Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis

Jayaram Vijayakrishnan and Richard S. Houlston

Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, UK

Citation: Vijayakrishnan J and Houlston RS. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 2010;95(8):1405-1414. doi:10.3324/haematol.2010.022095

Online Supplementary Table S1. Studies of polymorphisms and risk of childhood acute lymphoblastic leukemia. Abbreviations: SD standard deviation; R: range; Yrs: years.

Reference	Place of study	Gene studied	Ethnicity	Ν	Cases	Ν	Controls		
Gast A <i>et al</i> , 2007 ¹	Germany	MTR MTHFD1 SHMT1 RFC1 TYMS MTRR	Portuguese	460	460 childhood ALL cases, mean age 6.9 yrs (SD, 4.4); 273 male, 187 female. 269 c-ALL, 84 pre B-cell, 74 T-cell, 8 pre T-cell and 25 undefined cellular subtypes.	552	Population controls matched for ethnicity and geographic origin.		
Krajinovic M <i>et al</i> , 1999 ²	Canada	CYP1A1 CYP2D6 GSTM1 GSTT1	French- Canadian	177	110 males, 67 females, mean age 8yrs (+/-4.9); 137 pre-B-cell, 20 T-cell and 20 undetermined.	304	Population controls matched for age and geographic origin.		
Krajinovic M <i>et al</i> , 2002 ³	Canada	CYP2E1 MPO NQO1	French- Canadian	174	Childhood ALL, median age 5.2 yrs; 134 pre-B cell, 23 T-cell ALL, 17 undetermined lineage.	304	Controls from large institutional DNA data bank, matched for ethnicity and geographic origin.		
Balta G <i>et al</i> , 2003 ⁴	Turkey	CYP1A1 GSTM1 GSTT1 GSTP1 MTHFR	Turkish	139	Childhood ALL cases, mean age 6.8 yrs(+/-4.1); 75 B-cell, 41non-B cell, 28 undetermined lineages.	185	Randomly selected, unrelated, healthy volunteers without any evidence of malignancy who are the brothers and sisters of the patients visiting the same hospital for mild illnesses.		
Canalle R <i>et al</i> , 2004⁵	Brazil	CYP1A1 CYP2E1 GSTM1 GSTT1 GSTP1	Mixed	113	Childhood ALL. 73 males, 40 females, mean age 6.1yrs; 9 pro B -cell, 77 pre B-cell, 23 T-cell ALL, 4 undetermined. Ethnicity 98 white, 5 black and 10 mulattos.	221	Blood donor controls 159 males and 62 females, mean age 31.5, matched for ethnicity and geographic region.		
Clavel J <i>et al</i> , 2005 ⁶	France	CYP1A1 GSTM1 GSTP1 GSTT1 NQO1 EPHX1	Mixed	190	Childhood ALL, <15 yrs age; <7% non-Caucasian cases. Subtypes not defined.	105	Hospital patient controls recruited from orthopedic departments stratified by age, gender, hospital and ethnic origin.		
Sayitoglu M <i>et al</i> , 2006 ⁷	Turkey	CYP1A1 CYP2D6 CYP2D6 CYP2E1 GSTT1 GSTM1	Turkish	119	119 pediatric-ALL, mean age 7.8 yrs (+/-4.9). Subtypes not defined.	140	Turkish Caucasian members of faculty and hospital staff and students from the same geographic distribution as cases. Mean age 28.7, SD 8.3.		

