
A
lthough mathematical models occupy a
fundamental position in developing
strategies for controlling industrial

plants, their utility, or necessity, in the control
and management of drug delivery and, in gen-
eral, in the task of therapy assessment, has not
yet been properly evaluated.

This seems particularly surprising because
models of drug metabolism are studied in the
field of pharmacokinetics and pharmacody-
namics. Moreover, a variety of mathematical
models have been formulated with the aim of
giving deeper insight into physiological mecha-
nisms.

The main goal of this paper is to show that
problems arising during long-term therapy
monitoring are best faced with automation and
mathematical modeling. In particular, quanti-

tative methodologies could be very useful in
optimizing drug delivery. 

A relatively small error in drug dosage may
lead to ineffective treatment (if the dosage is
too low) or to toxicity (if the dosage is too
high). The application of methodologies com-
ing from control theory and mathematics
should lead to minimization of side effects,
costs and time involved in achieving therapeu-
tic goals. New methodologies, derived from the
field of Artificial Intelligence, are now available
in the area of both statistics and control theory.
They prove able to exploit the powerfulness of
mathematical modeling in medicine, where
available data are often sparse and not always
reliable. As a matter of fact, a well-known prob-
lem of mathematical modeling is related to
parameter identification: if the data at hand are
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ABSTRACT
This paper describes the improvements in r-HuEPO therapy of uremic patients that may be

obtained by using a mathematical model of patient response together with a delivery control
strategy derived from the theory of industrial control. A mathematical model of r-HuEPO action
is presented, and its applicability to dialytic patients  is shown. Moreover, a new statistical tech-
nique for identifying the parameters of the mathematical model analyzing a patient population is
summarized, and a control strategy for r-HuEPO delivery in uremic patients based on a Fuzzy Set
Controller is introduced. Some results obtained from simulation, are presented.
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few, and the mathematical model has many
parameters, it is not possible to estimate their
values. Using a new on-line Bayesian analysis of
the population at hand it is now possible to
overcome these problems.

The medical problem
Recombinant human erythropoietin (r-

HuEPO) belongs to the group of drugs whose
cost-effectiveness is currently under discussion,1

both in the treatment of renal anemia and in
the therapy of chronic and chemotherapy-
induced anemia related to cancer and HIV
infection.

In uremic patients, r-HuEPO is able to cor-
rect anemia completely in nearly all patients
receiving a standard dose, i.e. 100 U/kg three
times a week. Current medical strategy is to
treat patients needing transfusions and those
showing sustained symptoms of anemia.
Comparing r-HuEPO treatment with the tradi-
tional use of blood transfusions when a patient
is severely anemic shows that present practice
does not result in cost effective delivery of r-
HuEPO. In Italy a vial of 2000 r-HuEPO U costs
public institutions about $20.2 Thus, for a 60
Kg. patient the weekly cost of using r-HuEPO is
$180, and a whole year r-HuEPO treatment
would cost about $9,360. A dialysis center that
manages 100 patients, all treated with r-
HuEPO, would have a total cost of $936,000. 

Concern about the possibility of treating all
patients with uremic anemia has been voiced,
and strategies for reducing the dose or the cost
of the drug appear to be warranted. Optimal
drug delivery may reduce costs for each patient
and allow the number of patients treated to be
increased. 

The mathematical approach
Treating anemic patients with r-HuEPO aims

at making exogenous erythropoietin available
so that erythropoiesis can rise to a desired level.
Response is usually measured in terms of the
increase in circulating hemoglobin concentration
(Hb) or hematocrit (Hct). When r-HuEPO is
administered, an initial phase of nearly-linear

increase is followed by a maintenance phase at a
nearly constant level called a plateau. Figure 1
shows the experimental Hb profile under r-
HuEPO delivery of a responding uremic
patient. The desired level of Hb, the therapeutic
goal, is denoted by the shaded area. It is essen-
tial to achieve this therapeutic goal, while
reducing costs and avoiding side effects, such as
hypertension or thrombosis. In order to help
the physician achieve this goal, a representation
of the system’s response characteristics, the
patient’s individual response prediction and a
model of therapy adjustment control must be
utilized.

