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Background
Type 2B von Willebrand factor (VWF) is characterized by gain of function mutations in the A1
domain inducing a greater affinity for platelet GPIb, possibly associated with the disappearance
of large VWF multimers and thrombocytopenia.

Design and Methods
VWF survival was explored using 1-desamino-8-D-arginine vasopressin (DDAVP) in 18 patients
with type 2B von Willebrand disease (VWD) and compared with their platelet count and large
VWF multimer representation. 

Results
A similarly significant shorter VWF survival, expressed as T1/2elimination (T1/2el), was observed
in patients lacking large VWF multimers (type 2B) and in those with a normal multimer pattern
(atypical type 2B) (4.47±0.41 h and 4.87±0.9 h, respectively, vs. normal 15.53±2.17 h) due main-
ly to a greater VWF clearance. The half-life of large VWF multimers, explored by VWF collagen
binding (VWF:CB) activity, was likewise reduced. The similarly reduced VWF half-life was also
confirmed by the increase in the VWF propeptide ratio (a useful tool for exploring VWF sur-
vival) which was found to be the same in type 2B and atypical type 2B patients. The post-
DDAVP drop in platelet count occurred in all patients lacking large multimers but not in those
with a normal multimer pattern. A correlation was always found between pre- and/or post-
DDAVP thrombocytopenia and the lack of large VWF multimers in type 2B VWD while these
were unrelated to the reduced VWF half-life.

Conclusions
In addition to demonstrating that a shorter VWF survival contributes to the type 2B and atyp-
ical type 2B VWD phenotype, our findings suggest that VWF clearance and proteolysis are
independent phenomena. 
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Introduction

Von Willebrand factor (VWF) is a multimeric glycopro-
tein consisting of linear arrangements of disulfide-linked
275 kDa subunits, ranging from 0.5 to more than 10 mil-
lion Dalton in size.1 The mature VWF subunit contains
functional domains, including the A1 domain that is the
VWF binding site for platelet GPIb.2 High molecular
weight multimers contain many platelet-binding sites and
are also recognized as being biologically the most active.3
VWF multimer size is regulated by the specific cleaving
protease ADAMTS134 whose proteolytic action gives
each VWF oligomer its typical triplet structure.5
ADAMTS13 deficiency gives rise to ultra-large VWF mul-
timers in the circulation which are responsible for throm-
botic thrombocytopenic purpura,6 whereas an increased
VWF proteolysis leads to the loss of large VWF multi-
mers.7
Reduced VWF levels and/or anomalies cause von

Willebrand disease (VWD), one of the most common
inherited bleeding disorders.1,8 According to the current
classification of VWD, types 1 and 3 are quantitative VWF
defects while type 2 refers to abnormal VWF functions.9
Type 2B is an unusual variant of VWD, characterized by
an enhanced platelet GPIb and VWF interaction10,11 due to
gain of function mutations in the A1 domain of VWF,12,13
one of the consequences of which is the disappearance of
large VWF multimers from the plasma due to their spon-
taneous binding to platelet GPIb. Large multimers are syn-
thesized normally, as confirmed by the normal platelet
VWF content seen in type 2B VWD, but currently cannot
be detected in vivo for their removal. Enhanced ristocetin-
induced platelet aggregation (RIPA), spontaneous platelet
aggregation (SPA)14-16 and sometimes thrombocytopenia
are also part of the type 2B VWD phenotype.17
Thrombocytopenia may be persistent or transient but is
commonly worse after DDAVP infusion, pregnancy, exer-
cise or surgery.17-21 Giant platelets may also be associated
with thrombocytopenia. Variants of type 2B VWD have
been described, however, that have a normal multimer
pattern in spite of an enhanced GPIb-VWF interaction,
with no thrombocytopenia.16,22,23
Mean plasma VWF concentrations depend partly on the

balance between the release of VWF from endothelial cells
and its removal from the circulation. Many factors affect
VWF survival, such as ABO blood group and mutations in
specific VWF domains.24-26 Healthy individuals with the O
blood group have a shorter VWF survival than those with
other blood groups.24 VWF mutations, such as R1205H
and C1130F in the D3 domain, are also associated with a
shorter VWF half-life.25-27
Here, we investigated the survival of type 2B VWF after

DDAVP with a view to clarifying the contribution made
by the disappearance of large VWF multimers.

