37.457	5177	>10 genes including JAK2, RLN2, KDM4C, PTPRD, PSIP1, SH3GL2, MLLT3, CDKN2A, TEK, TOPORS, BAG1, FANCG and PAX5
B-15	22	15,271,316	48,859,864	33.589	349	>10 genes including CLTCL1, SEPT5, IGL, BCR, MMP11, SMARCB1, MN1, CHEK2, EWSR1, NF2, MYH9, RAC2, PDGFB, ATF4, MKL1, RBX1 and EP300

B-21	9	30,910	21,775,018	21.744	3430	>10 genes including JAK2 RLN2, KDM4C, PTPRD, PSIP1, SH3GL2 and MLLT3
B-21	9	22,850,886	38,014,458	15.164	1676	>10 genes including TEK, TOPORS, BAG1, FANCG PAX5 and SHB
B-26	2	24,049	242,717,659	$\begin{gathered} 242.69 \\ 4 \end{gathered}$	$\begin{gathered} 2221 \\ 5 \end{gathered}$	>10 genes including E2F6 MYCN, SDC1, RHOB, ALK, NLRC4, BIRC6, STRN, EML4, EPCAM, MSH2, MSH6, LHCGR, RTN4, BCL11A, REL, LOXL3, KCMF1, CAPG, IGK, AFF3, FHL2, RANBP2, BCL2L11, MERTK, IL1B, PAX8, BIN1, ERCC3, ACVR2A, ATF2, MIR10B, DIRC1, PMS1, HSPD1, CFLAR, ADAM23, IKZF2, BARD1, ATIC, DIRC3, PAX3, PTMA, CXCR7, SEP2 and BOK
B-26	13	17,960,319	114,092,980	96.133	$\begin{gathered} 1111 \\ 7 \end{gathered}$	>10 genes including ZMYM2, CDX2, FLT3, HSPH1, STARD13, LHFP LOC646982, FOXO1, LCP1, RB1, INTS6, KLF5, POU4F1, RAP2A and ERCC5
B-26	18	210,071	3,538,692	3.329	401	>10 genes including YES1
B-26	18	3,651,485	5,979,848	2.328	295	DLGAP1, LOC642597, LOC339290, ZFP161, EPB41L3, TMEM200C and L3MBTL4

B-26	18	8,440,613	8,882,906	0.442	76	RAB12, KIAA0802
B-26	18	12,967,206	17,740,723	4.774	187	>10 genes
B-26	18	18,312,106	25,138,544	6.826	648	>10 genes including
						ROCK1, RBBP8 and SS18
B-26	18	31,328,729	36,410,642	5.082	494	>10 genes
B-26	18	37,406,044	40,744,907	3.339	369	KC6, PIK3C3 and RIT2
B-26	18	41,925,238	44,638,071	2.713	232	>10 genes including
						SMAD2
B-26	18	45,807,493	48,412,486	2.605	323	>10 genes including
						MAPK4 and SMAD4
B-26	18	52,002,040	56,251,380	4.249	490	>10 genes including TCF4
B-29	6	99,536	37,252,382	37.153	836	>10 genes including IRF4,
						CAGE1, TFAP2A, DEK,
						ID4, E2F3, SOX4, HFE,
						IER3, LTA, TNF, DAXX,
						HMGA1, PPARD, FANCE,
						MAPK13, CDKN1A and

PIM1
B-31 5 91,924,473 180,003,855 $88.0792273>10$ genes including $A P C$, LOX, FNIP1, IL3, IRF1, AFF4, TGFBI, HDAC3, ARHGAP26, SPINK7, CSNK1A1, CSF1R, PDGFRB, ITK, PTTG1, TLX3, NPM1, NKX2-5, NSD1, MAPK9, GNB2L, FER, FMS, FGFR4 and

FLT4
B-38 3 48,603 55,005,160 54.957 $2857>10$ genes including 15 FANCD2, VHL, GHRL, PPARG, RAF1, XPC,