Ulusoy G <i>et al</i> , 2007 ⁸	Turkey	CYP2E1 CYP2E1 CYP2E1	Turkish Caucasian	168	Childhood leukemia, 64 females, 104 males. Mean age 7.2, SD 3.8 years. Subtypes not specified.	207	Healthy unrelated Turkish volunteers (125 females, 82 males), mean age, 31.5 (SD 12yrs)
Lee KM <i>et al</i> , 2009 ⁹	Korea	CYP1A1	Korean	176	Childhood leukemia aged 0-18 yrs; subtypes not specified.	164	Hospital based controls aged 0-18 without history of childhood cancer, recruited through department of pediatrics, Seoul National University
Jamroziak K <i>et al</i> , 2004 ¹⁰	Poland	MDR1	Caucasian Slavic origin	113	Childhood ALL, subtypes not defined.	175	Caucasians of Slavic origin. Source not-specified.
Urayama K, <i>et al</i> , 2007 ¹¹	USA	MDR1	Mixed	294	Childhood ALL <15 yrs at diagnosis; subtypes not defined.	369	Population-based, age, sex and ethnicity matched controls ascertained through birth certificate registration.
Hattori H <i>et al</i> , 2007 ¹²	Japan	MDR1	Japanese	140	Childhood ALL, mean age 6.1 years (R: 1.0-15.0) years; 105 common, 5 pre-B, 13 T-cell, 15 null, 4 mixed and 15 unspecified.	Unrelated, healthy Japanese children, mean age 7.7 years.	
Semsei AF <i>et al</i> , 2007 ¹³	Hungary	MDR1 BCRP	Hungarian Caucasian	383	Childhood ALL, mean age 6.1 yrs (SD 3.9); 291 B-cell, 53 T-cell.	189	Blood donors randomly chosen and matched for ethnicity and geographical region.
Leal-Ugarte E <i>et al</i> , 2008 ¹⁴	Mexico	MDR1	Mexican	107	Childhood ALL, mean age 7 yrs (1- 14); 104 ALL-L1, 3 ALL-L2.	111	Healthy controls, recruitment details unspecified.
Eguchi-Ishimae M <i>et al</i> , 2005 ¹⁵	Japan	NQO1	Japanese	72	Infant ALL <18 months at diagnosis; 49 MLL (+) 23 MLL (-), subtypes not specified.	197	Cord blood samples.
Lanciotti M <i>et al</i> , 2005 ¹⁶	Italy	NQO1	Italian	156	Childhood ALL 18 MLL (-) infant age, 32 MLL (+) infant, resulting a 50 total infant ALL age < 12 months and 12 MLL(+) pediatric, 94 MLL(-), age <15 yrs. Cellular subtypes not specified.	147	Hospital based controls recruited from patients admitted for trauma, acute infection, or minor surgical procedure.
Kracht T <i>et al</i> , 2004 ¹⁷	Germany	NQO1	German	138	Childhood ALL, 35 MLL/AF4, median age 0.77 yrs; 31 BCR/ABL1, median age 8.33 yrs, 72 TEL/AML1. Cellular subtypes not specified.	190	Blood donors (16-68 years of age, 130 males and 60 females) with no history of malignant neoplastic disease.
Wiemels J <i>et al</i> , 1999 ¹⁸	UK	NQO1	Mixed	99	Childhood ALL, 36 MLL (+), 21 MLL/AF4, 50 TEL/AML (+) 29 hyperdipliod, age <15 yrs; cellular subtypes not specified.		Cord blood samples from healthy individuals.
Sirma S <i>et al</i> , 2004 ¹⁹	Turkey	NQO1	Turkish	189	Childhood ALL, median age 8 years (R: 1-16); Cellular subtypes not specified.	286	Normal population based controls with an age range of 2-60 years from different geographical areas of the country.
Chen C <i>et al</i> , 1997 ²⁰	USA	GSTM1 GSTT1	Black White	34 163	Childhood ALL with Cellular subtypes not described.	416	Population based control recruited from local blood donors, 213 white and 203 black.
Saadat I e <i>t al</i> , 2000 ²¹	Iran	GSTM1	Iranian	38	Childhood ALL, mean age 8.2years (SD 2.6 yrs); 48 male, 27 females. Cellular subtypes not specified.	75	Healthy blood donors ranging in age from 3 to 13 years.
Davies S M <i>et al,</i> 2002 ²²	USA	GSTM1 GSTT1	Mixed	710	Childhood ALL, 616 white, 35 black, 35 Hispanic, 6 Asian and 18 mixed races; 463 B-cell, 95 T-cell, 1 null, 64 mixed, 87 undefined.	733	532 white non-Hispanic and 201 black individuals; blood donors and infant heel stick cards.
Krajinovic M <i>et al</i> , 2002 ²³	Canada	GSTP1	French- Canadian white	278	Childhood ALL, mean age 4.9 yrs; 231 pre-B-cell, 29 T-cell ALL and 18 undetermined.	302	Healthy unrelated controls matched for ethnicity and geographic distribution.
Alves S <i>et al</i> , 2002 ²⁴	North Portugal	GSTT1 GSTM1	Portuguese	47	Childhood ALL, cellular subtypes not specified.	102	Healthy controls from same geographic area as cases.
Barnette P <i>et al</i> , 2004 ²⁵	USA	GSTM1 GSTT1 GSTP1 GSTM3	Mixed	189	Childhood ALL age < 18 yrs; cellular subtypes not specified.	340	Population based controls from the state of Utah -340 Guthrie cards of infants born in the year 2001-2002.
Pakakasama S <i>et al</i> , 2005 ²⁶	Thailand	GSTM1 GSTT1 CYP 1A1 CYP 3A4 CYP 3A5	Thai	107	Childhood ALL, median age of 6 years, 3 months; 94 B-cell, 10 T-cell and 3 undetermined.	320	Healthy volunteers with no history of cancer, 165 males.