Design and Methods

Patients and healthy subjects were enrolled for the study after
obtaining their written informed consent in accordance with the
Helsinki Declaration and the study was approved by the
University of Padua’s institutional review board.
Blood was drawn from the antecubital vein and anticoagulated

using 3.8% sodium citrate (1:10, vol/vol); samples for platelet
preparations also contained 50 mM EDTA, 50 IU/mL Trasylol, 10

mM leupeptin, and 60 mM N-ethylmaleimide as protease
inhibitors. The platelet-rich and platelet-poor plasma was pre-
pared as described elsewhere.28 For platelet VWF:Ag assay,
platelet-rich plasma was sedimented at 12,000 x g for 1 min and
resuspended in phosphate-buffered saline (PBS) containing 3%
EDTA. The procedure was repeated three times; platelets were
finally adjusted to a count of 106/μL in PBS containing protease
inhibitors and were lysed by adding 1% Triton X-100. 
RIPA was determined at ristocetin concentrations from 1.2

mg/mL to 0.3 mg/mL.28 VWF ristocetin cofactor activity
(VWF:RCo) was assessed with normal washed, formalin-fixed
platelets and 1.0 mg/mL ristocetin in a Chronolog aggregometer.28

Plasma and platelet VWF antigen (VWF:Ag) was obtained with a
home-made enzyme-linked immunosorbent assay (ELISA), using
a horseradish peroxidase (HRP)-conjugated anti-VWF antibody
(Dako, Netherlands). VWF collagen binding (VWF:CB) activity
was assessed by ELISA using type III collagen (Sigma, Milan, Italy)
diluted in acetic acid. Factor VIII (FVIII) coagulant was measured
using a one-stage method, with cephaloplastin as activated
cephalin. The above FVIII and VWF assays were conducted using
a pool of normal plasma samples for reference; for platelet
VWF:Ag the reference curve was constructed using a pool of
washed normal platelets, taking the first dilution as 100 U/dL.
VWF propeptide (VWFpp) was determined using an ELISA (GTI
Diagnostics, Waukesha, WI, USA). Briefly, prediluted calibrators
and diluted plasma samples were added to microwells coated
with monoclonal antibodies specific for VWFpp; bound VWFpp
was assessed with biotinylated anti-VWFpp monoclonal antibody
and streptavidin-labeled HRP. The results are given in U/dL taking
the first reference curve dilution as 100 U/dL. VWF multimer
analysis was performed on high gelling temperature agarose con-
taining 0.1% sodium dodecyl sulphate (SDS), and using 1.2% and
2.2% agarose to obtain a low and high resolution, respectively.28

Multimers were detected by autoradiography after reaction with
a purified anti-VWF 125I-labeled antibody. 
DDAVP (1-desamino-8-D-arginine vasopressin, Emosint,

Sclavo, Italy) was administered subcutaneously at a dose of 0.3
μg/kg. Blood samples were collected before and then 15, 30, 60,
120, 180, 240, 360 and 480 min, and 24 hours after administering
DDAVP. The time courses of the VWF:Ag and VWF:CB plasma
concentrations after DDAVP were analyzed using a one-compart-
ment model with first-order input and output kinetics, including
baseline concentrations, B and a time lag between DDAVP admin-
istration and the increase in plasma concentration, t’, as follows:

plasma concentration= A × [e-Kel × (t-t’) – e-Kre × (t-t’)] + B

where A is the Y-axis intercept, Kre is the release rate constant,
Kel is the elimination rate constant, and t is the time. The model
was fitted to each set of concentration-time data using the Prism
statistical package (GraphPad Software, San Diego, CA, USA).
The goodness of fit was evaluated by r2. The elimination half-live
(T1/2el) was calculated using the standard formula, i.e.
T1/2el=0.693/kel.
Using this kinetic model,29 the amount of VWF:Ag released by