We have defined a computer system for opti-
mizing drug delivery, that is articulated in two
modules. The first is aimed at understanding
and summarizing what is happening to the
patient under the action of the given drug and
of the diagnosed disease. This may be viewed as
a learning device that utilizes patient response.
It is based on a model of the pathophysiological
process on which the therapy acts (e.g. the ery-
thropoietic response to erythropoietin) and on
a new technique for identifying the parameters
of the model during patient monitoring (e.g.
modeling the response to r-HuEPO in uremic
patients). The second module is aimed at tai-
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Figure 1. Typical uremic patient response to r-HuEPO deliv-
ery. An initial phase of nearly-linear increase is followed by
a maintenance phase at a nearly constant level called
plateau. The desired Hb level, the therapeutic goal, is
denoted by the shaded area.
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loring the therapeutic decision by taking into
account the results given by the first module.
This control strategy is based on the Fuzzy Set
Control Theory.

Modeling the erythropoietic response to ery-
thropoietin

Our proposed multicompartmental model
for control of erythropoiesis via erythropoietin
(Figure 2) is a simplified version of a previous
model proposed by Colli Franzone et al.3,4 and
is represented mathematically by a set of inte-
gro-differential equations. The rectangles repre-
sent body compartments, while the thin arrows
represent flows of matter. Bold arrows mean
signals or controls.

The serum level of erythropoietin (E) stimu-
lates the production of red blood cell precur-

sors in the bone marrow, and hence Hb pro-
duction in the blood. When r-HuEPO is deliv-
ered intravenously, the serum erythropoietin
compartment has two inputs one representing
endogenous erythropoietin and the other rep-
resenting the drug. If the drug is delivered sub-
cutaneously, it is necessary to introduce a sec-
ond order kinetic model to represent the
absorption process.

Particularly interesting here is the model of
the serum erythropoietin stimulus on erythro-
poiesis. We suppose that the action follows a
non-linear law, as shown in Figure 3. It express-
es the simple physiological assumption that the
red cell proliferation rate cannot increase indef-
initely with an increasing serum erythropoietin. 

The red cell proliferation rate r(y,E) in the
bone marrow is a function of serum iron (y)
and erythropoietin serum level (E) and may be

r-HuEPO
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Figure 2. One model for controlling erythropoiesis is via erythropoietin. Rectangles represent body compartments, while the thin
arrows represent flows of matter; bold arrows mean signals or controls. Serum iron and serum erythropoietin control red blood
cell production.



mathematically expressed as follows.

r(y,E)= f1(y) u f2(E) (1)

y
f1(y) = (2)y+y*

f2(E) = bu(1–e–aE) (3)

where f1(y) represents a coefficient of iron
availability for erythropoiesis while f2(E)
denotes the erythropoietin dependent factor of
the red cell proliferation rate. The parameter y*
indicates a plasma iron saturation coefficient
and b indicates the maximum erythropoietic
effort in response to a large erythropoietic
stimulus; a denotes the sensitivity coefficient to
a r-HuEPO stimulus.

This assumption of non-linear dependence of
erythropoiesis on erythropoietin could be use-
ful for understanding the role of the endoge-
nous erythropoietin level (epo) when delivering
r-HuEPO. If epo is in the linear region, as
shown in Figure 4a, r-HuEPO could be effective

in increasing the rate r(y,E) by moving up the
working point r*. Moreover, in this linear
region the measured response is dependent
only on the r-HuEPO dosage and not on the
epo level, because an increase of drug provokes
a corresponding linear increase in r*. This fact
could lead to mistakes if only a statistical analy-
sis is used on the cause-effect relationships
between epo and patient response. In fact, one
can conclude that response is independent of
epo levels once the dosage has been assessed.

Otherwise, if epo is in the saturation region,
as in Figure 4b, r-HuEPO is completely ineffec-
tive because the rate r* is already at the maxi-
mum level. Again, if the problem is examined
from a statistical point of view, it would seem
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Figure 3. The red cell proliferation rate r(y,E) in the bone
marrow is assumed to be a non linear function of serum
iron (y) and the erythropoietin serum level (E), called satu-
ration. This function expresses the physiological statement
that r(y,E) cannot increase indefinitely with an increasing
erythropoietin serum level.