SATB1, MLH1, CTNNB1, CCR9, MAP4, CDC25A, PLXNB1, NCKIPSD, RHOA, TCTA, MST1R, RBM5, SEMA3F,

T-1	7	70,551,875	158,605,053	88.053	7204	>10 genes including BCL7B, CLDN4, LIMK1, HIP1, HSPB1, DMTF1, ABCB1, STEAP1, AKAP9, ERVWE1, COL1A2, TAC1, ASNS, MUC17, HBP1, NRCAM, CAV1, EPHB6, EPHA1, MET, NRF1, CREB3L2, TRIM24, BRAF, TRB, TRPV6, EPHA1, SHH and MNX1
T-1	12	$\begin{gathered} 108,346,09 \\ 4 \end{gathered}$	132,387,995	24.042	2020	>10 genes including ALDH2, PTPN11, PEBP1, PRKAB1, P2RX7, DENR, RAN, EP400 and CHFR
T-2	10	259,695	29,377,894	29.118	690	>10 genes including KLF6, AKR1C3, NET1, MLLT10, BMI1 and ABI1
T-3	2	24,049	27,006,493	26.982	2796	>10 genes including E2F6, MYCN, SDC1 and RHOB
T-4	19	212,033	13,505,719	13.294	375	>10 genes including FSTL3, STK11, TCF3, SH3GL1, MLLT1, VAV1, ELAVL1, MUC16, DNMT1, INSR, TYK2, CTK, AXL, ICAM1, SMARCA4, JUNB, GADD45GIP1 and LYL1
T-7	5	81,949	26,357,418	26.275	2931	>10 genes including PDCD6

Chromosomal regions with loss of heterozygosity and normal copy-number status, called copy-number neutral LOH (CNN-LOH) in adult ALL samples are summarized. The frequency of CNN-LOH for each chromosome is compared between pediatric and adult cases in Online Supplementary Figure S6. Four samples (B-13, -14, -21 and -52) showed $9 p$ CNN-LOH which was the most common CNN-LOH. Genes in the region are listed when there are less than ten: selected genes are listed when more than ten genes are located in
the region based on information from the Atlas of Genetics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.org/.

Online Supplementary Table S8. Comparison of adult and pediatric ALL (with and without hyperdiploidy)
a. Abnormalities in pediatric ALL (all cases).

	Pediatric ALL (all), 397 cases					
Abnormalities	N.	Per sample	P-value (versus adult)			
Homozygous deletion	59	0.1	1.00			
Heterozygous deletion	761	1.9	$2.63 \mathrm{E}-06$	$* *$		
Duplication	1204	3.0	1.00			
Amplification	19	0.05	1.00			
CNN-LOH	218	0.6	1.00			
Total	2261	5.7	1.00			

b. Abnormalities in pediatric ALL (non-hyperdiploid cases)

	non-hyperdiploid-pediatric ALL, 282 cases			
Abnormalities	N.	per sample	P-value (versus adult)	
Homozygous deletion	56	0.2	1.00	
Heterozygous deletion	679	2.4	$1.07 \mathrm{E}-02$	$*$
Duplication	265	0.9	0.09	
Amplification	8	0.03	1.00	
CNN-LOH	94	0.3	1.00	
Total	1102	3.9	$1.30 \mathrm{E}-02$	$*$

c. Abnormalities in pediatric ALL (hyperdiploid cases)

	hyperdiploid-pediatric ALL, 115 cases					
	N.	per sample	P-value (versus adult)			
Abnormalities	3	0.03	$3.96 \mathrm{E}-03$	${ }^{* *}$		
Homozygous deletion	83	0.7	$9.93 \mathrm{E}-15$	${ }^{* *}$		
Heterozygous deletion	923	8.0	$1.05 \mathrm{E}-27$	$* *$		
Duplication	11	0.1	1.00			
Amplification	118	1.0	0.13			
CNN-LOH	1138	10.0	$7.83 \mathrm{E}-06$	$* *$		
Total						

(a) Copy number changes in 75 adult and 397 pediatric $A L L^{3}$ were compared using a threshold of 141 kb per lesion. The pediatric ALL cases were separated into two groups: (b) non-hyperdiploid (282 samples) or (c) hyperdiploid (115 samples). Chromosomal alterations
are summarized including homozygous deletions (0 copy of gene dosage) and heterozygous deletions (1 copy), duplications ($3-4$ copies), amplifications (≥ 5 copies) and CNN-LOH (2 copies). Differences versus adult ALL are noted; *, $P<0.05 ;{ }^{* *}, P<0.01$.