DDAVP (Q) is: Q=A × VD × (Kre-Kel)/Kre, where VD is the vol-
ume of VWF:Ag distribution. Likewise, plasma clearance (CL) is:
CL = Kel × VD and the baseline rate of VWF:Ag release (Vre) is:
Vre = B × CL. The VD of VWF could not be calculated from our
data, so the VD reported by Menache et al.30 after intravenous
VWF administration (40 mL/kg) was considered to obtain an
approximate estimate of Q, CL and Vre in our patients.  The kinet-
ic parameters were compared with those obtained previously in a
group of normal subjects.24

Human genomic DNA was extracted from peripheral blood
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leukocytes using the QIAmp DNA blood Mini Kit (QIAGEN,
Hilden, Germany). VWF cDNA nucleotides were numbered in
agreement with the latest recommendations of the ISTH Scientific
Subcommittee on VWD, establishing the “A” of the initiation
codon ATG as +1.31

Laboratory data and pharmacokinetic parameters were
expressed as means ± standard errors (SE). 
Student’s t-test was used to compare the pharmacokinetic

parameters of type 2B and atypical type 2B VWF patients with
those of normal subjects. P values below 0.05 were considered sta-
tistically significant. Welch’s correction was applied when vari-
ances were not equal. 

Results

Patients
Fifteen type 2B patients (from 7 unrelated families) and

3 atypical type 2B VWD patients (from 2 unrelated fami-
lies) were considered. Forty-seven healthy subjects served
as controls. The criteria for diagnosing type 2B VWD
were: a greater interaction between VWF and platelet
GPIb as documented by lower minimal aggregating doses
of ristocetin (MADR), the presence of mutations in the A1
domain of VWF, and the absence of large VWF multimers.
Atypical type 2B VWD was defined as being characterized
by hyper-responsiveness to ristocetin, mutations in the A1
domain, and a full complement of VWF multimers.
Thirteen of the type 2B patients carried the R1308C muta-
tion; one had the V1316M mutation and one the R1306W
mutation. Among the atypical type 2B VWD cases, one

patient was carrying the P1266L mutation (previously
called type New York/type Malmo VWD) and 2 had the
R1379C mutation.

Hemostatic findings
Patients’ main hemostatic findings are shown in Table 1.

MADR ranged between 0.3 and 0.5 mg/mL ristocetin (vs.
normal ≥1.0 mg/mL) in both type 2B and atypical type 2B
VWD; SPA was seen, to different degrees, in all patients.
Five type 2B VWD patients had thrombocytopenia, while
the platelet count was normal in the atypical type 2B
patients. Type 2B VWD patients had lower plasma
VWF:Ag levels associated with a pronounced decrease in
VWF:CB (mean VWF:CB/VWF:Ag ratio 0.18±0.02 vs. nor-
mal 1.12±0.06), while an intermediate decrease was seen
for VWF:RCo (VWF:RCo/VWF:Ag ratio was 0.48±0.02 vs.
normal 0.98±0.17) (Table 1). Atypical type 2B VWD cases
had lower VWF:Ag, VWF:CB and VWF:RCo levels, but
normal VWF:CB and VWF:RCo ratios (0.85±0.07 and
0.86±0.22, respectively). All type 2B VWD patients had a
normal platelet VWF content, while this was lower in
atypical type 2B VWD (Table 1). 
The plasma VWF multimer pattern was normal in atyp-

ical type 2B patients, while the large and intermediate
VWF multimers were lacking in type 2B VWD (Figure 1A).
High-resolution gel (2.2% agarose) revealed a greater pro-
portion of small type 2B VWF multimers than in normal
individuals, with a more pronounced representation of the
satellite bands of each oligomer; no difference in VWF
oligomer pattern was observed in atypical type 2B
patients (Figure 1B).
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Table 1. Patients’ main hemostatic findings.
Patients Family Mutation VWD Blood Platelet *SPA §MADR VWF:Ag VWF:RCo #VWF:RCo VWF:CB ¥VWF:CB FVIII Platelet Large

group counts % mg/mL U/dL U/dL ratio U/dL ratio U/dL VWF:Ag multimers
103/μL U/dL