Pigullo S <i>et al,</i> 2007 ²⁷	Italy	GSTT1 GSTM1 GSTP1	Caucasian	353	Childhood ALL aged <18 years; cellular subtypes undefined.	384	Hospital based controls with trauma or infection.

je

(To be continued in the previous page)

Gatedee J <i>et al</i> , 2007 ²⁸	Thailand	GSTP1	Thai	100	Childhood ALL, median age 5yrs (10months-14yrs 9months); 21 early pre B-cell, 55 Pre-B-cell, 1 B-cell and 13 T-cell.	100	Healthy Thai controls with normal blood counts.
Franco RF <i>et al</i> , 2001 ²⁹	Brazil	MTHFR	64 White 6 Black 1 Mulatto	71	Childhood ALL, mean age 7.6 years (R: 2months - 15 yrs); 55 B-cell, 16 T- cell.	71	Controls matched for age, gender and race without evidence of malignancy. Ethnicity; 64 white, 6 black, 1 mulatto.
Wiemels JL <i>et al</i> , 2001 ³⁰	UK	MTHFR	Mixed	253	Childhood ALL, age <15 yrs; <14% minority ethnicity, 37 MLL-rearranged, 78 TEL-AML1 (+), 138 hyper diploid cases. Cellular subtypes not defined.	200	Caucasian umbilical cord blood samples from unselected healthy new borns in UK.
Krajinovic M <i>et al</i> , 2004 ³¹	Canada	MTHFR	Caucasian	270	Childhood ALL, median age 4.9 yrs; 228 pre-B-cell, 31 T-cell, 11 with undetermined lineage.	300	Hospital based controls recruited from non-oncology departments.
Thirumaran R <i>et al</i> , 2005 ³²	Germany	MTHFR	Caucasian	453	Childhood ALL, mean age 6.9 yrs (+/- 4.4); cellular subtypes not specified.	1448	Matched Caucasian controls.
Oliviera E <i>et al</i> , 2005 ³³	Portugal	MTHFR	Caucasian	103	Pediatric ALL, aged < 16 yrs; cellular subtypes not specified.	111	Young volunteers born in the same geographic area.
Reddy H and Jamil K, 2005 ³⁴	India	MTHFR	Asian	135	Childhood ALL, age 1-10years; cellular subtypes not specified.	142	Randomly selected children registered with the same institute as cases.
Schnakenberg E <i>et al</i> , 2005 ³⁵	Germany	MTHFR	Caucasian	443	Pediatric ALL, aged < 18 yrs; 344 pre B-cell, 81 T-cell, 4 Biphenotypic, 14 unknown phenotype.	379	Blood donor controls.
Chatzidakis K <i>et</i> <i>al</i> , 2006 ³⁶	Greece	MTHFR	Caucasian	52	Childhood ALL, age of 5.3 yrs (4months-13.4 yrs); 45 B-cell and 7 T- cell cases.	88	Adults with no history of malignancy.
Zanrosso C <i>et al</i> , 2006 ³⁷	Brazil	MTHFR	Mixed	176	Mixed ethnicity childhood ALL, mean age of 6.2 years; 167 B-precursor 9 T-cell cases.	199	120 white, 79 non-white; unselected healthy subjects.
Giovannetti E <i>et al</i> , 2008 ³⁸	Netherlands	MTHFR TS	Indonesian	71	71 pediatric leukemia mean age 6.1 yrs; cellular subtypes not specified.		44 Hospital based controls with 3-8 years of age.
Kamel A <i>et al</i> , 2007 ³⁹	Egypt	MTHFR	Egyptian	88	88 pediatric ALL cases, median age of 6 years (range 1.5-18); precursor B-ALL cases.	311	Blood donors aged 18-48 years.
Alcasabas P <i>et al</i> , 2008 ⁴⁰	Philippines	MTHFR	Filipino	189	Childhood ALL, median age 6.9 yrs (4months-18 yrs); cellular subtypes not defined.	394	Cord blood DNA from healthy infants.
de Jonge R <i>et al,</i> 2009 ⁴¹	Netherlands	MTHFR SHMT1 TS MTR RFC MTRR NNMT	Caucasian	245	Pediatric ALL, aged < 18 yrs; 75% precursor B-cell and 25% T-cell.	500	Blood donor controls
Petra GB <i>et al</i> , 2007 ⁴²	Slovenia	MS TS MTRR MTHFR	Caucasian	68	Childhood ALL, median age of 4.7 years; 51 B-cell, 8 T-cell and 9 undetermined.	258	Unrelated healthy Slovenian students, median age 24 years; without a history of malignancy.
Pakakasama S et al, 2007 ⁴³	Thailand	ERCC2 XRCC1	Thai	108	Childhood ALL, median age 6yrs and 3 months (R: 10months-14yrs 9months); cellular subtypes not specified.	317	Healthy volunteers.
Batar B <i>et al</i> , 2009 ⁴⁴	Turkey	ERCC2 XRCC1	Turkey	70	Childhood ALL, mean age of 5.9 yrs (SD, 3.66); 56 common-ALL, 5 pre-B - cell and 9 T-cell cell.	75	Randomly selected from healthy children with no history of cancer matched to the cases by age and sex.
Joseph T <i>et al</i> , 2004 ⁴⁵	India	CYP1A1 CYP2D6 GSTM1 GSTT1	Indian	118	Pediatric ALL cases comprising of 77 males; aged <15years; 99 L1, 18 L2, 1 L3 smear subtypes.	118	Out patient clinic based controls matched for age and sex.
Joseph T <i>et al</i> , 2005 ⁴⁶	India	XRCC1	Indian	117	Childhood leukemia, aged <15years; cellular subtypes not specified.	117	Hospital based controls matched for age, sex and ethnicity.
Kim KN <i>et al,</i> 2006 ⁴⁷	Korea	MTHFR	Korean	66	Childhood leukemia, mean age of 9.03 Yrs (R: 1-15); cellular subtypes not specified	100	Randomly selected; without neoplastic or thrombotic diseases