Figure 4. a) A situation in which the endogenous serum
level (epo) is in the linear region. In this region r-Hu EPO
would be effective in increasing the rate r(y,E), by moving
up the working point r*. Moreover, in this linear region, the
measured response is dependent only on r-HuEPO dosage
and not on the epo level, because an increase of drug pro-
vokes a corresponding linear increase in r*.
b) The endogenous serum level epo is in the saturation
region. In this region r-HuEPO is completely ineffective
because the rate r* is already at the maximum level.



that only epo and not the amount of r-HuEPO
delivered is related to patient response. If the
epo value moves along the saturation profile
towards low values, the patient becomes a
responder to therapy.

As a matter of fact, the endogenous epo level
is always important for understanding the effi-
cacy of r-HuEPO treatment, and it should be
determined every time delivery of this drug is
to be assessed. This issue is particularly impor-
tant in patients with anemia of malignancies,
where disease could modify parameters b and
a, thus changing the maximum value of the
rate r(y,E). Response variability should be inter-
preted as a modification of this curve and not
merely registered as a statistical pattern. Great
improvement in treating the anemia of malig-
nancies with r-HuEPO could be made by iden-
tifying diseases classes on the basis of their satu-
ration curves.

By introducing constraints governing the
time invariancy of iron supply to erythropoiesis
and the drug delivery schedule, i.e. three times
a week, and knowing the half-life of r-HuEPO
in hemodialytic patients (6 hours),5,6 it is possi-
ble to calculate the rate of erythropoiesis and
solve the overall mathematical model.4 In this
way we have obtained a mathematical formula
that gives the relationship between Hb and r-
HuEPO dosage. This solution reproduces the
shape of the experimental curve shown in
Figure 1, and is a characteristic of the patient
population with uremic anemia under dialysis.
The solution depends on a patient-specific
parameter that expresses different individual r-
HuEPO response, namely the sensitivity coeffi-
cient a to r-HuEPO stimulus. The higher the
value of a, the faster Hb increases.

Modeling response to r-HuEPO treatment in
uremic patients

Once a disease-specific response model has
been implemented, modeling the response in
individual patients is a matter of parameter
identification. Using the data on Hb response
collected from the patient, it is possible to cal-
culate patient-tailored values for the patient-
specific parameters of the model, i.e. sensitivity.

Moreover, it is necessary to modify the esti-
mates progressively as data collection proceeds.

We used a Bayesian approach for this adaptive
estimation process. Bayesian methodologies are
widely adopted in many bio-medical applica-
tions; moreover, they are now utilized for repre-
senting time series, as in pharmacokinetics.7

In particular, Bayesian Networks (BNs) have
been found to provide a flexible and modular
instrument for building probabilistic knowl-
edge bases, and to represent a powerful envi-
ronment for computing Bayesian inferences.8,9

BNs are directed acyclic graphs, in which
nodes represent the variables in the problem
and arcs define the relationships among nodes
in terms of direct causal dependencies; in such
a way every node is given a set of parent nodes
that are its direct causes. BNs are quantified by
specifying the probability distribution of each
variable in the network, conditional on any
given configuration of values for its parents. For
a detailed account of the underlying theory, see
Pearl.10

Modeling the response to r-HuEPO in the
individual patient was performed via a two-step
process.

First, BN formalism in order to perform a
‘population’ analysis of an available data-base
of uremic patients undergoing intravenous r-
HuEPO treatment. In this analysis it is assumed
that every patient (i-th patient) in the data-base
shows some common characteristics, i.e. he/she
is extracted from the same population. From a
Bayesian point of view this means that the prior
probability distribution of the r-HuEPO math-
ematical model parameters (which we indicate
with θ) is the same for each patient (hyperdis-
tribution).

The second step of the process is to use this
hyperdistribution to obtain a posterior tailored
on the basis of data collected on each patient.
Estimating the parameters for a new patient
will therefore be a compromise between the
prior assumption and the available data. The
estimating process our system is able to per-
form is obtained through Gibbs sampling, an
algorithm based on stochastic simulation.11-13

Figure 5 shows the BN layout. The observa-
tions are represented by the nodes Hb1,[1,..., M];
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the parameters to be estimated for each i-th
patients are represented by the nodes θi and
they define the i-th patient’s response (as
derived from the compartmental model). The
node Φ at the top of the BN represents the
hyperprior distribution of each θi. The square
nodes indicate known quantities, such as the
observation times and the pre-treatment hemo-
globin concentration.