G.J. 1 R1308C 2B A 207 - 0.50 60.5 31.5 0.52 9.9 0.16 59 128 Absent
G.R. 1 R1308C 2B A 180 21.3 0.50 38.7 18.1 0.47 6.8 0.18 53 147 Absent
P.G. 2 R1308C 2B A 219 9.1 0.45 29.5 15 0.51 5.4 0.18 49.7 74 Absent
B.T. 2 R1308C 2B O 172 - 0.45 20.5 13.9 0.68 3 0.15 55 77.7 Absent
F.I. 3 R1308C 2B B 154 10.5 0.45 46.5 22.4 0.48 9.1 0.20 58.6 122.5 Absent
C.I. 3 R1308C 2B O 238 21.5 0.30 64.1 25.7 0.40 - - 78 137.2 Absent
C.Ar. 3 R1308C 2B O 76 22.2 0.45 74.1 30.2 0.41 15.7 0.21 75.7 116.2 Absent
C.Ad. 4 R1308C 2B O 72 15.0 0.30 37.8 16.8 0.44 6 0.16 42.3 120 Absent
C.O. 4 R1308C 2B O 124 8.7 0.30 43.2 17.3 0.40 2.4 0.06 47.5 117.5 Absent
M.E. 4 R1308C 2B O 218 8.2 0.45 49.4 26.7 0.54 5.6 0.11 35.2 118.7 Absent
M.N. 4 R1308C 2B O 250 15.3 0.30 46.7 27.3 0.58 10.4 0.22 57 - Absent
M.S. 4 R1308C 2B O 210 - 0.45 48.6 19.3 0.40 4.4 0.09 52.2 - Absent
C.G. 5 R1308C 2B O 186 22.2 0.45 40.5 16.4 0.40 5.6 0.14 65.6 82.6 Absent
M.G. 6 R1306W 2B O 116 15.7 0.30 16.3 11.4 0.70 8 0.49 27.8 175 Absent
G.F. 7 V1316M 2B O 71 24.2 0.30 34.3 15.9 0.46 14.7 0.43 49.6 141 Absent
C.F. 8 P1266L Atypical 2B O 204 - 0.45 22.9 24.8 1.08 16.6 0.72 51 23.2 Slightly 

decreased
F.L. 8 R1379C Atypical 2B O 293 13.1 0.45 27.7 17.8 0.64 27.2 0.98 39.3 58 Present
S.V. 9 R1379C Atypical 2B O 211 13.6 0.45 55.3 - - 46.9 0.85 61.4 37.9 Present

Normal range 150-400 Absent ≥ 1.0 60-160 60-130 0.81-1.16 65-150 ≥ 0.75 60-160 70-140 Present

*Spontaneous Platelet Aggregation; §Minimal Aggregating Dose of Ristocetin; #VWF:RCo/VWF:Ag ratio; ¥VWF:CB/VWF:Ag ratio.



Post-DDAVP hemostatic findings
DDAVP induced a dramatic drop in platelet count in

type 2B VWD patients: a sudden decrease was seen after
15 min and the lowest platelet count was reached 30 min
after DDAVP; platelets started to increase again after 120
min and had increased significantly after 360 min (Figure
2A). On the other hand, there were no changes in platelet
count in patients with atypical type 2B VWD (Figure 2B).
No large VWF multimers appeared in type 2B after
DDAVP, while small and intermediate multimers and
satellite bands were relatively more represented than
before DDAVP (Figure 2A). Conversely, a significant
increase in all VWF multimers was observed in atypical
type 2B patients, with ultralarge VWF forms typical of a
normal response to DDAVP being observed (Figure 2B).
There were no adverse clinical effects after DDAVP in the
patients studied.