Online Supplementary Table S2. Summary of odds ratios of individual studies along with their confidence intervals.

			Heterozygo	us model			Homozygou	s model		Carrier status			
		Confidence intervals		Confidence intervals			intervals	Confidence intervals					
Study	Polymorphism	OR	Upper limit	Lower limit	Р	OR	Upper limit	Lower limit	Р	OR	Upper limit	Lower limit	Р
Franco RF et al.29	MTHFR. C677T	0.48	0.98	0.23	0.04	0.28	0.85	0.09	0.02	0.42	0.84	0.21	0.01
Balta G et al.4	MTHFR, C677T	0.87	1.37	0.56	0.56	1.74	4.56	0.67	0.25	0.95	1.47	0.61	0.81
Kraiinovic M <i>et al</i> . ³¹	MTHFR. C677T	1.12	1.59	0.78	0.54	0.76	1.28	0.45	0.30	1.02	1.43	0.73	0.90
Thirumaran R et al.32	MTHFR, C677T	0.86	1.08	0.69	0.20	1.07	1.49	0.76	0.71	0.90	1.12	0.73	0.35
Reddy K et al.34	MTHFR, C677T	2.06	3.36	1.26	<0.01	2.17	7.20	0.65	0.20	2.07	3.34	1.28	<0.01
Schnakenberg E et al.35	MTHFR, C677T	1.25	1.67	0.93	0.14	1.03	1.63	0.65	0.90	1.20	1.58	0.91	0.19
Chatzidakis K et al.36	MTHFR, C677T	0.40	0.82	0.19	0.01	0.34	1.39	0.09	0.12	0.39	0.78	0.19	0.01
Zanrosso C et al.37	MTHFR, C677T	0.96	1.72	0.54	0.89	1.10	3.01	0.40	0.86	0.98	1.71	0.56	0.95
Zanrosso C et al.37	MTHFR, C677T	0.46	0.92	0.23	0.03	0.35	1.11	0.11	0.07	0.43	0.82	0.23	0.01
Petra GB et al.42	MTHFR, C677T	1.12	1.96	0.64	0.69	0.52	1.44	0.19	0.20	0.97	1.66	0.57	0.92
Giovanetti E et al.38	MTHFR, C677T	0.93	2.81	0.31	0.90	NA	NA	NA	0.22	1.19	3.46	0.41	0.75
Kamel A et al.39	MTHFR, C677T	1.24	2.04	0.76	0.38	1.40	3.55	0.55	0.48	1.26	2.03	0.79	0.33
Alcasabas P et al.40	MTHFR, C677T	1.38	2.13	0.89	0.15	1.11	4.50	0.27	0.88	1.36	2.07	0.89	0.16
Kim KN et al.47	MTHFR, C677T	0.98	2.05	0.46	0.95	0.74	1.93	0.28	0.54	0.91	1.86	0.44	0.80
de Jonge R et al.41	MTHFR, C677T	0.70	0.97	0.51	0.03	0.69	1.18	0.40	0.17	0.70	0.95	0.51	0.02
Wiemels J et al.30	MTHFR, C677T	1.05	1.59	0.69	0.83	0.77	1.38	0.43	0.37	0.97	1.42	0.66	0.86
Oliveira E et al.33	MTHFR, C677T	0.82	1.43	0.47	0.49	0.52	1.67	0.16	0.27	0.78	1.34	0.45	0.37
Franco RF et al.29	MTHFR, A1298C	1.22	2.41	0.62	0.57	2.85	15.58	0.52	0.21	1.33	2.58	0.69	0.40
Krajinovic M <i>et al</i> . ³¹	MTHFR, A1298C	0.89	1.26	0.63	0.52	0.38	0.78	0.19	0.01	0.79	1.10	0.57	0.16
Thirumaran R et al.32	MTHFR, A1298C	1.01	1.26	0.81	0.94	1.16	1.66	0.82	0.40	1.04	1.29	0.84	0.73
Reddy K et al.34	MTHFR, A1298C	1.94	3.21	1.17	0.01	1.94	5.08	0.74	0.17	1.94	3.17	1.18	0.01
Schnakenberg E et al.35	MTHFR, A1298C	0.92	1.24	0.69	0.60	0.68	1.07	0.43	0.10	0.87	1.15	0.66	0.32
Zanrosso C et al.37	MTHFR, A1298C	0.90	1.60	0.51	0.73	1.13	3.34	0.38	0.82	0.94	1.62	0.54	0.81
Zanrosso C et al.37	MTHFR, A1298C	2.10	4.06	1.09	0.03	1.40	5.98	0.33	0.65	2.01	3.79	1.06	0.03
Petra GB et al.42	MTHFR, A1298C	1.58	2.80	0.89	0.12	1.34	3.14	0.58	0.49	1.52	2.62	0.88	0.13
Kamel A et al.39	MTHFR, A1298C	0.38	0.66	0.22	<0.01	0.67	1.55	0.29	0.35	0.43	0.71	0.26	<0.01
Alcasabas P et al.40	MTHFR, A1298C	1.51	2.24	1.02	0.04	1.94	3.24	1.16	0.01	1.61	2.34	1.11	0.01
de Jonge R et al.41	MTHFR, A1298C	0.98	1.36	0.70	0.89	1.62	2.66	0.99	0.06	1.09	1.48	0.80	0.59
Kim KN et al.47	MTHFR, A1298C	2.22	4.50	1.09	0.03	1.01	11.52	0.09	0.65	2.11	4.22	1.06	0.03
Wiemels J et al.30	MTHFR, A1298C	0.93	1.39	0.62	0.71	0.41	0.88	0.19	0.02	0.81	1.20	0.55	0.30
Oliveira E et al.33	MTHFR, A1298C	1.81	3.20	1.03	0.04	1.50	4.14	0.54	0.43	1.76	3.06	1.02	0.04
Petra G et al.42	MTR A2756G	0.62	1.15	0.33	0.12	0.21	1.63	0.03	0.10	0.55	1.01	0.30	0.05
Kamel A et al.39	MTR A2756G	1.05	1.76	0.63	0.84	0.71	2.53	0.20	0.59	1.01	1.65	0.61	0.98
Gast A et al.1	MTR A2756G	1.36	1.78	1.03	0.03	0.83	1.68	0.41	0.60	1.29	1.68	0.99	0.06
de Jonge R et al.41	MTR A2756G	1.13	1.59	0.81	0.47	1.57	3.81	0.65	0.31	1.17	1.62	0.84	0.35
Giovannetti E et al.38	TS 2R to 3R	1.22	35.40	0.04	0.62	0.45	11.30	0.02	0.39	0.53	13.25	0.02	0.43
Petra GB et al.42	TS 2R to 3R	1.23	2.34	0.64	0.54	1.46	3.12	0.68	0.33	1.30	2.39	0.70	0.41
de Jonge R et al.41	TS 2R to 3R	1.02	1.52	0.69	0.92	1.48	2.28	0.96	0.08	1.17	1.70	0.81	0.41
Gast A et al.1	TS 2R to 3R	0.95	1.31	0.68	0.74	1.06	1.53	0.74	0.75	0.98	1.34	0.72	0.92
de Jonge et al.41	MTRR A66G	0.82	1.21	0.55	0.31	0.74	1.14	0.48	0.17	0.79	1.13	0.55	0.20
Petra G et al.42	MTRR A66G	0.83	1.65	0.42	0.59	0.71	1.56	0.32	0.39	0.79	1.51	0.41	0.47
Gast A et al.1	MTRR A66G	0.71	0.99	0.52	0.04	0.63	0.90	0.43	0.01	0.68	0.93	0.50	0.01
de Jonge R et al.41	SHMT1 C1420T	0.72	1.00	0.52	0.05	0.96	1.60	0.58	0.88	0.77	1.04	0.56	0.09
Gast A et al.1	SHMT1 C1420T	0.84	1.10	0.65	0.21	1.34	2.09	0.85	0.20	0.92	1.18	0.72	0.51
de Jonge et al.41	RFC1 G80A	1.34	1.91	0.94	0.10	2.06	3.25	1.31	< 0.01	1.50	2.09	1.08	0.02
Gast et al.1	RFC1 G80A	1.40	1.86	1.05	0.02	1.04	1.51	0.72	0.83	1.29	1.70	0.98	0.07
Clavel J et al.6	NQO1. C609T	1.00	1.67	0.59	0.99	1.86	6.98	0.49	0.35	1.07	1.76	0.65	0.80
Equchi Ishimae Met al.15	NQO1, C609T	1.08	1.96	0.60	0.79	1.58	3.48	0.72	0.26	1.20	2.07	0.69	0.52
Krajinovic M et al.3	NQO1, C609T	1.54	2.30	1.04	0.03	1.16	2.98	0.45	0.77	1.49	2.19	1.02	0.04
Kracht T et al.17	NQO1, C609T	0.94	1.52	0.59	0.81	1.83	8.36	0.40	0.43	0.98	1.57	0.62	0.95
Wiemels J et al.18	NQO1, C609T	1.77	3.17	0.99	0.05	3.87	38.25	0.39	0.22	1.84	3.26	1.03	0.04
Sirma S et al. ¹⁹	NQO1, C609T	0.74	1.08	0.50	0.12	0.66	1.99	0.22	0.46	0.73	1.07	0.51	0.10
Lanciotti M <i>et al</i> . ¹⁶	NQO1, C609T	1.07	1.70	0.68	0.77	NA	NA	NA	NA	1.07	1.70	0.68	0.77