Thus it is possible to derive the curve shown
in Figure 6, which predicts the increase in Hb
values at day=60 if different r-HuEPO delivery
strategies are adopted for a population of ure-
mic patients.

In order to estimate reasonable values for the
parameters Φ of the model, the BN has been

implemented by means of a graphical environ-
ment for building and making inferences on
Bayesian Networks (GAMEES, GrAphical
Modeling Environment for Expert Systems).14

Population model parameter estimates were
derived from data collected by the Nephrology
and Dialysis Unit of USSL 78, Vigevano (Italy).
The data analysis was reported by Bellazzi.15

Modeling the drug delivery control strategy
Evaluating patient response to therapy and

modifying therapy on the basis of the response
characteristics is part of every-day medical
practice. This control action is performed
according to experience on past patients, or on
the basis of pre-defined protocols. To accom-
plish this task we adopted a drug delivery deci-
sion support system based on a novel class of
industrial controllers, the Fuzzy Set controllers.

Fuzzy Control represents an area of growing
interest in the context of complex, non-linear
processes, where human action is not satisfac-
tory and the classic automatic control theory is
not utilizable. For a full explanation of theory
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Figure 5. The BN layout: observations are represented by
the nodes Hbi,[1,..., M]; the parameters to be estimated for
each i-th patient are represented by the node θi and they
define the i-th patient’s response (as derived from the com-
partmental model). The node Φ at the top of the BN repre-
sents the hyperprior distribution of each θi. The square
nodes indicate known quantities, such as the observation
times and the pre-treatment hemoglobin concentration.

Figure 6. Predictions of Hb increase (g/dL) at day=60 if dif-
ferent r-HuEPO (Unitsu100) delivery strategies were adopt-
ed; after analysis of population of uremic patients.



and applications see References.16-18

It is beyond the aim of this paper to describe
in detail the theory underlying fuzzy con-
trollers. What follows summarizes the most
important features of applying this approach to
r-HuEPO therapy. 

For a more complete description of the fuzzy
controller developed for this problem see
Bellazzi et al.19

The basic idea underlying a fuzzy control sys-
tem for drug delivery is to represent each con-
trol rule utilized by the physician in a mathe-
matical form, called Fuzzy Relation, and to
apply the fuzzy theory to infer new dosages of
the drug, which we may call the control vari-
able.18,20

As previously mentioned, the physician may
choose as the goal of his control strategy
improvement of the blood hemoglobin concen-
tration (Hb) to a predefined therapeutic range
Hb*±iHb, in a given time T*. Usually Hb* is
chosen as 40% of the basal value: iHb=2.5
g/dL and T*=60 days.

We derived a semi-quantitative control law:
the dosage at time i is chosen as dose(i) =
dose(i-1)+K u |e(i)|, where dose(i) is the dose of
r-HuEPO (Unit/kg), e(i) = Hb*-Hb(i) and K is
calculated by a Fuzzy algorithm.

This control law expresses the assumption
that the initial dosage suggested by the physi-
cian will be modified according to the distance
between the actual and the desired Hb level.

As outlined in the introduction, a control law
is usually a very simple statement implement-
ing an action, often based on common sense. In
our proposed controller, the ‘intelligence’ of the
procedure stands in the modulation of the K
value.

The Fuzzy controller calculates the K value by
using three quantities, the error e(i)=Hb*-
Hb(i), the error derivative 

e(i)–e(i–1)

ie(i)= ————
|e(i)|

and the r-HuEPO patient’s sensitivity a which
is estimated each time i by the BN presented in
the previous section.

The Fuzzy controller implements linguistic
rules to calculate K, such as

IF e(i) IS POSITIVE LARGE AND i e(i) IS
ZERO THEN K IS POSITIVE SMALL

These rules may be expressed in a rule table,
like the one shown in Table 1. Each element of
the table corresponds to a K value given e(i)
and ie(i).

The problem is obviously to translate num-
bers into linguistic values, and linguistic values
into numbers; as a matter of fact e(i), ie(i) and
K are numbers.

This translation is accomplished by using the
concept of fuzzy set. Each variable may be rep-
resented with a certain number of linguistic
values. For example, the error e(i) is represent-
ed with 4 values: Negative Large (NL), Negative
Small (NS), Positive Small (PS) and Positive
Large (PL); each of these values may be viewed
as a set of numbers: NL may include e(i) ranges
from 4 to 0 g/dL, NS may include numbers
from –1 to 0 g/dL, and so on.

