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Supplementary Methods

Isolation of mesenchymal stromal cells cultured with fetal
bovine serum or pooled human platelet lysate

Bone marrow aspirates (maximum 13.5 mL) were obtained
in 5 mL syringes preloaded with 500 IU of preservative-free
heparin (Biochrom AG, Berlin, Germany) in 2.5 mL aliquots
from healthy donors (n=3; aged 9, 27 and 36 years; one
female, two males) after receiving written informed consent
according to protocols approved by an institutional review
board. After harvesting, bone marrow samples were diluted in
medium without further manipulation. Cells were cultured in
alpha-modified minimum essential medium (a-MEM, M4526;
Sigma-Aldrich; St. Louis, MO, USA) supplemented with 25
mM HEPES (Sigma), 2 mM L-glutamine (Sigma), 100 U/mL
penicillin and 100 pug/mL streptomycin (Gibco Cell Culture,
Invitrogen Corporation, Grand Island, NY, USA), and either
10% fetal bovine serum (FBS; Hyclone, Logan, UT, USA) or
10% pooled human platelet lysate (pHPL). pHPL was pre-
pared from buffy coat-derived platelet rich plasma from at
least 40 whole blood donations as previously described.'
Preservative-free heparin (2 U/mlL; Biochrom AG, Berlin,
Germany) was added to the medium before pHPL supplemen-
tation to avoid coagulation. The bone marrow mononuclear
cell count was determined by an automated blood counter
(Coulter Onyx; Beckman Coulter, Fullerton, CA, USA) and
cells were seeded at a density of 0.6 — 1.0x10" mononuclear
cells/cm’ in three to five tissue culture flasks (Corning Inc.,
Acton, MA, USA) and then cultured at 37°C in 5% COz, 95%
air humidity. Non-adherent cells were removed by a complete
change of medium after 2 — 3 days. Twice weekly, 30% of the
medium was replaced by fresh supplemented medium and
cells were harvested before reaching confluence (between day
11 and 16) with 0.05% trypsin/0.7mM EDTA (1 — 5 min,
37°C; Sigma-Aldrich). Numbers of nucleated cells were deter-
mined as the mean of four measurements, using a hemocy-
tometer. Fibroblast colony-forming units (CFU-F) were deter-
mined and cell cultures documented as described previously.”
® The primary culture is equivalent to passage zero (P0) and
was used as the reference for senescence-associated changes.

Large scale expansion of mesenchymal stromal cells
cultured with fetal bovine serum or pooled human
platelet lysate

MSC derived from primary culture (P0) were seeded in a-
MEM/10% pHPL and a-MEM/10% FBS with a seeding densi-
ty of 30/cm’ on 1.0 to 2.5 m’ culture area in four to ten four-
layered cell factories (CF-4; Nalge Nunc International,
Naperville, IL, USA) and cultured to reach confluence. MSC
from donor A were primarily cultured only in FBS-medium
but were re-seeded in FBS and pHPL for P1. Partial (30%)
medium change was performed twice weekly and MSC were
harvested at days 12 to 13 by trypsinization (passage 1; P1).
MSC derived from P1 were immediately re-seeded in a-
MEM/10% pHPL and a-MEM/10% EBS at a density of 10-30
cells per cm” in three to four tissue culture flasks (Corning Inc.,
Acton, MA, USA) corresponding to a culture area of 675 — 900
cm’ and cultured at 37°C in 5% COz, 95% air humidity for 12
to 14 days until reaching confluence (passage 2; P2). Passaging
of the cells was always performed at the time when the cells
formed a confluent layer. MSC were harvested with 0.05%
trypsin/0.7 mM EDTA (1 - 5 min, 37°C; Sigma-Aldrich) and
counted as described previously. Cumulative population dou-
blings (PD) were calculated as described" in relation to the ini-
tial CFU-F frequency. Results are shown as mean =+ standard
error of mean, unless otherwise stated.

Isolation and expansion of mesenchymal stromal cells
cultured with M1 culture medium

For comparison we used MSC that had been isolated in cul-
ture medium M1 as described earlier.” Cells were isolated
from bone marrow aspirates from healthy donors after writ-
ten informed consent according to guidelines approved by the
Ethic Committee on the Use of Human Subjects at the
University of Heidelberg. The M1 medium consisted of 58%
Dulbecco's modified Eagles medium - low glucose (DMEM-
LG, Cambrex, Apen, Germany) and 40% MCDB201 (Sigma,
Deisenhofen, Germany), 2% FBS (HyClone, Bonn, Germany),
supplemented with 2 mM L-glutamine, 100 U/mL Pen/Strep
(Cambrex), 1% insulin transferrin selenium, 1% linoleic acid
bovine serum albumin, 10 nM dexamethasone, 0.1 mM L-
ascorbic-acid-2-phosphate (Sigma, Hamburg, Germany),



PDGF-BB and EGF (10 ng/mL each, R&D Systems,
Wiesbaden, Germany).*® Tissue culture flasks were coated
with 10 ng/mL fibronectin (Sigma) before use. MSC-M1 were
always harvested upon sub-confluent growth at a density of
70% and re-plated at 10" cells per cm’. Expansion was per-
formed by the same operator throughout long-term culture to
ensure similar cell densities. Seeding of the cells in numbers
per c’ and repeated cell passages at 70% confluence resulted
in a more constant cell density throughout culture-expansion.