Equchi Ishimae M et al.15	NQO1, C465T	2.83	8.37	0.95	0.05	NA	NA	NA	NA	2.82	8.37	0.95	0.05
Krajinovic M et al. ³	NQO1, C465T	1.41	2.53	0.79	0.25	NA	NA	NA	NA	1.36	2.44	0.76	0.29
Chen et al. ²⁰	GSTT1 null allele	NA	NA	NA	NA	0.93	1.66	0.52	0.81	NA	NA	NA	NA
Chen et al.20	GSTT1 null allele	NA	NA	NA	NA	1.71	3.71	0.79	0.17	NA	NA	NA	NA
Krajinovic M et al.2	GSTT1 null allele	NA	NA	NA	NA	0.91	1.52	0.55	0.72	NA	NA	NA	NA
Davies S M et al.22	GSTT1 null allele	NA	NA	NA	NA	0.94	1.3	0.69	0.71	NA	NA	NA	NA
Davies S M et al.22	GSTT1 null allele	NA	NA	NA	NA	0.54	1.36	0.21	0.19	NA	NA	NA	NA
Alves S et al. 24	GSTT1 null allele	NA	NA	NA	NA	0.69	1.62	0.3	0.39	NA	NA	NA	NA
Balta et al.4	GSTT1 null allele	NA	NA	NA	NA	0.9	1.53	0.53	0.70	NA	NA	NA	NA
Barnette et al.25	GSTT1 null allele	NA	NA	NA	NA	0.44	0.93	0.21	0.03	NA	NA	NA	NA
Canalle et al. ³	GSTT1 null allele	NA	NA	NA	NA	1.18	2.05	0.67	0.56	NA	NA	NA	NA
Pakakasama et al.20	GSTT1 null allele	NA	NA	NA	NA	1.42	2.21	0.92	0.12	NA	NA	NA	NA
Clavel et al.	GSTT1 null allele	NA	NA	NA	NA	1	1.79	0.57	0.99	NA	NA	NA	NA
Sayitoglu et al.	GSTT1 null allele	NA	NA	NA	NA	1.23	2.21	0.69	0.49	NA	NA	NA	NA
Pigullo et al. ²⁷	GSTT1 null allele	NA	NA	NA	NA	0.72	1.09	0.48	0.12	NA	NA	NA	NA
Joseph et al.40	GSTT1 null allele	NA	NA	NA	NA	1.82	4.16	0.8	0.16	NA	NA	NA	NA
Chen et al.20	GSTM1 null allele	NA	NA	NA	NA	1.07	1.61	0.71	0.75	NA	NA	NA	NA
Chen et al.	GS1M1 null allele	NA	NA	NA	NA	1.84	3.89	0.87	0.11	NA	NA	NA	NA
	GSTM1 null allele	NA	NA	NA	NA	1.76	2.58	1.2	< 0.01	NA	NA	NA	NA
Saadat I et al.	GSTM1 null allele	NA	NA	NA	NA	2.63	5.86	1.18	0.02	NA	NA	NA	NA
Davies S M et al.	GSTM1 null allele	NA	NA	NA	NA	1	1.26	0.79	0.99	NA	NA	NA	NA
Davies S M et al.	GSTM1 null allele	NA	NA	NA	NA	1.43	2.99	0.68	0.34	NA	NA	NA	NA
Alves et al.		INA NA	NA NA	NA NA	INA	2.22	4.58	1.07	0.03	INA	NA	INA	NA NA
Balla et al.		INA NA	NA NA	NA NA	INA	1.03	1.01	0.00	0.90	INA	NA	INA	NA NA
Barnelle et al.		INA NA	NA NA	NA NA	INA	0.82	1.29	0.51	0.39	INA	NA	INA	NA NA
Canalle et al.		INA NA	NA NA	NA NA	INA	0.88	1.39	0.50	0.58	INA	NA	INA	NA NA
Pakakasama et al.	GSTM1 null allele	NA	NA	NA	NA	1.66	2.66	1.03	0.04	NA	NA	NA	NA
Clavel et al.	GSTM1 null allele	NA	NA	NA	NA NA	1.07	1.72	0.66	0.78	NA	NA	NA	NA
Sayllogiu et al.	GSTM1 null allele	NA NA	NA NA	NA NA	INA NA	1.50	2.58	0.94	0.08	NA NA	NA NA	INA NA	NA NA
Pigulio et al.	GSTM1 null allele	NA NA	NA NA	NA NA	INA NA	0.82	1.1	0.01	0.19	NA NA	NA NA	INA NA	NA NA
Vrojipovio M ot ol ²		1.22	1 00	0.04	0.10	2.1	3.07	0.54	<u><0.01</u>	1.26	1.74	0.00	0.17
	GSTF1 A1576G	1.55	1.00	0.94	0.10	0.90	12.05	0.54	0.90	1.20	1.74	0.90	0.17
Galedee J $e_i a_i$.	GSTP1 A1578G	1.01	1.80	0.50	0.98	2.00	13.85	0.48	0.25	1.09	1.91	0.62	0.77
	GSTF1 A1578G	1.03	1.00	0.64	0.91	1.11	2.00	0.40	0.01	0.00	1.04	0.00	0.00
Digullo M of al. ²⁷	GSTF1 A1578G	0.97	1.01	0.59	0.90	1.10	2.40	0.49	0.65	0.99	1.00	0.01	0.90
Piguilo IVI et al. Bornotto D at al ²⁵	GSTF1 A1578G	1.10	1.51	0.60	0.00	1.10	2.00	0.09	0.55	0.01	1.30	0.65	0.47
Barnette P et al 25	GSTP1 C2203T	0.90	1.01	0.55	0.09	0.97 NA	2.15 NA	0.44 NA	0.94 NA	0.91	1.49	0.56	0.72
Kraiipovic M et al. ²³	GSTF1 C22931	0.92	1.07	0.45	0.01		NA NA	NA	NA	0.09	1.05	0.44	0.70
losoph T et al 45	CVP1A1 T6235C	2.59	4.72	1.41	<0.10	6.22	20.71	1 20	0.01	2.00	5.13	1.62	<0.01
Kraiinovic M et al ²	CVP1A1, T6235C.	2.00	4.72	1.41	0.01	0.22	29.71	1.30	0.01	2.00	3.15	1.02	0.01
Sovitoriu A et al.	CVP1A1, T0235C.	1.07	3.05	1.10	0.02	0.90	3.06	0.09	0.90	1.02	2 71	1.00	0.02
Balta G et al ⁴	CVP141 T6235C	1.74	2.40	0.78	0.03	0.34	1 72	0.04	0.31	1.50	2.71	0.92	0.10
Canalle R et al 5	CYP1A1 T6235C	0.96	1.58	0.70	0.20	4.03	16.56	0.02	0.11	1.09	1 75	0.68	0.30