The complete definition of the linguistic val-
ues for e(i), ie(i) and K is shown in Figure 7
and Table 1.

In Fuzzy logic the numbers belong to a set

R. Bellazzi et al.160

Table 1.  The rule table of the Fuzzy Controller. Each ele-
ment of the table represents the linguistic value of K in
dependence on the linguistic values of e(i) and ie(i).

Negative 
Large 
(NL)

Negative 
Sm all
(NS)

Positive 
Sm all
(PS)

Positive 
Large 
(PL)

Negative  
(NE)

Zero
(ZE)

Positive
(PO)

Negative 
Sm all
(NS)

Negative 
Sm all
(NS)

Negative 
Large 
(NL)

Negative 
Large 
(NL)

Negative 
Sm all
(NS)

Negative 
Sm all
(NS)

Positive 
Sm all
(PS)

Positive 
Sm all
(PS)

Positive 
Sm all
(PS)

Positive 
Large 
(PL)

Positive 
Sm all
(PS)

Positive 
Large 
(PL)

Error derivative ie(i)

Error
e(i)



with a membership degree. For example, an
error e(i) of –0.4 may belong to the set of NL
with degree 0.4 and to the set of NS with a
degree of 0.5. When a number belongs to a set
with degree 1, we can say that this number fits
the definition of the set completely. This
expresses the fact that the linguistic values used
by humans include an approximative meaning
for the numbers underlying these values.

In order to assign a membership degree to
each linguistic set for each number, it is neces-
sary to introduce a membership function for
each set, as shown in Figure 7a and 7b.

The values of e(i) and ie(i) are translated
into the linguistic representation at each time i.
Let us suppose for example that the error e(i) is
a member of PS with degree 0.2 and that ie(i)
is a member of ZE (see Figure 7) with degree

0.3. Now the fuzzy control theory suggests that
the rule

IF e(i) IS POSITIVE SMALL AND ie(i) IS
ZERO THEN K IS POSITIVE SMALL

is verified with a degree that is the minimum
between 0.2 and 0.3.

The membership functions of output K
depend on the values assumed by parameter a.
In this way the definition of the sets is individu-
alized for each single patient; for example, if the
patient is highly r-HuEPO sensitive, the gain of
the set POSITIVE LARGE reduces its values.
Negative errors will thus produce a mild action
on r-HuEPO dosages, thereby taking into
account the patient’s marked responsiveness to
the drug.
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Figure 7. A) Membership functions of the defined linguistic variable for e(i) and ie(i). e(i) has 4 linguistic values, named NL
(Negative Large), NS (Negative Small), PS (Positive Small) and PL (Positive Large) while ie(i) has 3 linguistic values: NE
(NEgative), ZE (ZEro), PO (POsitive). B) Membership functions of the defined linguistic variable for K. K has 4 linguistic values,
named NL (Negative Large), NS (Negative Small), PS (Positive Small) and PL (Positive Large), and their numeric values depend
on the value of r-HuEPO sensitivity a.

Kpl = 4.5*10*a –710*a + 3.6638 a ≤ 0.0065

Kpl = –100 *a+1.6 a > 0.0065

Kpl = –1.5 a < 0.0055

Kpl = 500*a –4.254.5*10*a –710*a + 3.6638 0.0055 ≤ 0.0065

Kpl =  –1 a > 0.0065

Kps = –kns =0.0005*Kpl

A B



The numerical value of K will then be calcu-
lated by averaging all the degrees of the rules
verified by the current values of e(i) and ie(i).

Referring to our example, we may suppose
that ie(i) is also a member of the set PO with a
degree 0.4, activating the rule

IF e(i) IS POSITIVE SMALL AND ie(i) IS
POSITIVE THEN K IS POSITIVE LARGE

that is verified with a degree that is the mini-
mum between 0.4 and 0.3. K is therefore calcu-
lated as 

0.3 u kpl + 0.2 u kps
K= (4)

0.3+0.2

where kpl and kps are specified in Figure 7b as a
function of a.