Morphological analysis of mesenchymal stromal cells

The morphological features of MSC expanded in FBS- and
pHPL-driven cultures in the early stage (maximal 12 PD) of
proliferation in comparison to late passages (more than 38
cumulative PD) were analyzed by phase contrast microscopy
(Olympus IX51 microscope, equipped with a COLOR-VIEW
III camera and ANALYSIS B software, Olympus, Center
Valley, PA, USA).

Immunophenotypic analysis of mesenchymal stromal
cells cultured with fetal bovine serum or pooled human
platelet lysate

The immunophenotype of FBS-MSC and pHPL-MSC was
characterized after washing and blocking with sheep serum.
Cells were incubated for 25 min at 4°C at different concentra-

tions according to individual titration with fluorochrome-
labeled BS-1 lectin and monoclonal antibodies against CD5,
CD10, CD13, CD14, CD29, CD31, CD34, CD45, CD56,
CD73, CD90 (Becton Dickinson [BD], Franklin Lakes, NJ,
USA), CD105 (Caltag Laboratories; Burlingame, CA, USA),
CD146 (clone P1H12; Chemicon International, Temecula,
CA), HLA-AB (Harlan Sera-Lab; Leicestershire, UK) and HLA-
DR (BD). As negative controls we used appropriate isotype-
matched antibodies (BD). Analysis was performed with a
four-color FACSCalibur® equipped with a 488 nm argon ion
laser and a 635 nm red diode laser (BD).? Multicolor measure-
ments were performed and data from a minimum of 10,000
viable propidium iodide-excluding cells were stored. List
mode files were analyzed with CellQuest™ Pro and Paint-A-
Gate Pro® software (BD). The immunophenotype of MSC-M1
was also characterized by flow cytometry as described else-
where.”

Differentiation assays

The in vitro differentiation capacity of FBS-MSC, pHPL-MSC
and MSC-M1 was tested: osteogenic differentiation was
determined by visualization with alizarin red staining as
described elsewhere,” whereas adipogenic differentiation was
induced by the addition of insulin and identified by subse-
quent Oil Red O staining."
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Online Supplementary Table S1. Primer list. Quantitative RT-PCR was performed for validation of differential gene expression in early and late passages;
primers were obtained from Biospring (Frankfurt, Germany).

Gene Amplicon length (bp) Forward primer Reverse primer
GAPDH 142 TTCGTCATGGGTGTGAACCA CTGTGGTCATGAGTCCTTCCA
PARGI 309 CAATGATCATGCCCAGTGCA GATCGTGATCTGTGCCAGGA
SERPINE] 300 CTCCTCATCCACAGCTGTCA GCCAAGGTCTTGGAGACAGA
CDKN2B 274 CCCAACTCCACCAGATAGCA GGGATTTCCGCATCCTAGCA
NTNV4 260 AAGCCAGGCTTCTATCGTGA TCTCCGGTGATAGGGTCACA
TOLLIP 296 CACTGTGCATGATTCCGAGA AGGTGTCTCAATGGCATGCA
BDNF 297 CCAGGTGAGAAGAGTGATGAC ACCCTGGACGTGTACAAGTC
Mcm3 300 ACATTGGGCTACAGGACTCA TGAATGCTGCACTCACCATC
PTN 299 CAGTGAGTCATCCGTCCAGA GCCATTCTCCACAGTCAGAC




Online Supplementary Table S2. Senescence-associated gene expression changes in FBS-MSC. SAM analysis revealed that 74 genes were significantly
expressed in P1 and P2 of FBS-MSC (FDR = 5) in relation to the corresponding PO (30 genes up-regulated, red; 44 genes down-regulated, green).
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Online Supplementary Table S3. Senescence-associated gene expression changes in pHPL-MSC. In P1 and P2 of pHPL-MSC, SAM analysis revealed that 227
genes were significantly expressed (FDR = 5) in relation to the corresponding PO (68 genes up-regulated, red; 159 genes down-regulated, green).
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Online Supplementary Table S4.Chromosomal location of differentially expressed genes.The representation of the differentially expressed genes within chro-
mosomal regions was analyzed.