Clavel J et al.	CYP1A1 T6235C	0.30	1.30	0.33	0.03	4.00 NA	NA	NA	NA	0.82	1.75	0.46	0.75
Lee K-M et al. ⁹	CYP1A1 T6235C	1 25	2 16	0.72	0.34	0.62	1 36	0.28	0.23	1.02	1.78	0.63	0.43
Joseph T et al.45	CYP1A1, A4889G	2.18	4.10	1.16	0.01	4.28	16.11	1.14	0.02	2.46	4.43	1.36	<0.01
Kraiinovic M et al ²	CYP1A1 A4889G	0.80	1.67	0.38	0.55	NA	NA	NA	NA	0.87	1 79	0.42	0.71
Lee K-M et al.9	CYP1A1, A4889G	0.85	1.42	0.51	0.54	0.94	2.79	0.32	0.92	0.86	1.42	0.52	0.56
Ulusov G et al. ⁸	CYP2F1*5B	1.91	4 80	0.76	0.16	NA	NA	NA	NA	1.91	4 80	0.76	0.16
Canalle R et al 5	CYP2E1*5B	1.01	2 46	0.60	0.59	NA	NA	NA	NA	1.01	2.34	0.58	0.10
Kraiinovic M et al. ³	CYP2E1*5B	2.85	6.73	1.21	0.01	NA	NA	NA	NA	2.85	6.73	1.21	0.01
Savitoglu A et al.7	CYP2E1*5B	3.47	9.18	1.31	0.01	NA	NA	NA	NA	3.47	9.18	1.31	0.01
Kraiinovic M et al ²	CYP2D6*4	1 17	1 76	0.78	0.45	1.63	4 34	0.61	0.33	1.21	1.80	0.82	0.33
Joseph T et al 45	CYP2D6*4	0.49	1 21	0.19	0.12	NA	NA	NA	NA	0.49	1.00	0.19	0.12
Savitoglu A et al.7	CYP2D6*4	1.04	1.83	0.59	0.90	2.42	13.56	0.43	0.30	1.11	1.92	0.64	0.70
Savitoglu A et al.7	CYP2D6*3	0.49	1.94	0.12	0.30	NA	NA	NA	NA	0.49	1.94	0.12	0.30
Kraiinovic A et al.2	CYP2D6*3	0.76	2.19	0.26	0.61	5.45	52.86	0.56	0.10	1.12	2.76	0.45	0.81
Hattori H et al.12	MDR1 C3435T	1.11	2.02	0.61	0.72	2.97	6.91	1.28	0.01	1.45	2.53	0.83	0.19
Jamroziak K et al. ¹⁰	MDR1 C3435T	0.83	1.43	0.48	0.50	1.63	2.99	0.89	0.12	1.09	1.76	0.67	0.74
Semsei F et al.13	MDR1 C3435T	1.32	2.03	0.86	0.20	1.42	2.27	0.88	0.15	1.36	2.02	0.91	0.13
Urayama K et al. ¹¹	MDR1 C3435T	0.97	1.40	0.67	0.88	0.99	1.51	0.65	0.96	0.98	1.38	0.69	0.90
Leal-Ugarte et al.14	MDR1 C3435T	0.92	1.98	0.42	0.83	0.54	1.27	0.23	0.16	0.77	1.62	0.37	0.50
Liravama K et al ¹¹	MDR1 G2677T/A	0 00	1 / 2	0.69	0.95	1 15	1.83	0.73	0.54	1.03	1.46	0.73	0.87
lamroziak K et al. ¹⁰	MDR1 G2677T/A	1 11	1.42	0.09	0.95	0.82	1.00	0.73	0.04	0.00	1.40	0.75	0.07
Janioziak K et al.	VPCC1 C2630AT	1.11	3.20	0.72	0.04	2.36	9.15	0.01	0.42	1.99	3.25	1.02	0.90
Dosepii i et al. Dokokosomo S et al. ⁴³	XRCC1 C203041	0.73	3.20	0.92	0.09	2.30	0.15	0.09	0.10	0.67	3.25	0.43	0.04
Patar B et al 44	XRCC1 C203041	1 79	1.15	0.47	0.18	NA	0.90 NA	0.05 NA	0.03 NA	2.01	1.04	0.43	0.07
Pakakasama S et al 43	XRCC1 G27466A	0.96	1.85	0.70	0.10	NΔ	NA	NΔ	ΝA	0.00	1 71	0.07	0.10
loseph T et al ⁴⁶	XRCC1 G27466A	1 4 2	2.51	0.30	0.31	1.68	10 31	0.27	0.57	1 / 3	2.50	0.82	0.75
Joseph T et al.	XRCC1 G27466A	1 00	3 35	1 08	0.20	2/12	5 80	1.00	0.07	2.01	2.30	1 10	0.20
Bakakasama S et al ⁴³	XRCC1 G27400A	2.17	3.55	1.00	<0.03	2.42	5.09	0.04	0.05	2.01	3.40	1.19	<0.01
Batar B et al 44	XRCC1 G28152A	1.00	2.07	0.48	1 00	0.64	1 77	0.34	0.00	0.90	1.80	0.45	0.77
Batar B et al 44	ERCC2 G23591A	0.86	1 78	0.40	0.60	1.00	2.56	0.30	1.00	0.00	1.00	0.46	0.76
Pakakasama S et al ⁴³	ERCC2 G23501A	0.00	1.70	0.42	0.05	NA	2.30 NA	0.35 NA	NA	0.50	1.28	0.40	0.70
Pakakasama S et al 43	ERCC2 A35931C	1 01	1.40	0.57	0.00	5 98	66 73	0.54	0 10	1 10	1 92	0.63	0.23
Batar B et al 44	ERCC2 A359310	0.98	2 01	0.37	0.90	0.88	2 31	0.34	0.70	0.95	1.92	0.03	0.75
B cell ALL only	1.0001.000010	0.00	2.91	0.10	0.00	0.00	2.01	0.00	0.10	0.00		0.70	0.00
Chatzidakis et al 36	MTHER C677T	0.35	0.76	0.16	<0.01	0 12	1 02	0.01	0.05	0.32	0.67	0 15	<0.01
Kamel et al 39	MTHER C677T	1 24	2 04	0.76	0.01	14	3 54	0.55	0.05	1 26	2.07	0.79	0 33
Balta et al. ⁴	GSTM1 pull allele	NA NA	NA	NA	NA	2.28	4 15	1 25	<0.10	NA NA	NA	NA	NA
Davies et al.22	GSTM1 null allele	NA	NA	NA	NA	0.7	0.86	0.56	<0.01	NA	NA	NA	NA
Balta et al 4	GSTT1 pull allele	NA	NA	NA	NA	1.34	2 48	0.72	0.35	NA	NA	NA	ΝΔ
Davies et al 22	GSTT1 pull allele	NA	NA	NA	NΔ	0.77	1.40	0.72	0.00	NA	NA	NA	NΔ
Savios of ur.		11/7	110	11/1	11/1	0.11	1.00	0.01	0.10	11/1	11/1	11/1	14/5