Online Supplementary Table S9. Comparison of genomic changes between adult ALL and non-hyperdiploid (HD)-pediatric ALL

Chromosomal sites	Type of abnormality	Candidate genes	Adult, (total, $\mathrm{n}=75 \text {) }$		$\begin{gathered} \text { Child } \\ \text { (non-HD, } \\ \text { n=282) } \end{gathered}$		P-value (vs. adult)	
			[n]	[\%]	[n]	[\%]		
19	Duplication		7	9\%	25	9\%	0.82	
1q	Deletion		6	8\%	13	5\%	0.25	
3 p 21	Deletion		4	5\%	14	5\%	1.00	
3p14.2	Deletion	FHIT	5	7\%	12	4\%	0.37	
3 q 26.3	Deletion	TBL1XR1	0	0\%	16	6\%	0.03	*
4 q 31	Deletion		2	3\%	14	5\%	0.54	
5q33.3	Deletion	EBF	5	7\%	4	1\%	0.02	*
6 q	Deletion		13	17\%	42	15\%	0.59	
7p12.2	Deletion	IKZF1	9	12\%	13	5\%	0.03	*
8 p	Deletion		5	7\%	12	4\%	0.37	
8 q	Duplication		8	11\%	17	6\%	0.20	
8q24	Duplication	MYC	7	9\%	15	5\%	0.28	
9 p 21.3	Deletion	CDKN2A/B	23	31\%	107	38\%	0.28	
9p13.2	Deletion	PAX5	15	20\%	50	18\%	0.62	
9 q	Duplication	ABL	5	7\%	10	4\%	0.33	
10p	Duplication		3	4\%	16	6\%	0.77	
10q24	Deletion		2	3\%	5	2\%	0.64	
11q	Deletion		8	11\%	20	7\%	0.33	
12p	Duplication		5	7\%	14	5\%	0.57	
12p13.2	Deletion	ETV6	5	7\%	84	30\%	0.00001	**
13q14.2	Deletion	RB1	7	9\%	18	6\%	0.44	
13q14.3	Deletion	miR-15a, miR-16-1	6	8\%	18	6\%	0.61	
15q	Deletion		5	7\%	14	5\%	0.57	
17p	Deletion	TP53	8	11\%	7	2\%	0.005	**
17q	Duplication		7	9\%	4	1\%	0.002	**
17q11.2	Deletion	NF1	2	3\%	8	3\%	1.00	
20p12.2	Deletion		2	3\%	9	3\%	1.00	
20q	Deletion		2	3\%	20	7\%	0.19	
21or 21q	Duplication		7	9\%	44	16\%	0.20	

Copy number changes in 75 adult and 282 non-HD-pediatric ${ }^{3}$ ALL samples were compared.

Differences between them (χ^{2} test) are noted: *, $P<0.05 ;{ }^{* *}, P<0.01$

Online Supplementary Table S10. Comparison of genomic changes between adult ALL and hyperdiploid (HD)-pediatric ALL

Copy number changes in 75 adult and 115 HD-pediatric ${ }^{3}$ ALL samples were compared. Differences between them (χ^{2} square test) are noted: ${ }^{*}, P<0.05$; ${ }^{* *}, P<0.01$.