A case study
In order to evaluate the capabilities of the

overall system, we performed a case-simulation
study structured as follows: we considered a
real clinical case, and characterized this subject
in terms of the mathematical model by estimat-
ing the model parameter a. Then we consid-
ered a fictitious patient with r-HuEPO response
characteristics similar to the real patient under
analysis. After that we compared the strategy
actually used by the physician with that sug-
gested by our controller for the fictitious
patient, in order to evaluate both treatments.

Let us consider a patient with a basal hemo-
globin value Hb0 of 5.3 g/dL. The patient’s
body weight is 44 kg. The goal set by the physi-
cian is to increase Hb by about 40% in 60 days
of therapy (Hb = 7.51).

The clinician started treating with 100 U/kg.
After 3 weeks he decided that the patient’s
response was not satisfactory and changed the
dose to 180 U/kg. After 7 weeks the r-HuEPO
dosage was reduced to 67 U/kg in order to
avoid hypertension problems. With this policy,
the patient’s response reached the desired level
in 40 days.

The fuzzy algorithm proposed here, suggested
starting with 80 U/Kg and increasing the dosage
gradually to 90 U/Kg. The therapeutic goal was

reached after 60 days. The estimate for the
parameter a was 0.0053±3.1u10-4.

After 100 days the amount of r-HuEPO uti-
lized by the physician was 64.65u100 U/Kg,
while the quantity suggested by the fuzzy con-
troller was 43.24u100 U/Kg, with a savings of
33.12% of the hormone. In terms of costs, this
means saving 21.41u100 U/Kg during the first
three months of treatment. Since the patient
weighed 44 kg., the units saved would be 94,204
(47.1 2000 Unit vials) and the net savings in
cost would be $942.

Figures 8a and 8b illustrate the two different
drug delivery strategies. The dashed line repre-
sents the drug dosage actually delivered, while
the continuous line represents the suggested
dosage.

The difference in the two strategies is not sur-
prising. As a matter of fact, the physician decid-
ed that a time of 60 days was optimal for reach-
ing the therapeutic Hb goal, but his dosages
were such that the goal was reached after 40
days. The fuzzy controller used a more rational
strategy, following the physician’s initial request.

Perspectives and comments
Although the results presented here are only

theoretical because the control framework has
not been applied in the field yet, the potentiality
of this approach is clear.

A mathematical model of patient response
gives deeper insight into relationships among
variables than does a statistical one. Moreover,
once the model has been defined, a population
analysis of the drug response is essential for
characterizing the population of patients under
study in terms of model parameters. Finally, an
adaptive control strategy is important to ratio-
nalize drug delivery and save costs by individu-
alizing therapy.

As a matter of fact, the increasing interest in
cost-effectiveness analysis indicates that this
kind of approach could be useful in medical
practice. Each medical department is usually
assigned a budget, and the necessity of not
exceeding this budget requires optimizing treat-
ment cost-effectiveness. This issue is crucial for
drug delivery: a savings of costs, and hence of
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drug amounts, may allow the number of treat-
ed patients to be increased.21-24

r-HuEPO is one of these effective, but expen-
sive drugs for which this kind of analysis is
worthwhile.25

Since PCs and a great variety of mathematical
and statistical packages are available nowadays,
it is possible to implement mathematical mod-
els and control strategies easily. We believe that
mathematical models may be important as sta-
tistical tests, and that they must become widely

employed not only within physiologists, but
also in every-day treatment. Moreover, integra-
tion of mathematical models and Artificial
Intelligence may enlarge the perspectives of
decision support systems, allowing explanation
of results and more useful man-machine inter-
action.

The main ‘message’ of our work is that new
mathematical methodologies can introduce
new perspectives for optimizing drug delivery,
thus allowing more rational utilization of avail-
able resources. 

Our feeling is that the efficacy of such
methodologies in clinical practice is a well-
founded expectation; clinical trials and case-
control studies must now be carried-on in order
to confirm the results of these simulations.
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Figure 8. A) The different dose plans: the dashed line rep-
resents the drug dosage actually delivered, while the con-
tinuous line represents the dosage suggested by the Fuzzy
Controller; B) the cumulative amount of drug delivered by
the physician (dashed line), and that suggested by the
Fuzzy Controller (continuous line): the drug quantity that
could be saved after three months of treatment is repre-
sented by the difference between the two curves when the
time is equal to 90 days.
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