Online Supplementary Figure S1. Forest plot of odds ratios (ORs) of childhood acute lymphoblastic leukemia associated with polymorphic variants. Boxes denote allelic OR point estimates, their areas being proportional to the inverse variance weight of the estimate. Horizontal lines represent 95% confidence intervals. The diamond (and broken line) represents the summary ORs computed under a fixed effects model, with 95% confidence interval given by its width. The unbroken vertical line is at the null value (OR=1.0). (see related file)

Online Supplementary Figure S2. Forest plots of significant odds ratios (ORs) of childhood acute lymphoblastic leukemia associated with polymorphic variants. Boxes denote allelic OR point estimates, their areas being proportional to the inverse variance weight of the estimate. Horizontal lines represent 95% confidence intervals. The diamond (and broken line) represents the summary ORs computed under a fixed effects model, with 95% confidence interval given by its width. The unbroken vertical line is at the null value (OR=1.0). (see related file)

Online Supplementary Figure S3. Egger's plot showing publication bias in studies reviewed. Regression asymmetry graph plots of the standardized effect estimates, where standardized effect size is defined by odds ratio (OR) / standard error of the OR, and precision by 1 / standard error of the OR. Also shown is regression line and the confidence interval about the intercept. Failure of this confidence interval to include zero indicates asymmetry in the funnel plot and may give evidence of publication bias. (see related file)

References

- 1. Gast A, Bermejo JL, Flohr T, Stanulla M, Burwinkel B, Schrappe M, et al. Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study. Leukemia. 2007;21(2):320-5.
- Krajinovic M, Labuda D, Richer C, Karimi S, Sinnett D. Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood. 1999;93(5):1496-501.
- Krajinovic M, Sinnett H, Richer C, Labuda D, Sinnett D. Role of NQO1, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer. 2002;97(2):230-6.
- Balta G, Yuksek N, Ozyurek E, Ertem U, Hicsonmez G, Altay C, Gurgey A. Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol. 2003;73(3):154-60.
- Canalle R, Burim RV, Tone LG, Takahashi CS. Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen. 2004;43(2):100-9.
- Clavel J, Bellec S, Rebouissou S, Ménégaux F, Feunteun J, Bonaïti-Pellié C, et al. Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev. 2005;14(6): 531-40.
- Aydin-Sayitoglu M, Hatirnaz O, Erensoy N, Ozbek U. Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol. 2006;81(3):162-70.
- Ulusoy G, Adali O, Tumer TB, Sahin G, Gozdasoglu S, Arinç E. Significance of genetic polymorphisms at multiple loci of CYP2E1 in the risk of development of childhood acute lymphoblastic leukemia. Oncology. 2007;72(1-2):125-31.
- Lee KM, Ward MH, Han S, Ahn HS, Kang HJ, Choi HS, et al. Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leuk Res. 2009;33(2):250-8.
- Jamroziak K, Młynarski W, Balcerczak E, Mistygacz M, Trelinska J, Mirowski M, et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol. 2004; 72(5):314-21.

- Urayama KY, Wiencke JK, Buffler PA, Chokkalingam AP, Metayer C, Wiemels JL. MDR1 gene variants, indoor insecticide exposure, and the risk of childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1172-7.
- Hattori H, Suminoe A, Wada M, Koga Y, Kohno K, Okamura J, et al. Regulatory polymorphisms of multidrug resistance 1 (MDR1) gene are associated with the development of childhood acute lymphoblastic leukemia. Leuk Res. 2007;31(12): 1633-40.
- Semsei AF, Erdélyi DJ, Ungvári I, et al. Association of some rare haplotypes and genotype combinations in the MDR1 gene with childhood acute lymphoblastic leukaemia. Leuk Res. 2008;32(8):1214-20.
- Leal-Ugarte E, Gutiérrez-Angulo M, Macías-Gómez NM, et al. MDR1 C3435T polymorphism in Mexican children with acute lymphoblastic leukemia and in healthy individuals. Hum Biol. 2008;80(4):449-55.
- Eguchi-Ishimae M, Eguchi M, Ishii E, Knight D, Sadakane Y, Isoyama K, et al. The association of a distinctive allele of NAD(P)H:quinone oxidoreductase with pediatric acute lymphoblastic leukemias with MLL fusion genes in Japan. Haematologica. 2005;90(11):1511-5.
- Lanciotti M, Dufour C, Corral L, Di Michele P, Pigullo S, De Rossi G, et al. Genetic polymorphism of NAD(P)H:quinone oxidoreductase is associated with an increased risk of infant acute lymphoblastic leukemia without MLL gene rearrangements. Leukemia. 2005;19(2):214-6.
- Kracht T, Schrappe M, Strehl S, Reiter A, Elsner HA, Trka J, et al. NOO1 C609T polymorphism in distinct entities of pediatric hematologic neoplasms. Haematologica. 2004;89(12):1492-7.
- plasms. Haematologica. 2004;89(12):1492-7.
 18. Wiemels JL, Pagnamenta A, Taylor GM, Eden OB, Alexander FE, Greaves MF. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res. 1999;59(6):4095-9.
- Sirma S, Agaoglu L, Yildiz I, Cayli D, Horgusluoglu E, Anak S, et al. NAD(P)H: quinone oxidoreductase 1 null genotype is not associated with pediatric de novo acute leukemia. Pediatr Blood Cancer. 2004;43(5):568-70.
- Chen CL, Liu Q, Pui CH, et al. Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood. 1997;89(5):1701-7.
- 21. Saadat I, Saadat M. The glutathione S-transferase mu polymorphism and susceptibility to

acute lymphocytic leukemia. Cancer Lett. 2000;158(1):43-5.