VWF pharmacokinetic parameters
The mean time courses of post-DDAVP VWF:Ag and

VWF:CB  plasma concentrations in type 2B VWD, atypi-
cal type 2B VWD, and normal subjects are shown in Figure
3. The associated pharmacokinetic parameters exploring
VWF release (Q, Vre) and survival (T1/2el, CL) are shown in
Table 2.
The amount of VWF:Ag released by DDAVP (Q) did not

differ significantly between type 2B, atypical type 2B and
normal cases (49.9±3.2 U/h/kg, 43.6±7.7 U/h/kg, and
48.5±2.5 U/h/kg, respectively), but the Q of VWF:CB was
much lower in type 2B VWD patients (12.3±2.5 U/h/kg vs.
normal 66.6±3.5 U/h/kg (Table 2). The rate of release (Vre)
of VWF:Ag under steady state conditions was normal in
type 2B and atypical type 2B patients (Table 2) suggestive
of a normal release from endothelial cells, whereas the
baseline release of VWF:CB was much slower in type 2B
patients (Vre: 0.52±0.07 U/h/kg vs. normal 2.82±0.23
U/h/kg) (Table 2).
As for VWF survival, VWF:Ag T1/2el was shorter in the

VWD patients (4.47±0.41 h in type 2B and 4.87±0.99 h in
atypical type 2B) than in the normal controls (15.53±2.17
h, P<0.0001). VWF:CB half-life was also significantly
reduced in type 2B and atypical type 2B patients

(4.03±0.75 h and 4.23±1.22 h, respectively, vs. 12.67±1.88
h in controls). In both instances, the shorter T1/2el was due
to a greater clearance of VWF:Ag and VWF:CB which was
much the same in type 2B and atypical type 2B VWD
patients (Table 2).
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Figure 1. Plasma VWF multimer pattern observed in atypical type
2B and 2B VWD patients compared with normal plasma (NP).
Electrophoresis was performed using 1.2% (A) and 2.2% (B) agarose
gel containing 0.1% SDS. Multimers were detected using a 125I-
labeled anti-VWF antibodies. Large VWF multimers are at the top,
small multimers at the bottom. 

Table 2. Main VWF pharmacokinetic parameters observed in the VWD patients studied.
Hemostatic Subjects Baseline VWF release VWF survival
Parameters (number) Concentration Q Vre T1/2 el CL

(U/dL) (U/h/Kg) (U/h/Kg) (h) (mL/h/Kg)

2B 36.1*** 49.9 2.19 4.47*** 6.64***
(15) ± 4.9 ± 3.2 ± 1.75 ± 0.41 ± 0.70

Atypical 2B 33.4** 43.6 2.08 4.87*** 6.29***VWF:Ag (3) ± 8.8 ± 7.7 ± 0.59 ± 0.99 ± 1.48
Normals 93.7 48.5 2.28 15.53 2.66
(47) ± 5.2 ± 2.5 ± 0.19 ± 2.17 ± 0.19

2B 7.9*** 12.3*** 0.52*** 4.03*** 8.96*
(15) ± 1.9 ± 2.5 ± 0.07 ± 0.75 ± 2.19

Atypical 2B 32.6* 61.2 2.62 4.23** 7.54**VWF:CB (3) ± 9.4 ± 19.2 ± 1.02 ± 1.22 ± 1.74
Normals 98.0 66.6 2.82 12.67 3.27
(47) ± 6.0 ± 3.5 ± 0.23 ± 1.88 ± 0.27

Significance levels compared to normals: *** P<0.0001, **P<0.01, *P<0.05.

A

B

NP 1 2 3 4 5 6
Atypical 2B VWD 2B VWD

NP 1 2 3 4 5 6
Atypical 2B VWD 2B VWD



VWFpp and VWFpp ratio
Further confirmation of a shorter type 2B VWF survival

emerged on measuring the VWFpp and its ratio to
VWF:Ag (VWFpp ratio). Mean VWFpp was normal in type
2B (111.0±13.4 U/dL vs. 101.8±0.1 U/dL in controls) but
reduced in atypical type 2B VWD (46.3±5.2 U/dL). Much
the same increase in VWFpp ratio was observed in the
patients investigated: 2.62±0.14 in type 2B and 2.26±0.06
in atypical type 2B VWD vs. normal controls 1.41±0.07,
P<0.0001. 