Online Supplementary Table S11. Comparison of genomic changes between adult ALL and pediatric ALL (total)

Chromosomal sites	Type of abnormality	Candidate genes	Adult, (total, n=75)		Child (total, $\mathrm{n}=397$)		P-value (vs. adult)	
1q	Duplication		7	9\%	52	13\%	0.45	
1 q	Deletion		6	8\%	19	5\%	0.26	
3 p 21	Deletion		4	5\%	15	4\%	0.52	
3p14.2	Deletion	FHIT	5	7\%	13	3\%	0.18	
3q26.3	Deletion	TBL1XR1	0	0\%	16	4\%	0.09	*
4 q 31	Deletion		2	3\%	15	4\%	1.00	
5q33.3	Deletion	EBF	5	7\%	4	1\%	0.01	**
6 q	Deletion		13	17\%	42	11\%	0.11	
7p12.2	Deletion	IKZF1	9	12\%	17	4\%	0.01	*
8 p	Deletion		5	7\%	15	4\%	0.34	
8 q	Duplication		8	11\%	56	14\%	0.58	
$8 q 24$	Duplication	MYC	7	9\%	54	14\%	0.35	
9 p 21.3	Deletion	CDKN2A/B	23	31\%	116	29\%	0.78	
9 p 13.2	Deletion	PAX5	15	20\%	53	13\%	0.15	
9 q	Duplication	ABL	5	7\%	34	9\%	0.82	
10p	Duplication		3	4\%	99	25\%	1.08E-05	**
10q24	Deletion		2	3\%	8	2\%	0.66	
11q	Deletion		8	11\%	22	6\%	0.12	
12p	Duplication		5	7\%	33	8\%	0.82	
12p13.2	Deletion	ETV6	5	7\%	93	23\%	5.43E-04	**
13q14.2	Deletion	RB1	7	9\%	21	5\%	0.18	
13q14.3	Deletion	$\begin{aligned} & \operatorname{miR}-15 a, \\ & \operatorname{miR}-16-1 \end{aligned}$	6	8\%	20	5\%	0.28	
$15 q$	Deletion		5	7\%	20	5\%	0.57	
17p	Deletion	TP53	8	11\%	8	2\%	1.26E-03	**
17q	Duplication		7	9\%	90	23\%	0.01	**
17q11.2	Deletion	NF1	2	3\%	8	2\%	0.66	
20p12.2	Deletion		2	3\%	10	3\%	1.00	
20q	Deletion		2	3\%	21	5\%	0.56	
21or 21q	Duplication		7	9\%	157	40\%	6.75E-08	**

Copy number changes in 75 adult and 397 pediatric ${ }^{3}$ ALL samples were compared. Differences between them (χ^{2} square test) are noted: *, $P<0.05$; **, $P<0.01$.

Online Supplementary Table S12. Comparison of genomic changes between non-hyperdiploid (HD)-pediatric ALL and HD-pediatric ALL

Chromosomal sites	Type of abnormality	Candidate genes	Children (non-HD, $\mathrm{n}=282 \text {) }$		Children$\begin{gathered} (H D, \\ \mathrm{n}=115) \end{gathered}$		P-value (non-HD vs. HD)	
			[n]	[\%]	[n]	[\%]		
19	Duplication		25	9\%	27	24\%	1.8E-04	**
1 q	Deletion		13	5\%	6	5\%	$1.0 \mathrm{E}+00$	
3 p 21	Deletion		14	5\%	1	1\%	9.9E-02	
3p14.2	Deletion	FHIT	12	4\%	1	1\%	1.6E-01	
3q26.3	Deletion	TBL1XR1	16	6\%	0	0\%	2.0E-02	**
4 q 31	Deletion		14	5\%	1	1\%	9.9E-02	
5 q 3.3	Deletion	EBF	4	1\%	0	0\%	4.7E-01	
6 q	Deletion		42	15\%	0	0\%	2.7E-05	**
7p12.2	Deletion	IKZF1	13	5\%	4	4\%	8.2E-01	
8 p	Deletion		12	4\%	3	3\%	6.2E-01	
8 q	Duplication		17	6\%	39	34\%	1.4E-12	**
8 q 24	Duplication	MYC	15	5\%	39	34\%	1.6E-13	**
9 p 21.3	Deletion	CDKN2A/B	107	38\%	9	8\%	4.5E-09	**
9p13.2	Deletion	PAX5	50	18\%	3	3\%	1.2E-04	**
9 q	Duplication	ABL	10	4\%	24	21\%	6.8E-08	**
10p	Duplication		16	6\%	83	73\%	4.2E-43	**
10 q 24	Deletion		5	2\%	3	3\%	8.9E-01	
11q	Deletion		20	7\%	2	2\%	6.1E-02	*
12p	Duplication		14	5\%	19	17\%	3.4E-04	**
12p13.2	Deletion	ETV6	84	30\%	9	8\%	5.2E-06	**
13q14.2	Deletion	RB1	18	6\%	3	3\%	2.0E-01	
13q14.3	Deletion	$\begin{aligned} & m i R-15 a \\ & m i R-16-1 \end{aligned}$	18	6\%	2	2\%	9.6E-02	
15q	Deletion		14	5\%	6	5\%	8.8E-01	
17p	Deletion	TP53	7	2\%	1	1\%	5.2E-01	
17q	Duplication		4	1\%	86	75\%	1.4E-55	**
17q11.2	Deletion	NF1	8	3\%	0	0\%	1.5E-01	
20p12.2	Deletion		9	3\%	1	1\%	3.2E-01	
20q	Deletion		20	7\%	1	1\%	2.3E-02	*
21or 21q	Duplication		44	16\%	113	99\%	5.9E-52	**