- 22. Davies SM, Bhatia S, Ross JA, Kiffmeyer WR, Gaynon PS, Radloff GA, et al. Glutathione Stransferase genotypes, genetic susceptibility, and outcome of therapy in childhood acute lymphoblastic leukemia. Blood. 2002;100(1):67-71.
- Krajinovic M, Labuda D, Sinnett D. Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenetics. 2002;12(8):655-8.
- Alves S, Amorim A, Ferreira F, Norton L, Prata MJ. The GSTM1 and GSTT1 genetic polymorphisms and susceptibility to acute lymphoblastic leukemia in children from north Portugal. Leukemia. 2002;16(8):1565-7.
- Barnette P, Scholl R, Blandford M, Ballard L, Tsodikov A, Magee J, et al. High-throughput detection of glutathione s-transferase polymorphic alleles in a pediatric cancer population. Cancer Epidemiol Biomarkers Prev. 2004;13(2): 304-13.
- Pakakasama S, Mukda E, Sasanakul W, et al. Polymorphisms of drug-metabolizing enzymes and risk of childhood acute lymphoblastic leukemia. Am J Hematol. 2005;79(3):202-5.
- 27. Pigullo S, Haupt R, Dufour C, Di Michele P, Valsecchi MG, Basso G, et al. Are genotypes of glutathione S-transferase superfamily a risk factor for childhood acute lymphoblastic leukemia? Results of an Italian case-control study. Leukemia. 2007;21(5):1122-4.
- Gatedee J, Pakakassama S, Muangman S, Pongstaporn W. Glutathione S-transferase P1 genotypes, genetic susceptibility and outcome of therapy in thai childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2007;8(2):294-6.
- Franco RF, Simões BP, Tone LG, Gabellini SM, Zago MA, Falcão RP. The methylenetetrahydrofolate reductase C677T gene polymorphism decreases the risk of childhood acute lymphocytic leukaemia. Br J Haematol. 2001;115(3): 616-8.
- 30. Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, Greaves MF; United Kingdom Childhood Cancer Study investigators. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci USA. 2001;98(7):4004-9.
- 31. Krajinovic M, Lamothe S, Labuda D, Lemieux-Blanchard E, Theoret Y, Moghrabi A, Sinnett D. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic

leukemia. Blood. 2004;103(1):252-7.

- 32. Thirumaran RK, Gast A, Flohr T, Burwinkel B, Bartram C, Hemminki K, Kumar R. MTHFR genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Blood. 2005;106(7):2590-1; author reply 2591-2.
- Oliveira E, Alves S, Quental S, et al. The MTHFR C677T and A1298C polymorphisms and susceptibility to childhood acute lymphoblastic leukemia in Portugal. J Pediatr Hematol Oncol. 2005;27(8):425-9.
- 34. Reddy H, Jamil K. Polymorphisms in the MTHFR gene and their possible association with susceptibility to childhood acute lymphocytic leukemia in an Indian population. Leuk Lymphoma. 2006;47(7):1333-9.
- 35. Schnakenberg E, Mehles A, Cario G, Rehe K, Seidemann K, Schlegelberger B, et al. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population. BMC Med Genet. 2005;6:23.
- 36. Chatzidakis K, Goulas A, Athanassiadou-Piperopoulou F, Fidani L, Koliouskas D, Mirtsou V. Methylenetetrahydrofolate reductase C677T polymorphism: association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in greek patients. Pediatr Blood Cancer. 2006;47(2):147-51.
- 37. Zanrosso CW, Hatagima A, Emerenciano M,

Ramos F, Figueiredo A, Félix TM, et al. The role of methylenetetrahydrofolate reductase in acute lymphoblastic leukemia in a Brazilian mixed population. Leuk Res. 2006;30(4):477-81.

- 38. Giovannetti E, Ugrasena DG, Supriyadi E, Vroling L, Azzarello A, de Lange D, et al. Methylenetetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase promoter (TSER) polymorphisms in Indonesian children with and without leukemia. Leuk Res. 2008;32(1):19-24.
- 39. Kamel AM, Moussa HS, Ebid GT, Bu RR, Bhatia KG. Synergistic effect of methyltetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism as risk modifiers of pediatric acute lymphoblastic leukemia. J Egypt Natl Canc Inst. 2007;19(2):96-105.
- Alcasabas P, Ravindranath Y, Goyette G, Haller A, Del Rosario L, Lesaca-Medina MY, et al. 5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphisms and the risk of acute lymphoblastic leukemia (ALL) in Filipino children. Pediatt Blood Cancer. 2008;51(12):178-82.
- de Jonge R, Tissing WJ, Hooijberg JH, Jansen G, Kaspers GJ, Lindemans J, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood. 2009; 113(10):2284-9.
- 42. Petra BG, Janez J, Vita D. Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in

children. Leuk Lymphoma. 2007;48(4):786-92.

- 43. Pakakasama S, Sirirat T, Kanchanachumpol S, Udomsubpayakul U, Mahasirimongkol S, Kitpoka P, et al. Genetic polymorphisms and haplotypes of DNA repair genes in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;48(1):16-20.
- Batar B, Güven M, Bari S, Celkan T, Yildiz I. DNA repair gene XPD and XRCC1 polymorphisms and the risk of childhood acute lymphoblastic leukemia. Leuk Res. 2009;33(6):759-63.
- 45. Joseph T, Kusumakumary P, Chacko P, Abraham A, Pillai MR. Genetic polymorphism of CYP1A1, CYP2D6, GSTM1 and GSTT1 and susceptibility to acute lymphoblastic leukaemia in Indian children. Pediatr Blood Cancer. 2004;43(5):560-7.
- 46. Joseph T, Kusumakumary P, Chacko P, Abraham A, Pillai MR. DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia. Cancer Lett. 2005;217(1):17-24.
- 47. Kim NK, Chong SY, Jang MJ, Hong SH, Kim HS, Cho EK, et al. Association of the methylenetetrahydrofolate reductase polymorphism in Korean patients with childhood acute lymphoblastic leukemia. Anticancer Res. 2006; 26(4B):2879-81.