Discussion

The survival of type 2B and atypical type 2B VWF was
explored using DDAVP, mainly evaluating any relation-
ship with the shortage of large VWF multimers and
thrombocytopenia. A similarly reduced VWF half-life was
identified in both types of VWD due entirely to an
increased VWF clearance, irrespective of the proportion of
large multimers or pre- and/or post-DDAVP thrombocy-
topenia. There was always a correlation between the dis-
appearance of large VWF multimers and thrombocytope-
nia, while these were unrelated to VWF half-life. 
Type 2B VWD represents a paradoxical hemostatic

defect in which a greater affinity of the mutated VWF for

platelet GPIb is responsible for bleeding rather than
thrombotic symptoms.11 All the type 2B mutations report-
ed to date have occurred in the A1 domain of VWF. Most
of them are associated with a shortage of large VWF mul-
timers (type 2B VWD) but some have a full complement
of large VWF multimers.22,23,32 For the purpose of the study,
and to emphasize the difference from and similarity to
classic type 2B, these latter patients are identified as cases
of atypical type 2B VWD. 
The absence of circulating large VWF multimers in type

2B VWD is thought to be due to their removal as a result
of the spontaneous binding of mutated VWF to platelet
GPIb.11 Based on these findings, we advanced a working
hypothesis that the half-life of 2B VWF is shorter than nor-
mal. Indeed, our data confirm a shorter survival of both
type 2B and atypical type 2B VWF irrespective of large
VWF multimer representation. The phenomenon
appeared to depend on a similar increase in VWF:Ag and
VWF:CB elimination rate (with a rise in CL and a decline
in T1/2el) in both type 2B VWD subtypes, suggesting that
large and small multimers are removed from the circula-
tion at much the same rate. This confirms the findings
already reported in a murine model.33
It is generally accepted that a molecule’s clearance is the

result of its receptor-mediated removal or proteolysis, so
theoretically three mechanisms may be advanced to
explain the removal of VWF from the circulation: i)
ADAMTS13-mediated proteolysis; ii) binding to platelet
receptor, which is increased in both 2B subtypes; and iii)
receptor-mediated liver uptake. We know that proteolysis
has to be involved in the type 2B VWF picture because the
absence of large multimers is associated with an increase
in proteolytic fragments,34 mainly faster and slower bands
of each oligomer organized as a triplet, as confirmed by
the high-resolution multimers in our patients. Since the
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Figure 2. Time course of VWF multimers before and after DDAVP as
observed in type 2B (A) and atypical type 2B (B) VWD patients. The
analysis was performed using a 1.2% agarose gel electrophoresis.
Similar findings  were recorded  in the other patients studied.

Figure 3. Mean VWF:Ag and VWF:CB survival observed in normal
controls and in type 2B and atypical type 2B VWD patients.
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oligomer structure of VWF is due to the action of
ADAMTS13,5 an increased representation of fragments is
the result of a greater proteolytic action on 2B VWF.
Atypical type 2B VWD behaves differently, however,
given that the triplet organization of the VWF oligomers is
not modified and the large multimers do not disappear.
The fact that the mean clearance of VWF:Ag and VWF:CB
was comparable in type 2B and atypical type 2B cases
would rule out the possibility of ADAMTS13 activity
inducing an accelerated VWF elimination. Similarly, if
VWF removal were to occur via a greater platelet binding
of the high molecular weight multimers, we ought to find
a loss of large multimers in both 2B and atypical type 2B
VWD, but this was not the case. The hypothesis of an
increased liver uptake is consequently the most likely and,
whatever the mechanisms involved, 2B and atypical type
2B mutations in the A1 domain are associated with a
faster removal of VWF from the circulation. 
The phase of VWF release from endothelial cells, that