FBS pHPL MSC-M1
Gene Set [N] # P value Gene Set [N] # P value Gene Set [N] # P value
chrlp35 [121] 5 6.52 e* chrlp36 [573] 7 2.68 e*
chr2q34 [30] 2 3.67 e chr2q34 [30] 2 3.38 e
chr2p13 [90] 6 1.23e*
chr2p23 [105] 3 7.65 e* chr2q22 [27] 3 1.97 ¢*
chr3p23 [20] 2 1.79e* chr3p22 [89] 3 495 ¢? chr3pl1 [10] 2 1.93e*
chr3q24 [31] 3 2.76 e*
chrdq31 [107] 3 792 ¢* chrdpl6 [179] 4 739 ¢* chrdq21 [124] 9 1.58 ¢*
chrdq26 [37] 2 481¢e*
chrdq27 [21] 2 1.79e*
chr5q32 [37] 2 481 e* chrbp12 [24] 3 1.46 ¢*
chr5ql2 [58] 5 8.12¢°
chr5q13 [112] 7 9.99 ¢*
chr6p22 [188] 5 3.6e? chr6p22 [188] 7 2.53 ¢* chr6p22 [188] 11 2.66 e*
chr6q22 [108] 3 8.06 e* chrépll [14] 2 3.56 e*
chr6q23 [80] 3 438 ¢ chr7g31 [118] 6 343 e
chr6q25 [96] 5 3.16¢€* chr6q25 [96] 3 58 ¢
chr8p21 [110] 4 2.08 e* chr8p21 [110] 6 2.68 e*
chr8q22 [110] 4 2.08 e* chr8q12 [57] 4 3.1e?
chr8q24 [239] 6 2.94 ¢* chr8q24 [239] 5 6.18 e*
chr9q34 [299] 10 112 ¢* chr9g31 [89] 5 3.62 e
chrl1q23 [173] 5 2.36 e* chrllpl3 [62] 4 3.9 e
chr12q23 [106] 3 178 e* chr12q12 [75] 3 3.39 e*
chr13q34 [56] 3 1.69 e*
chr14q22 [92] 3 589 e* chrl4qll [344] 2 1.16 e*
chr14q24 [166] 4 6.98 e*
chr14q32 [469] 2 82e*
chr15q22 [121] 4 3.14e? chrl5q22 [121] 8 4.67 ¢*
chrl6qll [16] 2 1.18 e* chrl6q13 [53] B 1.87 ¢*
chr17q23 [105] 4 2.1e? chr17q23 [105] 3 6.94 e*
chr18q11 [58] 4 3.07¢? chr17q21 [354] 16 421¢?
chrl9ql3 [1011] 13 7.98 e* chr19q13 [1011] 8 1.59 ¢*
chr20q12 [53] 3 1.66 ¢*
chr20q13 [264] 8 557¢* chr20q13 [264] 5 7.92 ¢
chr21q22 [307] 7 246 e*

Positional information to chromosomal bands was analyzed for two-fold differentially expressed genes (up and down-regulated) in the three datasets by GSEA analysis. The number of genes

per chromosomal band (N), the number of differentially expressed genes in this region (#) and the probability (P value; hypergeometric distribution) are provided.



Online Supplementary Table S5. Results of array comparative genome hybridization analysis. Copy number variations of MSC from three donors cultured in
FBS and pHPL-driven medium and of three donors in M1 medium are listed according to the chromosomes and cytobands. Amplifications (in bold) or dele-
tions, the size of the affected region and P values are indicated.

Donor Passage Chromosome Cytoband Aberration kb p-value
Early 7 q11.22-q11.23 -0.374435 5158 5.06E-51
gi1.23 -4.217975 2.BBE-B0

]
g

2 Q35 1.890514 T4 6.27T3E-26

Early 3 pl4.z2 D.B41847 150 T21E12
15 qn.z +1.398927 1301 2.09E-95

2.985E-82

pHPL B

6 p21.33 -3.197369 42 6. 763E-64

[ q13 - g14.1 0.951695 08 3.366E-12

Early 8 pi1.23 -4,34232 138 4,194E-187

v 12 p13.31 1.331197 76 1.324E-19
2 16 162 1,808E-10

p11.1

pa1.33 -3.060614
p11.23 -4.091248

pHPL C

2 Q35 1.358990 T4 2.861E-22
4 pisa2 -1.165403 256 2.744E-12
; Early B8 pa2 -1.076421 g2 7.346E-13
8 p11.2a 40107 138 5.423E-178
3 15 i'l‘i..? -0.572011 1071 6.714E-17
2 35 1.763953 T4 2.1B4E-25
= Early a3 Q29 -0.477415 532 1.304E-12
g L] pii23a-p1zz 0.901813 155 9.725E-14
§ i5 i1.2 -1.030458 561 1.06E-31

2 1.1T2E-23

Early 8 pa3n -0.980526 668 2957E-12
9 g2z -0.B7170 20 1.399E-15

388 3.173E-15