Copy number changes in 282 non-HD- and 115 HD-pediatric ${ }^{3}$ ALL samples were compared. Differences between them (χ^{2} square test) are noted: ${ }^{*}, P<0.05$; ${ }^{* *}, P<0.01$.

Online Supplementary Table S13. Comparison of genomic changes in adult ALL by age.
a. Comparison of the adolescents (younger than 21 years old) versus adult (older than 21 years old and above) patients.

Abnormalities	$\begin{aligned} & 9 \text { cases } \\ & \text { (<21 years old) } \end{aligned}$		$\begin{aligned} & \hline 66 \text { cases } \\ & \text { (>21 years old) } \end{aligned}$		P-value
	N.	per sample	N.	per sample	
Homozygous deletion	2	0.2	17	0.3	0.73
Heterozygous deletion	32	3.6	317	4.8	0.68
Duplication	6	0.7	163	2.5	0.19
Amplification	0	0	2	0.03	0.25
CNN-LOH	3	0.3	30	0.5	0.73
Total	43	4.8	529	8.0	0.97

b. Comparison of patients younger or older than 60 years of age.

Abnormalities	51 cases (<60 years old)		24 cases (>60 years old)		P-value
	N.	per sample	N.	per sample	
Homozygous deletion	10	0.2	9	0.4	0.29
Heterozygous deletion	239	4.7	110	4.6	0.73
Duplication	102	2	67	2.8	0.53
Amplification	1	0.02	1	0.04	1.00
CNN-LOH	12	0.2	21	0.9	0.21
Total	364	7.1	208	8.7	0.93

Genomic changes in 75 adult ALL were compared by age. Adult patients with ALL were separated into those younger or older than either 21 or 60 years old. The alterations include homozygous deletions (0 copy of gene dosage) and heterozygous deletions (1 copy), duplications (3-4 copies), amplifications (≥ 5 copies) and CNN-LOH (2 copies).

Online Supplementary Table S14. Comparison of genomic changes in adult ALL by ethnic group.

Abnormalities	Asian, 41 cases		Caucasian,34 cases		
	N.	per sample	N.	per sample	P-value
Homozygous deletion	6	0.1	7	0.2	0.58
Heterozygous deletion	120	2.9	126	3.7	0.82
Duplication	60	1.5	86	2.5	0.76
Amplification	0	0	2	0.1	0.20
CNN-LOH	10	0.2	23	0.7	0.41
Total	196	4.8	244	7.2	0.78

Copy number changes in 75 adults of Asian or Caucasian ethnicity were compared. To adjust the SNP-array platform, abnormalities sized > $\mathbf{1 4 1} \mathrm{kb}$ were calculated. Chromosomal alterations are summarized including homozygous deletions (0 copy of gene dosage) and heterozygous deletions (1 copy), duplications ($3-4$ copies), amplifications (≥ 5 copies) and CNN-LOH (2 copies). Differences versus adult ALL are noted; *, $P<0.05$; **, $P<0.01$.

Online Supplementary Table S15. Primer sequences.