we explored by means of Q and Vre kinetic parameters,
revealed a similarly normal behavior in type 2B and atyp-
ical type 2B VWD, while VWF:CB (used as a marker of
large VWF multimer representation) was characterized by
abnormalities in type 2B cases. Although post-DDAVP
VWF:Ag release (Q) was normal in type 2B, the amount of
VWF:CB released was considerably reduced. This diver-
gent behavior may be explained by large VWF multimers
being converted by ADAMTS13 into small multimers
soon after their release without reducing the overall num-
ber of molecules, so that the total amount of VWF:Ag
released remains the same. This would also explain why
large multimers are never detectable in the circulation in
cases of type 2B VWD. A rapid proteolysis during steady-
state VWF release may also justify the decrease in the con-
tinuous release (Vre) of VWF:CB observed in type 2B
patients. 
Thrombocytopenia may complicate type 2B VWD,

even though it is not a constant feature of the disorder,
neither in a given individual, nor in patients from the same
family or patients from different families carrying the
same mutation.17,18, 35 Thrombocytopenia has been said to
be due to the enhanced affinity of mutated VWF for
platelet GPIb, which in turn triggers platelet aggregation
due to the presence of hemostatically more efficient
DDAVP-released VWF multimers.36 A greater interaction
between mutant VWF and platelet GPIb is not enough,
however, to justify the onset of thrombocytopenia and the
associated disappearance of large VWF multimers, as seen
in atypical type 2B VWD. In fact, no decline in platelet
count before or after DDAVP was observed in the atypical
type 2B VWD patients studied, while there was a marked
drop in all type 2B VWD patients after DDAVP, even if this
was not apparent under basal conditions. This post-
DDAVP type 2B thrombocytopenia is not the result of a
true platelet consumption, however, because the platelet
count almost returns to the baseline within a few hours

after DDAVP, confirming previous reports.17,18 After
DDAVP, the transient fall in platelet count was paralleled
by a shift from large to small type 2B VWF multimers with
a consequent relatively stronger representation of the
small forms and oligomer satellite bands. We can, there-
fore, infer that an enhanced VWF binding to platelet GPIb
receptor, a transient drop in platelets and ADAMTS13
activation are pathogenically linked. It has been demon-
strated36-39 that the platelet-VWF complexes activate
ADAMTS13 under high shear stress conditions, and the
latter cleaves the mutant VWF and dissolves the platelet
aggregates, with the consequent disappearance of large
VWF multimers. In type 2B VWD, the reduced platelet
count may thus represent the prevalence of platelet aggre-
gate formation over their ADAMTS13-dependent dissolu-
tion. The role of platelets in the loss of large VWF multi-
mers is elegantly confirmed by a recent observation of the
restoration of large VWF multimers in a patient with type
2B VWD after the onset of a severe immune thrombocy-
topenia.40
Finally, the shorter survival that we observed in type 2B

and atypical type 2B VWD is not as severe as in type
Vicenza VWD or type 1 VWD patients carrying the
C1130F mutation, even though it is severe enough to raise
the VWFpp ratio (recently proposed as a tool for investi-
gating VWF survival).25,27 The VWFpp ratio ranges
between 2 and 3 in type 2B and atypical type 2B VWD
patients, with no significant differences emerging
between the two forms. This confirms their comparable
VWF half-life, but also means that the VWFpp ratio can-
not be used to distinguish type 2B from atypical type 2B
VWD.
In conclusion, a greater VWF clearance seems to con-

tribute to the type 2B and atypical type 2B VWD pheno-
types, down-regulating the circulating VWF levels, irre-
spective of large VWF multimers representation. A pro-
longed or abnormal VWF binding to platelet GPIb in type
2B VWD may give ADAMTS13 the chance to deplete the
large VWF multimers, while this is not the case in atypical
type 2B VWD. What causes bleeding in atypical type 2B
VWD is still not clear. It also remains to be seen whether
types 2B and atypical type 2B VWD should be considered
as one and the same defect, or as distinct abnormalities.
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